
Computational Aspects of M-grammars

J o e p Rous

Phi l ips Research L a bo ra to r i e s , P.O. Box 80.000
5600 J A Eindhoven , T h e N e t h e r l a n d s

E-mai l : rous@rose t t a .p r l . ph i l ips .n l (uucp)

A B S T R A C T

In this paper M-grammars tha t are used in the Roset ta
t ranslat ion system will be looked at as the specifica-
tion of a t t r ibu te grammars. We will show tha t the
a t t r ibute evaluation order is such tha t instead of the
special-purpose parsing and generation algorithms in-
troduced for M-grammars in Appelo et al.(1987), also
Earley-like context-free parsing and ordinary generation
strategies can be used. Furthermore, i t is i l lustrated
tha t the a t t r ibu te grammar approach gives an insight
into the weak generative capacity of M-grammars and
into the computat ional complexity of the parsing and
generation process. Finally, the a t t r ibute grammar ap-
proach will be used to reformulate the concept of iso-
morphic grammars.

M-grammars

In this section we will introduce, very globally, the gram-
mars that are used in the Rose t t , machine translat ion
system which is being developed at Philips Research
Laboratories in Eindhoven. The original Roset ta gram-
mar formalism, called M-grammars, was a computa-
tional variant of Montague grammar. The formalism
was introduced in Landsbergen(1981). Whereas rules
in Montague grammar operate on strings, M-grammar
rules (M-rules) operate on labelled ordered trees, called
S-trees. The nodes of S-trees are labelled with syntac-
tic categories and at t r ibute-value pairs. Because of the
reversibility of M-rules, it is possible" to define two al-
gorithms: M-Parser and M-Generator . The M-Parser
algorithm s tar ts with a surface: s tructure in the form
of an S-tree and breaks i t down into basic expressions
by recursive applicat ion of reversed M-rules. The result
of the M-Parser algori thm is a syntactic derivation tree
which reflects the history of the analysis process. The
leaves of the derivation tree are names of basic expres-
sions. The M-Generator algorithm generates a set of
S-trees by bot tom-up applicat ion of M-rules, the names
of which are mentioned in a syntact ic derivation tree.
Analogous to Montague Grammar , with each M-rule a
rule is associated which expresses its meaning. This al-
lows for the transformation of a syntactic derivation tree
into a semantic derivation tree by replacing the name of
each M-rule by the name of the corresponding mean-
ing rule. In Landsbergen (1982) it was shown that the
formalism is very well fit to be :used in an interlingual
machine translat ion system in which semantic derivation

trees make up the interlingua. In the analysis part of
the translat ion system an S-tree of the source language
is mapped onto a set of semantic derivation trees. Next,
each semantic derivation tree is mapped onto a set of
S-trees of the target language. In order to guarantee
tha t for a sentence which can be analysed by means of
the source language grammar a translat ion can always
be generated using the target language grammar, source
and target grammars in t he Roset ta system are attuned.
Grammars , a t tuned in the way described in Landsber-
gen (1982), are called isomorphic.

Appelo et al.(1987) introduces some extensions of the
formalism, which make it possible to assign more struc-
ture to an M-grammar. The new formalism was called
controlled M-grammars. In this new approach a gram-
mar consists of ~ set of subgrammars. Each of the sub-
grammars contains a set of M-rules and a regular ex-
pression over the a lphabet of rule names. The set of
M-rules is subdivided into meaningful rules and trans-
formations. Transformations have no semantic relevance
and will therefore not occur in a derivation tree. The
regular expression can be looked at as a prescription of
the order in which the rules of the subgrammar have to
be applied. Because of these changes in the formalism,
new versions of the M-Parser and M-Generator algo-
r i thm were introduced which were able to deal with sub-
grammars. These algorithms, however, are complex and
result in a rather cumbersome implementat ion. In this
paper we will show tha t they can be replaced by normal
context-free parse and generation algori thms if we inter-
pret an M-grammar as the specification of an a t t r ibute
grammar (Knuth (1968), Deransar t et al.(1988)).

