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Abstract 

Attribute grammars are an elegant formalization of the 
augmented context-free grammars characteristic of most 
current natural language systems. This paper presents 
an extension of Earley's algorithm to Knuth's attribute 
grammars, considering the case of S-attributed 
grammars. For this case, we study the conditions on 
the underlying base grammar under which the extended 
algorithm may be guaranteed to terminate. Finite 
partitioning of attribute domains is proposed to 
guarantee the termination of the algorithm, without the 
need for any restrictions on the context-free base. 

1. Introduction 

Earley's (1970) algorithm is a general algorithm for 
context-free languages, widely used in natural language 
processing (King, 1983; Shieber, 1985) and syntactic 
pattern recognition (Fu, 1982), where the full generative 
power of context-free grammar is required. The original 
algorithm and its common implementations, however, 
assume the atomic symbols of context-free grammars, 
thus limiting its applicability to systems with attributed 
symbols, or attribute grammars (Knuth, 1968). 

Attribute grammar is an elegant formalization of the 
augmented context-free grammars characteristic of most 
current NLP systems. It is more general than members 
of the family of unification-based grammar formalisms 
(Kay, 1985; Shieber, 1986), mainly in that it allows 
and encourages the use of simpler attribution functions 
than unification for the definition of attribute values, 
and hence can lead to computationally efficient 
grammatical definitions, while maintaining the 
advantages of a well-understood declarative formalism. 
Attribute grammar has been used in the past by the 
author to define computational models of Chomsky's 
Government-binding theory, from which practical 
parsing programs were developed (Correa, 1987a). 

Many systems based on Earley's algorithm have a clear 
division between the phases of syntactic and semantic 
analysis. Yellin (1988), for instance, uses a syntactic 
analysis phase in which Earley's algorithm builds a 

factored parse tree (FPT) for the given input, which is 
then followed by up to two phases of semantic analysis, 
during which the FPT is attributed and evaluated. Watt 
(1980) and Jones and Madsen (1980) propose a close 
interaction between syntactic and semantic analysis in 
the form of "attribute-directed" parsing. However, their 
particular realization of the technique is severely 
restricted for NLP applications, since it uses a 
deterministic one-path (LR) algorithm, applicable only 
to semantically unambiguous grammars. 

Pereira and Warren (1983) and Shieber (1985) present 
v6rsions of Earley's algorithm for unification grammars, 
in which unification is the sole operation responsible 
for attribute evaluation. However, given the high 
computational cost of unification, important differences 
between attribute and unification grammars in their 
respective attribution domains and functions (Correa, 
forthcoming), and the more general nature of attribute 
grammars in this regard, it is of interest to investigate 
the extension of Earley's algorithm directly to the main 
subclasses of attribute grammar. 

The paper is organized as follows: Section 2 presents 
pieliminary elements, including a definition of attribute 
grammar and Earley's algorithm. Section 3 presents the 
extension of the algorithm for S-attributed grammars. 
In Section 4, we consider the conditions on the 
underlying grammar under which the extended algorithm 
may be guaranteed to terminate for each input. For the 
S-attributed case we show that the algorithm terminates 
if the grammar has no cycles or, equivalently, if it is 
finitely ambiguous. However, finite partitioning of 
attribute domains may be used to guarantee the 
termination of the algorithm, without the need for 
restrictions on the context-free base. Finally, a 
conclusion and note on implementation are given. 

2. Notation and Preliminaries 

We follow the usual notation and terminology for 
grammars and languages. A language is a set of strings 
o~,er a finite set T of symbols. A grammar is a formal 
device for specifying which strings are in the set. In 
particular, a context-free grammar is a cuadruple 
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(N, T, P, S), where N is a finite set of  string 
categories; T a finite set of terminal symbols; P a finite 
set of productions or rewriting rules of the form X--~t~, 
Xe N, a e  (NUT)*; and S a distinguished symbol of N. 
A binary relation ~ of derivation between strings over 
the vocalulary N u T  of the grammar is defined such that 
aXl~ ~ ctol3 iff X o  o is a production of P; now, ~ *  
may be defined as the reflexive and transitive closure of 
~ .  The language generated by the grammar, noted 
L(G), is the set of strings toe T*, such that S ~ *  to. 

