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A B S T R A C T  

In this paper  M-grammars tha t  are used in the Roset ta  
t ranslat ion system will be looked at  as the specifica- 
tion of a t t r ibu te  grammars.  We will show tha t  the 
a t t r ibute  evaluation order is such tha t  instead of the 
special-purpose parsing and generation algorithms in- 
troduced for M-grammars in Appelo et al.(1987), also 
Earley-like context-free parsing and ordinary generation 
strategies can be used. Furthermore,  i t  is i l lustrated 
tha t  the a t t r ibu te  grammar  approach gives an insight 
into the weak generative capacity of M-grammars and 
into the computat ional  complexity of the parsing and 
generation process. Finally, the a t t r ibute  grammar ap- 
proach will be used to reformulate the concept of iso- 
morphic grammars.  

M-grammars 

In this section we will introduce,  very globally, the gram- 
mars that  are used in the Rose t t ,  machine translat ion 
system which is being developed at  Philips Research 
Laboratories  in Eindhoven. The original Roset ta  gram- 
mar formalism, called M-grammars,  was a computa-  
tional variant of Montague grammar.  The formalism 
was introduced in Landsbergen(1981). Whereas rules 
in Montague grammar operate  on strings, M-grammar 
rules (M-rules) operate  on labelled ordered trees, called 
S-trees. The  nodes of S-trees are labelled with syntac- 
tic categories and at t r ibute-value pairs. Because of the 
reversibility of M-rules, it  is possible" to define two al- 
gorithms: M-Parser and M-Generator  . The M-Parser 
algorithm s tar ts  with a surface: s tructure in the form 
of an S-tree and breaks i t  down into basic expressions 
by recursive applicat ion of reversed M-rules. The  result 
of the M-Parser algori thm is a syntactic derivation tree 
which reflects the history of the analysis process. The 
leaves of the derivation tree are names  of basic expres- 
sions. The M-Generator  algorithm generates a set of 
S-trees by bot tom-up applicat ion of M-rules, the names 
of which are mentioned in a syntact ic  derivation tree. 
Analogous to Montague Grammar ,  with each M-rule a 
rule is associated which expresses its meaning. This al- 
lows for the transformation of a syntactic derivation tree 
into a semantic derivation tree by replacing the name of 
each M-rule by the name of the corresponding mean- 
ing rule. In Landsbergen (1982) it was shown that  the 
formalism is very well fit to be :used in an interlingual 
machine translat ion system in which semantic derivation 

trees make up the interlingua. In the analysis part  of 
the translat ion system an S-tree of the source language 
is mapped  onto a set of semantic derivation trees. Next, 
each semantic derivation tree is mapped onto a set of 
S-trees of the target  language. In order to guarantee 
tha t  for a sentence which can be analysed by means of 
the source language grammar  a translat ion can always 
be generated using the target  language grammar,  source 
and target  grammars  in t he  Roset ta  system are attuned. 
Grammars ,  a t tuned in the way described in Landsber- 
gen (1982), are called isomorphic. 

Appelo et al.(1987) introduces some extensions of the 
formalism, which make it possible to assign more struc- 
ture to an M-grammar.  The new formalism was called 
controlled M-grammars.  In this new approach a gram- 
mar consists of ~ set of subgrammars.  Each of the sub- 
grammars  contains a set of M-rules and a regular ex- 
pression over the a lphabet  of rule names. The set of 
M-rules is subdivided into meaningful rules and trans- 
formations. Transformations have no semantic relevance 
and will therefore not occur in a derivation tree. The 
regular expression can be looked at as a prescription of 
the order in which the rules of the subgrammar  have to 
be applied. Because of these changes in the formalism, 
new versions of the M-Parser and M-Generator  algo- 
r i thm were introduced which were able to deal  with sub- 
grammars.  These algorithms, however, are complex and 
result in a rather  cumbersome implementat ion.  In this 
paper  we will show tha t  they can be replaced by normal 
context-free parse and generation algori thms if we inter- 
pret  an M-grammar as the specification of an a t t r ibute  
grammar  (Knuth (1968), Deransar t  et al.(1988)). 