M - g r a m m a r s a s a t t r i b u t e g r a m m a r s

The control expression which is used in the definition of
a Rosetta subgrammar specifies a regular language over
the a lphabet of rule names. Another way to define such
a language is by means of a regular grammar. Let con-
trol expression cei of subgrammar i define the regular
language £(i) . Then we can construct a minimal regu-
lar grammar rgi which defines the same language. The
grammar rgi will have the following form:

• A set of non-terminals Ni = {~/ I/M' }

• A set of terminals Ei. Ei is the smMlest set such
tha t there is a terminal f E E i for e~u:h M-rule r .

• Star t symbol I °

• 2 1 0 -

• A set of production rules P~ containing the follow-
ing type of rules:

- I~ "* ~I~, where f E El
_ _.

We will use the regular grammar defined above as a
s tar t ing point for the construction of an a t t r ibuted sub-
grammar. An elegant view of a t t r ibu te grammars can be
found in Hemerik (1984). Hemerik defines an a t t r ibu te
grammar as a context free grammar with parametrized
non-terminals and production rules. In general, non.
terminals may have a number of p a r a m e t e r s , attributes
- associated with them. Product ion rules of an a t t r ibute
grammar are pairs (rule form, rule condition). From a
rule form, production rules can be obtained by means
of substi tution of values for the a t t r ibute variables that
satisfy the rule condition. In the grammars presented
in this paper, non-terminals have only one a t t r ibute of
type S-tree. The a t t r ibute grammar rules that are used
throughout this paper also have a very restricted form.
A typical a t t r ibute grammar rule r with context free
skeleton A - . B C will look like:

A < o > - - * B < p > C < q >
(o, (p, q)) ~

Here , A < o >-- . B < p > C < q > is the rule form,
o,p, q are the a t t r ibutes and (o, (p,q)) E ~ is the rule
condition, g defines a relation between the at t r ibutes at
the left-hand side and the a t t r ibutes at the right-hand
side of the rule form.
For each subgrammar rgi, (1 < i < M) we will con-
struct an a t t r ibuted subgrammar agi. Each constructed
a t t r ibuted subgrammar agi will have a s ta r t symbol J'T/.
First, however, we define two new at t r ibuted subgram-
mars that have no direct relation with a subgrammar
of a given M-grammar: the start subgrammar and the
terminal subgrammar. The terminal subgrammar agt
with s tar t symbol ~ contains a rule of the form

[~ < o > - - * ~
O = Z

for each basic expression z of the M-grammar. The start
subgrammar ago with s tar t symbol S contains a rule of
the form

[S < o >~/~.° < p >
o = p A cat(p) E ezportcat$(i)

for the s tar t symbol of each a t t r ibuted subgrammar.
The a t t r ibute condition in this rule means that S~trees
that are exported by subgrammar i have a syntactic cat-
egory which is in the set ezportcats(i) .
For each subgrammar rgi specified by the M-grammar
we can construct an a t t r ibuted subgrammar agi being
the 5-tuple (/~, U {S), { I>, ra } U g , , Pi ,]~i , (T , Fi)) as fol-
lows:

• ag~ has 'domain ' (T, Fi) , where T is the set of possi-
ble S-trees and F~ is a collection of relations of type
T m × T, m > 0. F~ contains all relations defined by
the M-rules of subgrammar i.

s The set of production rules of a9i can be con-
s t ructed as follows:

- If r9i contains a rule of the form I~ --* fI~,
where f corresponds with an n-ary m e a n i n g -
ful M-rule r, agi contains the following at-
t r ibute grammar rule:

Ii < o >- .~I~ <p l > S < p 2 > . . .
• . . S < p n > I>

(o,(P, ,P.)) e Rr

Here, ~ and [/k are non-terminals of the at-
t r ibuted sugrammar agi, S is the s tar t sym-
bol of the complete grammar, the terminal
is the name of the M-rule and Rr is the binary
relation between S-trees amd tuples of S-trees
which is defined by M-rule t . The terminal
symbol I:> marks the end of the scope of the
production rule in the strings generated by
the grammar. The variables o , p l . . . p , are
the a t t r ibutes of the rule. All a t t r ibutes are
of type S-tree.

