An Extension of Earley's Algorithm for
S-Attributed Grammars

Nelson Correa
Depanment of Electrical Engineering
Universidad de los Andes
Apartado Aéreo 4976, Bogotd, D.E., Colombia
bitnet : NCORREA at ANDESCOL

Abstract

Auribute grammars arc an clegant formalization of the
augmented context-free grammars characieristic of most
currcnt natural fanguage systems. This paper prescnts
an cxtension of Earley's algorithm 10 Knuth's attribute
grammars, considering the case of S-attributed
grammars. For this casc, we study the conditions on
the underlying base grammar under which the extended
algorithm may bc guaranteed 0 terminate. Finite
partitioning of attributc domains is proposed to
guaranice the termination of the algorithm, without the
nced for any restrictions on the context-free base.

1. Introduction

Earley's (1970) algorithm is a gencral algorithm for
context-free languages, widcly used in natural language
processing (King, 1983; Shicber, 1985) and syntactic
pattern recognition (Fu, 1982), where the full gencrative
power of context-free grammar is required. The original
algorithm and its common implementations, however,
assume the atomic symbols of context-free grammars,
thus limiting its applicability to systcms with attributed
symbols, or atiribute grammars (Knuth, 1968).

Attribute grammar is an clegant formalization of the
augmented context-free grammars characteristic of most
currcnt NLP systems. It is morc gencral than members
of thc family of unification-bascd grammar formalisms
(Kay, 1985; Shicber, 1986), mainly in that it allows
and encourages the use of simpler atribution functions
than unification for the definition of attribute valucs,
and hcnce can lcad o computationally . efficient
grammatical definitions, whilc maintaining the
advantages of a well-understood declarative formalism.
Attribute grammar has been used in the past by the
author to define computational models of Chomsky's
Govcrnment-binding theory, from which practical
" parsing programs werc developed (Correa, 1987a).

"~ Many systems bascd on Earley's algorithm have a clcar
division between the phases of syntactic and semantic
analysis. Ycllin (1988), for instance, uses a syntactic
analysis phasc in which Earlcy's algorithm builds a

- 299 -

factored parse tree (FPT) for the given input, which is
then followed by up o two phases of semantic analysis,
during which the FPT is attributed and cvaluated. Watt
(1980) and Jones and Madscn (1980) proposc a close
intcraction between syntactic and semantic analysis in
the form of "attribute-directed” parsing. However, their
particular realization of the technique is scverely
restricted for NLP applications, sincc it uses a
deterministic onc-path (LR) algorithm, applicablc only
to scmantically unambiguous grammars,

Percira and Warren (1983) and Shicber (1985) present
versions of Earley's al;,onlhm for unification gramsmars,
in which unification is the solc opcrauon responsible
for attribute cvaluation. However, given the high
computational cost of unification, important diffcrences
between attribute and unification grammars in their
réspective autribution domains and functions (Correa,
forthcoming), and the morc general nature of attribute
grammars in this regard, it is of intercst to investigate
the extension of Earley's algorithm directly (o the main
subclasses of attribute grammar.

The paper is organized as follows: Section 2 presents
prchmmary clements, including a dcfinition of attribute
grammar and Earley's algorithm. Scction 3 prescnts the
cxtension of the algorithm for S-autributed grammars.,
In Section 4, we consider the conditions on the
undcrlying grammar under which the extended algorithm
may be guarantced to terminate for cach input. For the -
S-attributed case we show that the algorithm terminates
il the grammar has no cycles or, cquivalently, if it is
finitcly ambiguous. However, finite partitioning of
attribute domains may be used to guaranice the
termination of the algorithm, without the need for
restrictions on the context-freec base. Finally, a
conclusion and notc on implcmentation arc given.,

2. Notation and Preliminaries

We follow the usual notation and tcrminology for .
grammars and languages. A language is a sct of strings
over a finite set T of symbols. A grammar is a formal
device for specifying which strings are in the sct. In
particular, a context-free grammar is a cuadruple

(N, T,P,S), where N is a finite set of string
categories; T a finite sct of terminal symbols; P a finite
set of productions or rewriting rules of the form X—o,
XeN, ge (NUT)*; and S a distinguished symbol of N,
A binary relation = of derivation between strings over
the vocalulary NUT of the grammar is defined such that
oXp = aof iff X— o is a production of P; now, =>*
may be dcfined as the reflcxive and transitive closure of
=. The language generated by thc grammar, notcd
L(G), is the sct of strings we T*, such that S =* .

An attribute grammar is dcfined upon a context-free
grammar G=(N, T, P, S), by associating each symbol
Xe NuUT with a finite set A(X) of attributes, and a type
or domain dom(a) for cach attributc ¢ thus defined
(Knuth, 1968). Each autribute a of X, noted X.a, takes
values over its domain and rcpresents a specific,
possibly context-sensitive property of the symbol.