M - g r a m m a r s  a s  a t t r i b u t e  g r a m m a r s  

The  control expression which is used in the definition of 
a Rosetta subgrammar  specifies a regular language over 
the a lphabet  of rule names. Another  way to define such 
a language is by means of a regular grammar.  Let con- 
trol expression cei of subgrammar  i define the regular 
language £( i ) .  Then we can construct  a minimal regu- 
lar grammar rgi which defines the same language. The 
grammar  rgi will have the following form: 

• A set of non-terminals Ni = {~/ . . . . .  I/M' } 

• A set of terminals Ei. Ei is the smMlest set such 
tha t  there is a terminal f E E i  for e~u:h M-rule r . 

• Star t  symbol I ° 
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• A set of production rules P~ containing the follow- 
ing type of rules: 

- I~ "* ~I~, where f E El 
_ _. 

We will use the regular grammar defined above as a 
s tar t ing point for the construction of an a t t r ibuted  sub- 
grammar.  An elegant view of a t t r ibu te  grammars  can be 
found in Hemerik (1984). Hemerik defines an a t t r ibu te  
grammar  as a context free grammar  with parametrized 
non-terminals and production rules. In general, non. 
terminals may have a number of p a r a m e t e r s ,  attributes 
- associated with them. Product ion rules of an a t t r ibute  
grammar are pairs (rule form, rule condition). From a 
rule form, production rules can be obtained by means 
of substi tution of values for the a t t r ibute  variables that  
satisfy the rule condition. In the grammars presented 
in this paper,  non-terminals have only one a t t r ibute  of 
type S-tree. The a t t r ibute  grammar  rules that  are used 
throughout this paper  also have a very restricted form. 
A typical a t t r ibute  grammar  rule r with context free 
skeleton A - .  B C  will look like: 

A < o > - - * B < p > C < q >  
(o, (p, q)) ~ 

Here ,  A < o >-- .  B < p > C < q > is the rule form, 
o,p, q are the a t t r ibutes  and (o, (p,q)) E ~ is the rule 
condition, g defines a relation between the at t r ibutes  at  
the left-hand side and the a t t r ibutes  at the right-hand 
side of the rule form. 
For each subgrammar rgi, (1 < i < M)  we will con- 
struct  an a t t r ibuted  subgrammar  agi. Each constructed 
a t t r ibuted  subgrammar agi will have a s ta r t  symbol J'T/. 
First,  however, we define two new at t r ibuted subgram- 
mars that  have no direct relation with a subgrammar 
of a given M-grammar: the start subgrammar and the 
terminal subgrammar.  The terminal subgrammar agt 
with s tar t  symbol ~ contains a rule of the form 

[ ~ < o > - - * ~  
O = Z  

for each basic expression z of the M-grammar.  The start 
subgrammar ago with s tar t  symbol S contains a rule of 
the form 

[ S < o >~/~.° < p >  
o = p A cat(p) E ezportcat$( i )  

for the s tar t  symbol of each a t t r ibuted  subgrammar.  
The a t t r ibute  condition in this rule means that  S~trees 
that  are exported by subgrammar i have a syntactic cat- 
egory which is in the set ezportcats( i ) .  
For each subgrammar rgi specified by the M-grammar 
we can construct  an a t t r ibuted  subgrammar agi being 
the 5-tuple (/~, U {S),  { I>, ra } U g , , Pi , ]~i , ( T , Fi ) ) as fol- 
lows: 

• ag~ has 'domain '  (T, Fi) ,  where T is the set of possi- 
ble S-trees and F~ is a collection of relations of type 
T m × T, m > 0. F~ contains all relations defined by 
the M-rules of subgrammar  i. 

s The set of production rules of a9i can be con- 
s t ructed as follows: 

- If r9i contains a rule of the form I~ --* fI~,  
where f corresponds with an n-ary m e a n i n g -  
ful  M-rule r,  agi contains the following at- 
t r ibute grammar  rule: 

Ii < o  >- .~I~  <p l  > S < p 2  > . . .  
• . . S < p n >  I> 

(o,(P, .... ,P.)) e Rr 

Here, ~ and [/k are non-terminals of the at- 
t r ibuted sugrammar  agi, S is the s tar t  sym- 
bol of the complete grammar,  the terminal 
is the name of the M-rule and Rr is the binary 
relation between S-trees amd tuples of S-trees 
which is defined by M-rule t .  The terminal 
symbol I:> marks the end of the scope of the 
production rule in the strings generated by 
the grammar.  The variables o , p l . . . p ,  are 
the a t t r ibutes  of the rule. All  a t t r ibutes  are 
of type S-tree. 