One possible interpretat ion of the a t t r ibute
grammar rule is that the S-tree o is received
from non-terminal ~'~ of the current subgram-
mar. According to the relation defined by M-
rule r, the S-tree o corresponds to the S-trees
pl , ...,Pn. S-tree pl is passed to another non-
terminal of the current subgrammar, whereas
p2, ..., pn are offered to the s tar t symbol of the
a t t r ibute grammar.

- If rgi contains a rule of the form I~ --* ~I~
where e corresponds with unary t r a n s f o r m a -
t i o n r, agi contains the following a t t r ibute
grammar rule:

[ii < <p>
(o,p) e lz,

Notice that an a t t r ibu te rule corresponding
with a transformation r does not produce the
terminal f.

- If rgi contains a rule of the form lJl --. I~, the
agl contains the following a t t r ibu te grammar
rule:

[< p >
o m p

-- If rgi contains a rule of the form I~ - . • then
ags contains the following rule:

[JJi ~ o > - . . Q S < p >
o = p ^ cat(p) ~ headcats(i)

Rules of this form mark the beginning of a
subgrammar. The terminal symbol O is used
for this purpose. The a t t r ibute relation is
a restriction on the kind of S-trees that is
allowed to enter the subgrammar. Only S-
trees with a syntact ic category in the set
headcats(i) are accepted.

- 2 1 1 -

The set of all a t t r ibuted subgrammars can be joined
to one single a t t r ibute grammar (N, ~ , P, S, (T, F)) as
follows:

• The non-terminal set of the a t t r ibute grammar is
the union of all non-terminals of all subgrammars,

M
i.e. N = U~=0 ~ i .

• The terminal set E of the a t t r ibute grammar is the
union of all terminals of all subgrammars (including
the terminal subgrammar): E = { I>, 13} U U ~ 0 ~i .

• The set of production rules is the union of all pro-
M - duction rules of the subgrammaxs, P = Ui=0 P~.

• The s tar tsymbol of the composed grammar is iden-
tical to the the s tar tsymbol S of the s tar t subgram-
mar. The a t t r ibute of the s tar t symbol of an at-
t r ibute grammar is called the designated at t r ibute
(Engelfriet (1986)) of the a t t r ibu te grammar. The
output set of an a t t r ibu(e grammar is the set of all
possible values of its designated at t r ibute.

• The composed grammar ha.s: domain (T, F) where
M F = Ui=0 Fi and T is the set of all possible S-trees.

In the rest of the paper we call an a t t r ibute grammar
which has been derived from an M-grammar in this way
an attributed M-grammar or a m g .

C o m p u t a t i o n a l A s p e c t s

Because each meaningful a t t r ibuted rule r produces the
terminal symbol ~ and because each terminal rule x pro-
duces terminal symbol ~, the strings of £ (X) , the lan-
guage defined by an a r a g X, will contain the deriva-
tional history of the string itself. :The history is part ial ,
because the grammar rules for transformations do not
produce a terminal. Moreover, the form of the grammar
rules is such tha t each string is a prefix representation
of its own derivational history.
Given an a m g X, with
function of type £(X)

MGen(d)----ac! {t

a set of terminals ~, a recognition
---, 2 T can be defined as:

IS<t>~x dAdEE*}

The reverse of MGen is the generation function of type
T --* 2 ~ x) , which can be defined as:

MPars(t) =d,! {dl S<t>~x d ̂ d ~ ~*}

These functions can of course be defined for each at-
t r ibute grammar in this form. However, in the case of
a m g ' s the MPars and MGen functions are both com-
putable because each M-rule r defines both a computable
function and its reverse:

(o,(p, , v .)) ~ :~.
o ~ f ~ (p , p .) ~.
(p,, . . . ,v.) ~ f;-'(o)

Because of this proper ty of the M-rules the grammar has
two possible interpretat ions:

• one for recognition purposes with only synthesized
at t r ibutes , in which the rules can be writ ten as:

[i l < T o >--. Hy <Tp~ > s <Tp~ > . . .
. . . S < T P . > t>

o e A (p ~ , . . . ,p-)

This interpretat ion is to be used by MGen in the
generation phase of the Roset ta system.