An attribute grammar is defined upon a context-free 
grammar G=(N, T, P, S), by associating each symbol 
Xe N u T  with a finite set A(X) of attributes, and a type 
or domain dom(a) for each attribute a thus defined 
(Knuth, 1968). Each attribute a of X, noted X.a, takes 
values over its domain and represents a specific, 
possibly context-sensitive property of the symbol. 

Attribute values are defined by attribution rules of the 
form X i . a ~ f ( X j . b  . . . . .  Xk.c), associated with each 
production p=Xo-~Xt.. .Xn in the grammar, 0<i,j,k<n. 
Here, f is an applicative expression (function) whose 
value depends on the values of attribute occurrences 
associated with symbols in the production. Each time p 
applies in a derivation, the attribution rule defines the 
value of the attribute occurrence X.a as a function of 
the occurrences Xj.b . . . . .  Xk.c, associated with other 
symbols in p . We let R(p) denote the packet of 
attribution rules associated with p .  The grammar may 
also define attribute condit ions of  the form 
B(Xi.a . . . . .  Xk.b ), 0 < i, k < n, where B is a Boolean 
predicate on the values of attribute ocurrences in p .  
This condition must be satisfied in any derivation 
requiring the application of p ,  and thus contributes to 
the notion of grammaticality in the language generated 
by the grammar. We let B(p) denote the packet of 
attribute conditions associated with p .  

The above remarks are summarized as follows: An 
attribute grmmnar is a cuadruple AG=(G,A,R,B), where 

i. G = (N, T, P, S) is a context-free grammar; 

ii. A = L3Xe NuT A(X) is a finite set of attributes; 

iii. R= k..Jpe pR(p) is a finite set of attribution rules, 

as above; and 

iv. B=L3pe p B(p) is a finite set of attribute conditions, 

as above. 

The base grammar G assigns a derivation tree x to each 
sentence in L(G). The tree is annotated at each node 
labelled X with the set A(X) of attributes associated 
with X; each attribute ae A(X) defines an attribute 
occurrence X.a at node X. If the grammar is well 
defined (Knuth, 1968), it is possible to evaluate each 
attribute o c c u r r e n c ~  on the tree, and we say that • is 
correctly attributed iff all attribute conditions yield 

' true. '  The language generated by the attribute 
grammar, L(AG), is now the subset of L(G) whose 
members have at least one correctly attributed tree. 

It is possible to classify the attributes in AG according 
to the manner in which their values are defined. We say 
an attribute X.a is synthesized if its value depends only 
on attributes of daughters of  X; it is inherited if its 
value depends on attributes associated with the parent or 
sisters of X. We say the grammar is S-attributed if it 
contains only synthesized attributes. A more general 
and practically important class of L-attributed grammars 
is obtained if we allow attributes of both kinds, but 
such that each inherited attribute depends only on 
inherited attributes of the parent, or attributes of the 
sisters to its left (Bochmann, 1976). 

Earley's algorithm is a recognizer for CFGs which uses 
top-down prediction in combination with bottom-up 
parsing actions. Given an input string Xl . . . . .  Xn it 
builds a state set Si at each position i of the string, 
0 <  i < n+l.  Each state  in Si is of  the form 
<A--~a.l~, f, ~5>, where A---~a.~ is a dotted-production,f 
an index to the position in the input string where this 
instance of the production began to be recognized (0 < f 
< i), and 8 a string of k symbols of Iookahead (k >0). 
To begin, all state sets are initialized to empty and the 
initial state < ¢ ~ . S  _1_, 0, _l_k> is put into SO; here 
_1_ is the end-of-input marker. States are processed in 
order according to the position of their "dot" following 
three actions, Predictor, Completer, and Scanner, while 
maintaining the following invariant: 

State < A---~a-13, f, ~5> is in Si iff the following 
derivations are valid: 
S ~ *  GA~ ; a ~ *  x . . .x f ;  and ot ~ *  Xf+l...xi. 