One possible interpretat ion of the a t t r ibute  
grammar rule is that  the S-tree o is received 
from non-terminal ~'~ of the current subgram- 
mar. According to the relation defined by M- 
rule r, the S-tree o corresponds to the S-trees 
pl ,  ...,Pn. S-tree pl  is passed to another non- 
terminal  of the current subgrammar,  whereas 
p2, ..., pn are offered to the s tar t  symbol of the 
a t t r ibute  grammar.  

- If rgi contains a rule of the form I~ --* ~I~ 
where e corresponds with unary t r a n s f o r m a -  
t i o n  r, agi contains the following a t t r ibute  
grammar  rule: 

[ ii < <p> 
(o,p) e lz,  

Notice that  an a t t r ibu te  rule corresponding 
with a transformation r does not produce the  
terminal f. 

- If rgi contains a rule of the form lJl --. I~, the 
agl contains the following a t t r ibu te  grammar  
rule: 

[ < p >  
o m p  

-- If rgi contains a rule of the form I~ - .  • then 
ags contains the following rule: 

[ JJi ~ o > - . . Q S < p >  
o = p ^ cat(p) ~ headcats(i) 

Rules of this form mark the beginning of a 
subgrammar.  The terminal  symbol O is used 
for this purpose. The a t t r ibute  relation is 
a restriction on the kind of S-trees that  is 
allowed to enter the subgrammar.  Only S- 
trees with a syntact ic  category in the set 
headcats(i)  are accepted. 
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The set of all a t t r ibuted  subgrammars can be joined 
to one single a t t r ibute  grammar  (N, ~ ,  P, S, (T, F ) )  as 
follows: 

• The non-terminal  set of the a t t r ibute  grammar  is 
the union of all non-terminals of all subgrammars,  

M 
i.e. N = U~=0 ~ i .  

• The terminal  set E of the  a t t r ibute  grammar is the 
union of all terminals of all subgrammars (including 
the terminal  subgrammar):  E = { I>, 13} U U ~ 0  ~i .  

• The set of production rules is the union of all pro- 
M - duction rules of the subgrammaxs, P = Ui=0 P~. 

• The s tar tsymbol  of the composed grammar is iden- 
tical to the the s tar tsymbol  S of the s tar t  subgram- 
mar. The a t t r ibute  of the s tar t  symbol of an at- 
t r ibute grammar  is called the designated at t r ibute  
(Engelfriet (1986)) of the a t t r ibu te  grammar.  The 
output set of an a t t r ibu(e  grammar  is the set of all 
possible values of its designated at t r ibute.  

• The composed grammar ha.s: domain (T, F )  where 
M F = Ui=0 Fi and T is the set of all possible S-trees. 

In the rest of the paper we call an a t t r ibute  grammar  
which has been derived from an M-grammar in this way 
an attributed M-grammar or a m g .  

C o m p u t a t i o n a l  A s p e c t s  

Because each meaningful a t t r ibuted  rule r produces the 
terminal  symbol ~ and because each terminal rule x pro- 
duces terminal  symbol ~, the strings of £ (X) ,  the lan- 
guage defined by an a r a g  X,  will contain the deriva- 
tional history of the string itself. :The history is part ial ,  
because the grammar  rules for transformations do not 
produce a terminal.  Moreover, the form of the grammar  
rules is such tha t  each string is a prefix representation 
of its own derivational history. 
Given an a m g  X,  with 
function of type £(X) 

MGen(d)----ac! {t 

a set of terminals ~,  a recognition 
---, 2 T can be defined as: 