• one for generation purposes with only inherited at-
t r ibutes containing the following type of rules:

Ii < ~ o > - - H ~ <lp~ > S < ~ w > . . .
• . . . S <~.p. > I>

(p , ,p.) ~ f ~ (o)

The generative interpretat ion of the rules will be
used by MPars in the analysis phase of the Roset ta
t ranslat ion system.

From the definitions of MPars and MGen the reversibil-
ity property of the grammar follows immediately:

d E MPars(t) 4, t E MGen(d)

The reversibility property which has always been one of
the tenets of the Roset ta system (Landsbergen (1982))
has recently received the appreciat ion of other re-
searchers in the field of M.T. as well (Isabelle (1989),
Rohrer (1989), van Noord (1990)).
In order to give the M-grammar formalism a place in
the list of other linguistic formalisms like LFG, FUG,
TG, TAG and GPSG x, we will investigate some com-
puta t ional aspects of a m g ' s in this section. Given an
a m g grammar X, we can calculate the value of the des-
ignated a t t r ibu te for an element of £(X). For this cal-
culation an ordinary context free recognition algorithm
(Earley(1970), Leermakers(1.991)) can be used. Because
the grammar may contain cycles of the form

[rJ<o>-- . l~<p>
[o,p) e

i ts context-free backbone is not finitely ambiguous.
Hence, an a m g is not necessarily off-line parsable (
Pereira and Warren (1983), Haas (1989)). The term
off-line parsable is somewhat misleading because a two-
stage parse process for grammars which ate infinitely
ambiguous is very well feasible. In the first stage of
the parse process, in which the context free backbone is
used, a finite representation of the infinitely many parse
trees, e.g. in the form of a parse matrix, is determined.
Next, in the second stage, the a t t r ibutes ate calculated.
However, measure conditions on the a t t r ibutes are nec-
essary to guarantee terminat ion of the parse process.
These measure conditions are constraints on the size
(according to a Certain measure) of the a t t r ibu te val-
ues that occur in each cycle of the underlying context
free grammar.
The generative interpretat ion of a m g X can be used in a
straight-forward language generator which generates all
corresponding elements of £ (X) for a given value of the
designated a t t r i b u t e . Obviously, i t can only be guaran-
teed that the generation process will always terminate if

lcf. Perrault (1984) for a comparison of the mathematical
properties of these formalisms.

- 2 1 2 -

the grammar satisfies some restrictions. Suggestions for
grammar constraints in the form of termination condi-
tions for parsing and generation are given in Appelo et
al.(1987).
For an insight into the weak generative capacity of the
formalism we have to examine the set of yields of the
S-trees in the output set of an a m g . Let us call this
set the output language defined by an amg . It is not
possible to characterize exactly the set of output Inn.
guages that can be defined by an a m g without defining
what the termination conditions are. The precise form
of the termination conditions, however, is not imposed
by the M-grammar formalism. The formalism merely
demands that some measure on the attribute values is
defined which garantuees termination of the recognition
and generation process. In order to get an idea of the
weak generative capacity of the formalism, we assume,
for the moment, the weakest condition that guarantees
termination. It can be shown that each deterministic
Turing Machine can be implemented by means of an
a m g such that the language defined by the TM is the
output language of that amg . Not all grammars that
can be constructed in this way satify the termination
condition, however. The termination condition is only
satisfied by Turing Machines that halt on all inputs,
which is exactly the class of machines that define the
set of all recursive languages. Consequently, the output
languages that can be defined by a m g ' s or M-grammars,
in principle, are the languages that can be recognized by
deterministic Taring Machines in finite time.
At this point it is appropriate to mention the bifurca~
tion of grammatical formalisms into two classes: the
formalisms designed as linguistic tools (e.g. PATR-II,
FUG, DCG) and those intended to be linguistic theories
(e.g. LFG, GPSG, GB) (cf. Shieber (1987) for a motiva-
tion of this bifurcation). The goals of these formalisms
with respect to expressive power are, in general, at odds
with each other. While great expressive power is consid-
ered to be an advantage of tool-oriented formalisms, it is
considered to be an undesirable property of formalisms
of the theory type. The M-grammax formalism clearly
belongs to the category of linguistic tools.
By strengthening the termination conditions it is pos-
sible to restrict the class of output languages that can
be defined by an amg . For instance, the class of out-
put languages can be restricted to the languages that
are recognizable by a deterministic TM in 2 c" time a if
we assume that the termination conditions imposed on
an a m g are the weakest conditions that satisfy the con-
stralnts formulated in Rounds (1973). A reformulation
of these constraints for a m g ' s is as follows:

, The time needed by an attribute evaluating func-
tion is proportional to somepolynomial in the sum
of the size of its arguments.:

• There is a positive constant), such that in each
fully attributed derivation tree, the size of each at-
tribute value is less than or equal to the size of

2This includes all context sensitive languages (Cook
0 9 ~ I)) .

the constant ,~ times the size of the value of the
designated attribute.

Rounds used these conditions to show that the languages
recognisable in exponential time make up exactly the
set which is characterized by transformational gram-
mars (as presented in Chomsky (1965)) satisfying the
termiaad-length non-decreasing condition.
T~¢~ power of the formalism with respect to generative
capacity has of course its consequences for the compu-
t t t toaa] complexity of the generation and recognition
~prQeess, Here too, the exact form of the termination
condition is important. Obeying the termination condi-
tions that we adhere to in the current Rosetta system,
it can be proved that the recognition and the generation
problems axe NP-hard, which makes them computation.
ally intractable. In comparison with other formalisms,
M-grammaxs axe no exception with respect to the com-
plexity of these issues. LFG recognition and FUG gener-
ation have both been proved to be NP-hard in Barton et
ai, (1987) and Ritchie (1986) respectively. Recognition
in GPSG has even been proved to be EXP-POLY-haxd
(Barton et a]. 1987). We should keep in mind, however,
that the computational complexity analysis is a worst-
ease analysis. The average-case behaviour of the parse
and generation algorithm that we experience in the dally
use of the Rosetta system is certainly not exponential.

I s o m o r p h i c G r a m m a r s

The decidability of the question whether two M-
grammars axe isomorphic is another computational as-
pect related to M-grammars. Although this mathemati-
cal issue appears not to be very relevant from a practical
point of view, it enables us to show what grammar iso-
morphy means in the context of s tag ' s .
According to the Rosetta Compositionality Principle
(Landsbergen(1987)) to each meaningful M-rule r a
meaning rule mr corresponds which expresses the se-
mantics of r. Furthermore, there is a set of basic mean-
ings for each basic expression of an M-grammar. We
ea~ easily express this relation of M-grammar rules and
basic expressions with their semantic counterparts in an
a~ag, Instead of incorporating the M-rule name e in
the gttributed production rule as we did in the previous
s~tlons, we now include the name of the corresponding
meaning rule 6~r as follows:

[!~ < o >--. ~ , i~ <pl>S<p2> . . . S < p , > I>
E 7zr

The terminal subgrammar must be adapted in order to
generate basic meanings instead of basic expressions. If

basic expression m corresponds with the basic mean-
ings m~ mJ= , mz" then we replace the original
rule in the terminal subgrammar for z by n rules of
the form:

W~ will call a gra~mmar that has been derived in this way
from azt a m g a semantic amg, or suing. The strings