Since the number of  possible states is finite the 
algorithm terminates. The input string is accepted if 
Sn+I={<~---~S _1_., 0, .l_k>}. The correctness of  this 
acceptance condition is a consequence of the invariant. 

3. Extension to S-attributed G r a m m a r s  

The chief element of the extension of the algorithm is a 
change in the representation of  the states in Earley's 
original algorithm to attributed representations. Now, 
each dotted production A~a*l~  in a state consists of 
symbols attributed according to the grammar. For each 
category symbol A in the base grammar, we define the 
attributed symbol A[A.al . . . . .  A.an], where A is the 
category and A.ai, l<i<n, an attribute occurrence of A. 

The extended algorithm, in addition to syntactically 
recognizing the input string, evaluates the attribution 
associated with each of its possible derivations. In 
particular, for each derivation of the attributed final state 
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<¢-->S[ S.al ..... S.an] _1_., 0, ±k>, where S is the start 
symbol of the grammar and S.al ..... S.a n the attribute 
occurrences of S associated with that state, the 
algorithm evaluates the corresponding attribute 
occurrences. For an S-attributed grammar, this is 
achieved by the following modification of Earley's 
algorithm, in its Completer step: 

SO := { < ¢---)'SIS.al ..... S.anl±, O, £k> }; 
for i := 1 r o n d o  
begin 

For each state s in Si ,  repeat until no more 
states may be added to Si or Si+l 

begin 
1. Predictor 
If s = < A--->~-X[I, f, 8> 
(i.e., s is not final and X non-terminal) 

Si := Si t..) { < x - - ~ , o ,  i, B> I 
X-->c in P and It in FIRSTk(~8)} 

2. Completer 
If s = < A - ) a . ,  f, 8> (i,e., s is final) 
and 8 = Xi+l ... Xi+k 
a. Ae := eval s(A,  ct, A->a) 
b. Si := Si w { < X--->aAe.13, k, It>l 

<X-->a.AI3, k, It> in Sf } 
3. Scanner 
If s = < A-->a.Xi+ll3, f, 8> 
(i.e., s not final and Xi+l the next input symbol) 

Si+l := Si+l t..) { < X--->aXi+l.~, f, 8> } 
end; 
If Si+l is empty, reject and terminate 

end; 
If <¢~S[S .a l  ..... S.an]_l_., 0, ±k> in Sn+l, accept. 

Extension of Ear ley ' s  Algori thm for 
S-a t t r ibuted G r a m m a r s  

The states in the algorithm are attributed as indicated 
above. For example, the symbol A in the state 
<A--gao, f, 8> input to the Completer could be shown 
more explicitly as A=A[A.al . . . . .  A.an]. As the state 
enters the completer, the attribute occurrences A.ai of A 
are unevaluated; however, since the grammar is 
S-attributed it is easy to show that the attribute 
occurrences on the right-hand side a of the production 
have already been evaluated. Hence, evaluation of the 
attribute occurrences of A reduces to application of the 
attribution associated with the production A - > a ,  
according to the attribute values in a .  This is done by 
the function eval_s(A, ct, A---~ot), which returns the 
attributed symbol Ae, identical to A, except that its 
attribute occurrences have been evaluated, as required. 
The last state set generated by the algorithm contains 
final states of the form <¢-->S[ ...] .1_., 0, -l-k>, in 
which the attributed start symbol S[ ...] is already 
evaluated. Here the extended algorithm differs form 

Earley's; whereas the original algorithm generates at 
most one final state, regardless of the ambiguity of the 
underlying grammar, the extended algorithm may 
generate several instances of this state, if the grammar is 
ambiguous. Each instance of the final state corresponds 
to a different derivation of the initial symbol, leading to 
a different evaluation of the symbors attributes. 

4. F in i t e  P a r t i t i o n i n g  o f  A t t r i b u t e  D o m a i n s  

The last remark in the extension of section 3 shows a 
defect of the Extended Algorithm: It may not terminate 
in the general case. For the S-attributed case, however, 
this may happen only if the underlying grammar is 
~nfinitely ambiguous or, equivalently, if it has cycles 
Or derivations of the form A ~ + A ,  for some A~ N. 