IS<t>~x dAdEE*} 

The reverse of MGen is the generation function of type 
T --* 2 ~ x ) ,  which can be defined as: 

MPars( t )  =d,! {dl S<t>~x d ̂  d ~ ~*} 

These functions can of course be defined for each at- 
t r ibute grammar in this form. However, in the  case of 
a m g ' s  the MPars and MGen functions are both com- 
putable because each M-rule r defines both a computable 
function and its reverse: 

(o,(p, .... , v . ) )  ~ :~. 
o ~ f ~ ( p ,  . . . . .  p . )  ~. 
(p,, . . . ,v.)  ~ f;-'(o) 

Because of this proper ty  of the M-rules the grammar has 
two possible interpretat ions:  

• one for recognition purposes with only synthesized 
at t r ibutes ,  in which the rules can be writ ten as: 

[ i l  < T  o >--. Hy  <Tp~ > s <Tp~ > . . .  
. . . S  < T P .  > t> 

o e A ( p ~ ,  . . . ,p-) 

This interpretat ion is to be used by MGen in the 
generation phase of the Roset ta  system. 

• one for generation purposes with only inherited at- 
t r ibutes containing the following type of rules: 

Ii < ~ o > - - H ~  <lp~ > S < ~ w  > . . .  
• . . . S  <~.p. > I> 

(p ,  .... ,p.) ~ f ~ ( o )  

The generative interpretat ion of the rules will be 
used by MPars in the analysis phase of the Roset ta  
t ranslat ion system. 

From the definitions of MPars  and MGen the reversibil- 
ity property of the grammar  follows immediately:  

d E MPars( t )  4, t E MGen(d) 

The  reversibility property which has always been one of 
the tenets of the Roset ta  system (Landsbergen (1982)) 
has recently received the appreciat ion of other re- 
searchers in the field of M.T. as well (Isabelle (1989), 
Rohrer (1989), van Noord (1990)). 
In order to give the M-grammar formalism a place in 
the list of other linguistic formalisms like LFG, FUG, 
TG,  TAG and GPSG x, we will investigate some com- 
puta t ional  aspects of a m g ' s  in this section. Given an 
a m g  grammar  X,  we can calculate the value of the des- 
ignated a t t r ibu te  for an element of £(X). For this cal- 
culation an ordinary context free recognition algorithm 
(Earley(1970), Leermakers(1.991)) can be used. Because 
the grammar  may contain cycles of the form 

[ rJ<o>-- . l~<p> 
[o,p) e 

i ts  context-free backbone is not finitely ambiguous. 
Hence, an a m g  is not necessarily off-line parsable ( 
Pereira and Warren (1983), Haas (1989)). The term 
off-line parsable is somewhat misleading because a two- 
stage parse process for grammars  which ate infinitely 
ambiguous is very well feasible. In the first stage of 
the parse process, in which the context  free backbone is 
used, a finite representation of the infinitely many parse 
trees, e.g. in the form of a parse matrix,  is determined.  
Next, in the second stage, the a t t r ibutes  ate calculated. 
However, measure conditions on the a t t r ibutes  are nec- 
essary to guarantee terminat ion of the parse process. 
These measure conditions are constraints on the size 
(according to a Certain measure) of the a t t r ibu te  val- 
ues that  occur in each cycle of the underlying context 
free grammar.  
The generative interpretat ion of a m g  X can be used in a 
straight-forward language generator which generates all 
corresponding elements of £ ( X )  for a given value of the 
designated a t t r i b u t e .  Obviously, i t  can only be guaran- 
teed that  the generation process will always terminate  if 