Attribute valucs arc dcfincd by attribution rules of the
form Xj.ae[(Xj.b, ..., Xk.c), associated with each
production p=X,—X...Xy in thec grammar, 0<i,j,k<n.
Here, f is an applicative cxpression (function) whose
value depends on the values of attribute occurrences
associatcd with symbols in the production. Each time p
applics in a derivation, the attribution rule defincs the
valuc of the auribute occurrcnce X.a as a function of
the occurrences Xj.b, ..., Xk.c, associated with other
symbols in p . We lct R(p) denote the packet of
attribution rules associated with p . The grammar may
also dcfine attribute conditions of the form
B(Xj.a,..., Xk.b). 0< i,k <n, where B is a Boolcan
predicate on the values of attribute ocurrences in p .
This condition must bc satisficd in any dcrivation
requiring the application of p , and thus contributcs to
the notion of grammaticalily in the language gencrated
by the grammar. We lct B(p) dcnotc the packet of
attribute conditions associatcd with p .

The above rcmarks are summarized as follows: An
atiribute grammar is a cuadruple AG=(G,A R,B), where

i. G=(N,T,P,S) isa context-frec grammar,

ii. A= UXe NUT A(X) is a finite set of attributes;

iii. R= Upe pR(p) is a finite set of attribution rules,

as above; and
iv. B:k)pE p B(p) is a finite sct of attribute conditions,

as above.

The base grammar G assigns a derivation tre¢ T (o cach
sentence in L(G). The tree is annotated at each node
labelled X with the set A(X) of attributcs associated
with X; cach attributc ae A(X) dcfincs an attribute
occurrcnce X.a at node X. If the grammar is well
dcfined (Knuth, 1968), it is possible to cvaluatc each
attribute occurrence on the tree, and we say that t is
correctly attiributed I all attribute conditions yicld

- 300 -

‘rue.’ The language generated by the attribute
grammar, L(AG), is now thc subsct of L{(G) whosc
mcmbers have at lcast one correctly attributed tree.

It is possible to classify the attributcs in AG according
to the manncr in which their valucs are defined. We say
an attributc X.a is synthesized if its valuc depends only
on attributcs of daughters of X; it is inherited if its
valuc depends on attributes associated with the parent or
sisters of X. We say the grammar is S-attributed if it
contains only synthesized attributes. A morc gencral
and practically important class of L-attributed grammars
is obtaincd if we allow attributes of both kinds, but
such that each inhcrited attributc depends only on
inhcrited attributes of the parent, or attributes of the
sisters to its left (Bochmann, 1976).

Earley’s algorithm is a recognizer for CFGs which uscs
top-down prediction in combination with bottom-up
parsing actions. Given an input string X1, ..., Xp it
builds a statc set Si at cach position i of the string,
0< i £ n+l. Each state in §; is of the form
<A-aef, f, 8>, where A—a is a dotted-production, f
an index to the position in the input string where this
instance of the production began to be recognized (0 < f
<i),and & astring of k& symbols of lookahead (k 20).
To begin, all state scts are initialized to empty and the
initial statc <¢—-S 1, 0, LK> is put into Sq; here
1 is the end-of-input marker. Statcs arc processed in
order according to the position of their “dot” following
three actions, Predictor, Completer, and Scanner, while
maintaining the following invariant:

Statec < A—ae-B, f, 8> is in S; iff the following
derivations arc valid:
S =*cAv; o =*x...x1; and a =* xg41...Xj.

Since the numbcer of possible states is finite the
algorithm terminates. The input string is accepted if
Sp+1={<¢—>S L., 0, _Lk>]. The correctness of this
acceptance condition is a conscqucnce of the invariant.

3. Extension to S-attributed Grammars

The chicf element of the cxtension of the algorithm is a
change in the representation of the states in Earley's
original algorithm to attributed representations. Now,
each dotted production A~ P in a state consists of
symbols attributed according to the grammar. For cach
category symbol A in the base grammar, we dcfine the
attributed symbol A[A.ai, ..., A.ap), where A is the
catcgory and A.aj, 1<i<n, an attribute occurrence of A.