Consider, for example, the following grammar, which 
,measures" the length of each derivation of the sole 
string 'a'  it generates: 

S - -cA S.v <--- A.v 
A--~A A0.ve-- A 1.v +1 
A-->a A . v e -  1 

Given the input string 'a ' ,  the algorithm defines three 
attributted slate sets: 

SO = {<¢~-->.S[v]_L, 0, _l_k>, <S[v]-->-A[ v], 0, .l_k>, 
<A[v]-->.a, 0, £k>, <A[ v]-->.A[v], 0, d-k> } 

S 1 = {<A-->a.,  0, ± k > ,  

<S[v]--~A[ 1]., 0, £k>,  <A[v]-->A[1 ]., 0, _l_k>. 
<~->S[ 1]-±, O, ±k> 
<S[v]-->A.[2], 0, j k>, <A[vl-->A[2]-, 0, j.k>, 

ad infinitum ... } 

$2 = {<¢-->S[ I]_L., 0, _Lk>, 

<¢-->S[2].L-, 0, ±k>, 
ad infinitum ...} 

Since S1 is infinite, the algorithm does not terminate. 

Cyclic grammars play an important role in most recent 
linguistic theories, including Government-binding (GB), 
LexicaI-Functional Grammar (LFG) and GPSG (cf. 
Bcrwick, 1988; Con'ca, 1987b; Kornai and Pullum, 
1990). These have in common that they have shifted 
from rule-based descriptions of language, to declarative 
orprinciple-based descriptions, in which the role of 
phrase structure rules or principles is relatively minor. 
Thus, to make the extension of the algorithm useful for 
natural language applications it becomes necessary to 
ensure its termination, in spite of cyclic bases. 
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The termination of the Extended Algorithm may be 
guaranteed while maintaining its full generality, through 
a finite partition on the attribute domains associated 
with each cyclic symbol in the grammar. For each such 
domain dom (a), the partition defines a finite collection 
of equivalence classes on attribute values. Now, before 
adding a new state <A--~a'l~, f, ~i> to a state set Si, we 
test for equivalence (according to the defined partitions) 
rather than equality to some previously added state; if 
the new state is equivalent to some other, it is not 
added. It is easy to show that the number of attributed 
dotted items in the grammar, and hence the size of the 
state sets, is now finite. This number is in fact 
identical to that of Earley's algorithm, except for a 
constant multiplicative factor, dependent on the 
grammar and the size of the partitions selected for 
attribute domains. Since the size of the state sets 
possible with finite partitioning is now finite, the 
algorithm always terminates. 

After establishing a correspondence between attribute 
and unification grammar (UG), we may see that the 
technique of "restriction" used by Shieber (1985) in his 
extended algorithm is related to finite partitioning on 
attribute domains, in fact a particular case which takes 
advantage of the more structured attribute domains of 
UG. For attribute grammar, given that the domains 
involved are more general (e.g., the integers), finite 
partitioning is the required device. 

5. Conclusions and Implementalion Status 

This paper presented and extension of Earley's algorithm 
to S-attributed grammars. Combining on-line semantic 
evaluation with the execution of syntactic actions, the 
algorithm is an effective realization of attribute-directed 
parsing, as proposed by Watt (1980) and Jones and 
Madsen (1980). Although the algorithm is a recognizer, 
it computes the semantic values associated with each 
derivation of the input string, and hence need not be 
extended to compute tree representations. In attribute 
grammars with conditions on productions, the values of 
attributes already evaluated unay be used to guide the 
parsing process, reducing the number of states! that may 
be generated by the algorithm. 

The extension of the algorithm has been written in "C", 
using an efficient "C" implementation of Earley's 
original algorithm (Chamorro and Correa, 1990), and is 
currently being tested on small grammars. The extended 
algorithm will be the kernel of ANDES-l, a 
programming environment for attribute grammars, 
intended for natural language applications. 
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