lcf. Perrault (1984) for a comparison of the mathematical 
properties of these formalisms. 
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the grammar satisfies some restrictions. Suggestions for 
grammar constraints in the form of termination condi- 
tions for parsing and generation are given in Appelo et 
al.(1987). 
For an insight into the weak generative capacity of the 
formalism we have to examine the set of yields of the 
S-trees in the output set of an a m g .  Let us call this 
set the output language defined by an amg .  It is not 
possible to characterize exactly the set of output Inn. 
guages that can be defined by an a m g  without defining 
what the termination conditions are. The precise form 
of the termination conditions, however, is not imposed 
by the M-grammar formalism. The formalism merely 
demands that  some measure on the attribute values is 
defined which garantuees termination of the recognition 
and generation process. In order to get an idea of the 
weak generative capacity of the formalism, we assume, 
for the moment, the weakest condition that guarantees 
termination. It  can be shown that each deterministic 
Turing Machine can be implemented by means of an 
a m g  such that the language defined by the TM is the 
output  language of that  amg .  Not all grammars that 
can be constructed in this way satify the termination 
condition, however. The termination condition is only 
satisfied by Turing Machines that halt on all inputs, 
which is exactly the class of machines that define the 
set of all recursive languages. Consequently, the output 
languages that can be defined by a m g ' s  or M-grammars, 
in principle, are the languages that  can be recognized by 
deterministic Taring Machines in finite time. 
At this point it is appropriate to mention the bifurca~ 
tion of grammatical formalisms into two classes: the 
formalisms designed as linguistic tools (e.g. PATR-II, 
FUG, DCG) and those intended to be linguistic theories 
(e.g. LFG, GPSG, GB) (cf. Shieber (1987) for a motiva- 
tion of this bifurcation). The goals of these formalisms 
with respect to expressive power are, in general, at odds 
with each other. While great expressive power is consid- 
ered to be an advantage of tool-oriented formalisms, it is 
considered to be an undesirable property of formalisms 
of the theory type. The M-grammax formalism clearly 
belongs to the category of linguistic tools. 
By strengthening the termination conditions it is pos- 
sible to restrict the class of output  languages that can 
be defined by an amg .  For instance, the class of out- 
put languages can be restricted to the languages that 
are recognizable by a deterministic TM in 2 c" time a if 
we assume that the termination conditions imposed on 
an a m g  are the weakest conditions that  satisfy the con- 
stralnts formulated in Rounds (1973). A reformulation 
of these constraints for a m g ' s  is as follows: 

, The time needed by an attribute evaluating func- 
tion is proportional to somepolynomial in the sum 
of the size of its arguments.: 

• There is a positive constant ), such that in each 
fully attributed derivation tree, the size of each at- 
tribute value is less than or equal to the size of 

2This includes all context sensitive languages (Cook 
0 9 ~ I ) ) .  

the constant ,~ times the size of the value of the 
designated attribute. 

Rounds used these conditions to show that  the languages 
recognisable in exponential time make up exactly the 
set which is characterized by transformational gram- 
mars (as presented in Chomsky (1965)) satisfying the 
termiaad-length non-decreasing condition. 
T~¢~ power of the formalism with respect to generative 
capacity has of course its consequences for the compu- 
t t t toaa] complexity of the generation and recognition 
~prQeess, Here too, the exact form of the termination 
condition is important. Obeying the termination condi- 
tions that  we adhere to in the current Rosetta system, 
it can be proved that the recognition and the generation 
problems axe NP-hard, which makes them computation. 
ally intractable. In comparison with other formalisms, 
M-grammaxs axe no exception with respect to the com- 
plexity of these issues. LFG recognition and FUG gener- 
ation have both been proved to be NP-hard in Barton et 
ai, (1987) and Ritchie (1986) respectively. Recognition 
in GPSG has even been proved to be EXP-POLY-haxd 
(Barton et a]. 1987). We should keep in mind, however, 
that  the computational complexity analysis is a worst- 
ease analysis. The average-case behaviour of the parse 
and generation algorithm that we experience in the dally 
use of the Rosetta system is certainly not exponential. 