The extended algorithm, in addition to syntactically
recognizing the input string, evaluatcs the attribution
associaled with each of its possible derivations. In
particular, for cach dcrivation of the attributed final state

<¢-S[S.a1,...,.S.ap] L, 0, 1k>, where S is the start
symbol of the grammar and S.ajy,...,S.ay the auributc
occurrences of S associated with that state, the
algorithm cvaluatcs the corresponding attribute
occurrences. For an S-attributcd grammar, this is
achicved by the following modification of Earlcy's
algorithm, in its Complcter step:

So = { < $—>+S5[S.a1,...,5.ap] 1, 0, 1ks)
for i:=1tondo
begin
For each statc s in S, repeat until no more
statcs may be added to S or ;41
begin
1. Predictor
Ifs =< A>a-XB, 1, 0>
(i.c., s is not final and X non-tcrminal)
S$;i=8 U [<X—>+0,i,u>1
X—o in P and p in FIRST(B3))
2. Completer
If s =< A-ae, [, &> (i.c., s is final)
and 8 = Xj41 ... Xj+k
a. Ac:=cval_s(A, o, A—>0)
b. Sj:=8i v {<X>aAch, k, u>!
<X~->0aeAB, k, u> in St)
3. Scanner
If s = < A>aexj+1B, [, 6>
(i.c., s not final and xj4+1 the next input symbol)
Si+1 = Six1 U { < X>axij+1°B,[, 8>}
cnd;
If S;+1 is empty, rcject and tcrminate
end;
If <¢p—S(S.a1,...,5.ap]1., 0, 1k> in Sn+1, accept,

Extension of Earley's Algorithm for
S-attributed Grammars

The statcs in the algorithm are attribuled as indicated
above. For cxample, the symbol A in the state
<A-—ae, f, 8> input to the Completer could be shown
more explicitlly as A=A[A.aj, ..., A.ag]. As the state
cnters the completer, the attribute occurrences A.aj of A
arc uncvaluated; howcver, since the grammar is
S-attributed it is casy to show that the attribute
occurrences on the right-hand side a of the production
have alrcady been evaluated. Hence, evaluation of the
attribute occurrences of A reduces to application of the
attribution associated with the production A-a,
according to the attribute values in o, This is done by
the function eval_s(A, a, A—a), which rcturns the
attributed symbol Ac, identical to A, cxcept that its
attribute occurrences have been cvaluated, as required.

The last state sct gencrated by the algorithm containg
final states of the form <¢-—S[...] L, 0, .Lk>, in
which the attributed start symbol S{ ...] is alrcady
cvaluated. Here the extended algorithm differs form

- 301 -

Earley's; whercas the original algorithm gencrates at
most onc final state, regardless of the ambiguity of the
undcrlying grammar, the cxtendced algorithm may
gencrate scveral instances of this state, il the grammar is
ambiguous. Each instance of the final statc corresponds
10 a diffcrent derivation of the initial symbol, leading to
a diffcrent evaluation ol the symbol's attribulcs.

4. Finite Partitioning of Attribute Domains

The last remark in the extension of section 3 shows a
defect of the Extended Algorithm: It may not terminate
in the general case. For the S-atiributed case, however,
this may happen only if the underlying grammar is
infinitcly ambiguous or, cquivalently, if it has cycles
or derivations of the form A=%A, for some Ae N.

Considcr, for example, the following grammar, which
“mcasures” the length of each derivation of the sole
string ‘a’ it gencrates:

altribution:
SHA Sve Av
A A Ag.ve Alv +1
A-oa Ave 1

Given the input string ‘a’, the algorithm defines three
attributted state sets:

So = [<p—>-S[Vv]L, 0, _Lk>, <S[v]—-A[v}, 0, _Lk>,
<A[v]—>ea, 0, LK>, <A[v]oeA[v], 0, Lk>)

S1 = [<A>a-, 0, Lk>,
' <S[v]-3A[1]+, 0, Lk>, <A[v]—A[1]e, 0, LK>,
<¢p->S[1)+L, 0, Lk>
<S[vi=A+[2], 0, LK>, <A[v]—A[2])e, 0, LK>,
ad infinitum ... }

S2= (<¢—S[1]Le,0, 1K>,
<¢—S[2]L+, 0, 1k>,
ad infinitum ... }

Since Sy is infinite, the algorithm docs not tcrminate.

Cyclic grammars play an important role in most recent
linguistic theorics, including Government-binding (GB),
Lexical-Functional Grammar (LFG) and GPSG (cf.
Berwick, 1988; Correa, 1987b; Kornai and Pullum,
1990). These have in common that they have shified
from rule-based descriptions of language, to declarative
or principle-based dcscriptions, in which the role of
phrase structure rules or principles is relatively minor.
Thus, to make the extension of the algorithm uscful for
natural language applications it bccomes necessary (o
ensure its termination, in spilc of cyclic bases.

The termination of the Extended Algorithm may be
guarantced while maintaining its full gencrality, through
a finite partition on the attributc domains associated
with cach cyclic symbol in the grammar. For cach such
domain dom (a), the pantition defincs a finitc collection
of cquivalcnce classes on attribute values. Now, before
adding a ncw state <A—q+, [, 8> to a statc sct Sj, we
test for equivalence (according to the defined partitions)
rather than cquality to some previously added state; if
thc new statc is cquivalent to some other, it is not
added. It is casy to show that the number of attributed
dotted itcms in thc grammar, and hence the size of the
statc scts, is now finitc. This number is in fact
identical to that of Earley's algorithm, cxcept for a
constant multiplicative factor, dependent on the
grammar and the size of the partitions sclected for
attribute domains. Since the size of the state scts
possible with finitc partitioning is now f[initc, the
algorithm always (crminatcs.