I s o m o r p h i c  G r a m m a r s  

The decidability of the question whether two M- 
grammars axe isomorphic is another computational as- 
pect related to M-grammars. Although this mathemati- 
cal issue appears not to be very relevant from a practical 
point of view, it enables us to show what grammar iso- 
morphy means in the context of s tag ' s .  
According to the Rosetta Compositionality Principle 
(Landsbergen(1987)) to each meaningful M-rule r a 
meaning rule mr corresponds which expresses the se- 
mantics of r. Furthermore, there is a set of basic mean- 
ings for each basic expression of an M-grammar. We 
ea~ easily express this relation of M-grammar rules and 
basic expressions with their semantic counterparts in an 
a~ag, Instead of incorporating the M-rule name e in 
the gttributed production rule as we did in the previous 
s~tlons,  we now include the name of the corresponding 
meaning rule 6~r as follows: 

[ !~ < o >--. ~ , i~  <pl>S<p2> . . . S < p , >  I> 
E 7zr 

The terminal subgrammar must be adapted in order to 
generate basic meanings instead of basic expressions. If 

basic expression m corresponds with the basic mean- 
ings  m~ . . . . .  mJ= . . . .  , mz" then we replace the original 
rule in the terminal subgrammar for z by n rules of 
the form: 

W~ will call a gra~mmar that  has been derived in this way 
from azt a m g  a semantic amg,  or suing. The strings 
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of the language defined by an s a m g  are prefix repre- 
sentations of semantic derivation trees. The language 
defined by an s a m g  is called the set of strings which are 
well-]ormed with respect to X.  
Let us repeat  here what it  means for two M-grammars 
to be isomorphic: 
".. .Two grammars  are isomorphic iff each semantic 
derivation tree which is welbformed with respect to one 
grammar is also well-formed with respect to the other 
grammar. . ."  (Landsbergen (1987)). We can reformulate 
the original definition of isomorphic M-grammars in ~. 
very elegant way for s a m g ' s :  

D e f i n i t i o n :  Two s a m g ' s  X~ and X2 are isomorphic iff 
they are equivalent, that  is iff £(XI)  = £(X2) 

This definition says tha t  writing isomorphic grammars  
comes down to writing two a t t r ibute  grammars which 
define the same language. From formal language the- 
ory (e.g. Hopcroft and Ullman (1979)) we know that  
there is no algorithm that  can test  an arbi t rary  p~ir of 
context-free grammars G1 and G2 to determine whether 
£(G~) = £(G2). It  can also be shown tha t  s a m g ' s  can 
define any recursive language. Consequently, checking 
the equivalence of two arbi t rary  s a m g ' s  will be an un. 
decidable problem. Roset ta  grammars  tha t  are used for 
translation purposes, however, are not arbi t rary  s a mg ' s :  
they are not created completely independently. The 
strategy followed in Roset ta  to accomplish the defini- 
tion of equivalent grammars,  tha t  is, grammars  that  de- 
fine identical languages, is to attune two s a m g ' s  to each 
other. This grammar attuning strategy is extensively de- 
scribed in Appelo et al.(1987), Landsbergen (1982) and 
Landsbergen (1987) for ordinary M-grammars.  Here, 
we will show what  the at tuning s t ra tegy means in the 
context of s a m g ' s ,  together with a few extensions. 
The  a t tuning measures below must not be looked at as 
the weakest possible conditions tha t  guarantee isomor- 
phy. The  list merely is an enumeration of conditions 
which together should help to establish isomorphy. If 
two s a m g ' s  Xa and X2 have to be isomorphic, the fol- 
lowing measures are proposed: 

, The production rules of both s a m g ' s  must be con- 
sistent. ;. 

If both grammars  have a production rule ii~ Which 
the name of the meaning rule m appears,  t hen  the 
r ight-hand side of the rules should contain the same 
number of non terminals,  since m is a function with 
a fixed number of arguments, independent of the 
grammar  it is used in. 

, The terminal sets o] both s a m g ' s  should be ~uaP. 
In the context of the o r d i n ~ y  M-grammar formal- 
ism this condition is formulated as: 
- for each basic expression in one M-grammar there 
has to be at least one basic expression in the other 
M-grammar with the same meaning (which comes 

aThis condition is equivalent to the attuning measures de- 
scribed in Appelo et al. (1987), Landsbergen (1982)and 
Landsbergen(1987). 

down to the condition that  the terminal  set of the 
terminal  subgrammars  should be identical) 
- for each meaningful rule in one M-grammar there 
has to be at least one meaningful rule in the other 
M-graanmar which has the same meaning. 