After cstablishing a correspondence between attribute
and unification grammar (UG), we may sce that the
technique of “restriction” used by Shicber (1985) in his
extended algorithm is refated to finite partitioning on
attributc domains, in fact a particular casc which takes
advantage of the more structured attribute domains of
UG. For attribute grammar, given that the domains
involved are morc general (c.g., the integers), finite
partitioning is the requircd device.

5. Conclusions and Implementation Status

This paper presented and extension of Earley's algorithm
to S-attributed grammars. Combining on-line scmantic
cvaluation with the exccution of syntactic actions, the
algorithm is an cffcctive realization of atiribute-dirccted
parsing, as proposcd by Watt (1980) and Joncs and
Madscn (1980). Although the algorithm is a recognizer,
it compuics the scmantic valucs associated with each
derivation of the input string, and hence need not be
cxtended to compule tree representations. In attribute
grammars with conditions on productions, the valucs of
attributes alrcady evaluatcd may be uscd to guide the
parsing process, reducing the number of states that may
be generated by the algorithm.

The cxtension of the algorithm has been written in "C”,
using an efficient "C" implecmentation of Earlcy's
original algorithm (Chamorro and Correa, 1990), and is
currently being tested on small grammars. The extended
algorithm will bc the kernel of ANDES-L, a
programming cnvironment for attributc grammars,
intended for natural language applications.

302 -

References

Berwick, Robert. 1988. "Principlc-bascd Parsing”. MIT
Al Mcmo 972, revised. MIT, Cambridge, MA.,
Bochmann, Gregor. 1976, "Scmantic Evaluation from
Left to Right." Communications of the ACM , Vol.
19, No. 2, p. 55-62. .

Chamorro, Miriam, and N. Correa. 1990. "An Efficicnt
'C' Implcmentation of Earley's Algorithm™ - in Spanish.
CIFI, Universidad dc los Andcs, Bogotd, Colombia,
Corrca, Nelson. 1987a. "An Atutribute Grammar
Implecmentation of Government-binding Theory.”
Proceedings of the 25th Annual Meeting of the ACL ,
Stanford University, Stanford, CA.

Correa, Ncelson. 1987b. "Empty Catcgorics, Chain
Binding, and Parsing." Parsing Scminar; MIT Working
Papers of the Lexicon Project, MIT, Cambridge, MA.
Corrca, Nclson. Forthcoming. Auribute and
Unification Grammar: A Rcview of Formalisms and
Comparision. CIFI, Universidad de los Andes.

Earley, Jay. 1970. "An Efficient Context-free Parsing
Algorithm.” Communications of the ACM , Vol. 13,
No. 2, p. 94-102.

Fu, K.S. 1982. Syntactic Pattern Recognition .
Acadcmic Press, New York. ;

Jones, Neil D., and M. Madscn. 1980. "Attribute
Influecnced LR Parsing.” In N. D. Joncs, ed.,
Semantics-directed Compiler Generation , LNCS 94,
Springer-Verlag, New York.

Kay, Martin. 1985. Parsing in Functional Unification
Grammar. In D. Dowty, L. Karttunen, and A. Zwicky,
eds., Natural Language Parsing , Cambridge University
Press, Cambridge, England.

King, Margarct, cd. 1983. Natural Language Parsing .
Academic Press, New York.

Knuth, Donald. 1968. "Scmantics of Contcxt-free
Languagces." Mathematical Systems Theory, Vol. 2,
No. 2, p. 127-145.

Kornai, Andras, and G. Pullum. 1990. *“Thc X-bar
Theory of Phrase Structure.” Language, Vol. 66.
Percira, Fernando, and D. H. Warren. 1983. "Parsing
as Dcduction." Proceedings of the 21st Annual Meeting
of the ACL , MIT, Cambridge, MA.

Shicber, Stuart. 1985. "Using Restriction to Exiend
Parsing Algorithms for Complex-Feature-Based
Formalisms." Proceedings of the 23rd Annual Meeting
of the ACL , University of Chicago, Chicago, IL.
Shicber, Stuart. 1986. An Introduction to Unification
Based Approaches to Grammar . CSLI Lecture Notes
No. 4, Stanford, CA. ’

Watt, David. 1980. "Rule Splitting and Attribute
Directed Parsing.” In N.D Jones, cd., Semantics-directed
Compiler Generation , LNCS 94, Springer-Verlag, NY.
Yecllin, Danicl. 1988. "Generalized Attributed Parsing.”
Manuscript; IBM Rescarch, Yorktown Hcights, NY.,