• The underlying contezt Jree grammars oJ both 
s a m g ' s  should be equivalent. 
Equivalence of the underlying context free gram- 
mars can be established by put t ing an equivalenee 
condition on the underlying grammar  of corre- 
sponding subgrammars  of the s a m g ' s  in question. 
Suppose tha t  for each subgrammar of an s a m g  

• X1 a subgrammar  of another s a m g  3(2 would ex- 
ist tha t  performs the same linguistic task and vice 
versa. Such an ideal s i tuat ion could be expressed 
by a relation g on the sets of subgrammars  of both 
s a m g ' s .  Let i and j be subgrammars  of the s a m g ' s  
X1 and Xa respectively, such tha t  (i, j )  E g ,  then 
the underlying grammars  4 Bi and B i have to be 
constructed in such a way that  they define the same 
language. ( Notice that  Bi and B i are regular 
grammars.)  More formally: 
v ( i , i )  e g :  c ( B , )  = ~ ( o i ) .  ~ 

The three a t tuning conditions above guarantee that  
the underlying context free grammars  of two at tuned 
s a m g ' s  are equivalent. However, the language defined 
by an s a m g  is a subset of the language defined by its un- 
derlying grammar.  The rule conditions determine which 
elements are in the subset and which are not. Because 
of the great expressive power of M-rules, the a t tuning 
measures place no effective restrictions on the kind of 
languages an s a m g  can define. Hence, i t  can be proved 
that :  

T h e o r e m :  The question whether two at tuned s a m g ' s  
are isomorphic is undecidable. 

Because of the equivalence between s a m g ' s  and M- 
grammars  this also applies to arbi t rary  a t tuned M- 
gr~nmars .  Future research is needed to find extensions 
for the at tuning measures in a way tha t  guarantees iso- 
m0tphy if grammar  writers adhere to the a t tuning con- 
dil~ions. The extensions will probably include restric- 
tions on the form of the underlying grammar  and on 
the expressive power of M-rules. Also formal at tuning 
measures between M-rules or sets of M-rules of different 
grammars  are conceivable. 

4Because we are dealing with a subgrammar, the non- 
terminal S is discarded from the production rules of the un- 
derlying grammar. 

SThis attuning measure sketches an ideal sittmtion. In 
practice for each subgrarnmar of an samg there is not a cor- 
responding fully isomorphic subgrammar but only a partially 
isomorphic subgranunar of the other suing. However, the re- 
quirement of fully isomorphic subgranunars is not the weak- 
est attuning condition that guarantees the equivalence of the 
underlying context free grammars. F_,quivalence can also be 
guaranteed if XI and X~ satisfy the following condition which 
expresses partial isomorphy between subgranunars: 

U~x~ ~(nd = Uj~x~ L(B~) 

- 2 1 4  - 



The current Rosetts grammars obey the three previ- 
ously mentioned attuning measures. In practice these 
measures provide a good basis to work with. Therefore, 
the undecidability of the isomorphy question is not an 
urgent topic at the moment. 

C o n c l u s i o n s  

In thib paper we presented the interpretation of an M- 
grammar as a specification of an attribute grammar. 
We showed that the resulting attribute grammar is re- 
versible and that it can be used in ordinary context 
free recognition and generation algorithms. The gen- 
eration algorithm is to be used in the analysis phase of 
Rosetta, whereas the recognition algorithm should be 
used in the generation phase. With respect to the weak 
generative capacity it has been concluded that the set 
of languages that can be generated and recognized de- 
pends on the termination conditions that are imposed 
on the grammar. If the weakest termination condition 
is assumed, the set of languages that can be defined by 
an M-grammar is equivalent to the set of languages that 
can be recognized by a deterministic Turin8 Machine 
in finite time. Using more realistic termination condi- 
tions, the computational complexity of the recognition 
and generation problem can still be classified as NP- 
hard and, consequently, as computationally intractable. 
Finally, it was concluded that the question whether two 
attuned M-grammars are isomorphic, is undecidable. 
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