- 2 1 3 ,

of the language defined by an s a m g are prefix repre-
sentations of semantic derivation trees. The language
defined by an s a m g is called the set of strings which are
well-]ormed with respect to X.
Let us repeat here what it means for two M-grammars
to be isomorphic:
".. .Two grammars are isomorphic iff each semantic
derivation tree which is welbformed with respect to one
grammar is also well-formed with respect to the other
grammar. . ." (Landsbergen (1987)). We can reformulate
the original definition of isomorphic M-grammars in ~.
very elegant way for s a m g ' s :

D e f i n i t i o n : Two s a m g ' s X~ and X2 are isomorphic iff
they are equivalent, that is iff £(XI) = £(X2)

This definition says tha t writing isomorphic grammars
comes down to writing two a t t r ibute grammars which
define the same language. From formal language the-
ory (e.g. Hopcroft and Ullman (1979)) we know that
there is no algorithm that can test an arbi t rary p~ir of
context-free grammars G1 and G2 to determine whether
£(G~) = £(G2). It can also be shown tha t s a m g ' s can
define any recursive language. Consequently, checking
the equivalence of two arbi t rary s a m g ' s will be an un.
decidable problem. Roset ta grammars tha t are used for
translation purposes, however, are not arbi t rary s a mg ' s :
they are not created completely independently. The
strategy followed in Roset ta to accomplish the defini-
tion of equivalent grammars, tha t is, grammars that de-
fine identical languages, is to attune two s a m g ' s to each
other. This grammar attuning strategy is extensively de-
scribed in Appelo et al.(1987), Landsbergen (1982) and
Landsbergen (1987) for ordinary M-grammars. Here,
we will show what the at tuning s t ra tegy means in the
context of s a m g ' s , together with a few extensions.
The a t tuning measures below must not be looked at as
the weakest possible conditions tha t guarantee isomor-
phy. The list merely is an enumeration of conditions
which together should help to establish isomorphy. If
two s a m g ' s Xa and X2 have to be isomorphic, the fol-
lowing measures are proposed:

, The production rules of both s a m g ' s must be con-
sistent. ;.

If both grammars have a production rule ii~ Which
the name of the meaning rule m appears, t hen the
r ight-hand side of the rules should contain the same
number of non terminals, since m is a function with
a fixed number of arguments, independent of the
grammar it is used in.

, The terminal sets o] both s a m g ' s should be ~uaP.
In the context of the o r d i n ~ y M-grammar formal-
ism this condition is formulated as:
- for each basic expression in one M-grammar there
has to be at least one basic expression in the other
M-grammar with the same meaning (which comes

aThis condition is equivalent to the attuning measures de-
scribed in Appelo et al. (1987), Landsbergen (1982)and
Landsbergen(1987).

down to the condition that the terminal set of the
terminal subgrammars should be identical)
- for each meaningful rule in one M-grammar there
has to be at least one meaningful rule in the other
M-graanmar which has the same meaning.

• The underlying contezt Jree grammars oJ both
s a m g ' s should be equivalent.
Equivalence of the underlying context free gram-
mars can be established by put t ing an equivalenee
condition on the underlying grammar of corre-
sponding subgrammars of the s a m g ' s in question.
Suppose tha t for each subgrammar of an s a m g

• X1 a subgrammar of another s a m g 3(2 would ex-
ist tha t performs the same linguistic task and vice
versa. Such an ideal s i tuat ion could be expressed
by a relation g on the sets of subgrammars of both
s a m g ' s . Let i and j be subgrammars of the s a m g ' s
X1 and Xa respectively, such tha t (i, j) E g , then
the underlying grammars 4 Bi and B i have to be
constructed in such a way that they define the same
language. (Notice that Bi and B i are regular
grammars.) More formally:
v (i , i) e g : c (B ,) = ~ (o i) . ~

The three a t tuning conditions above guarantee that
the underlying context free grammars of two at tuned
s a m g ' s are equivalent. However, the language defined
by an s a m g is a subset of the language defined by its un-
derlying grammar. The rule conditions determine which
elements are in the subset and which are not. Because
of the great expressive power of M-rules, the a t tuning
measures place no effective restrictions on the kind of
languages an s a m g can define. Hence, i t can be proved
that :

T h e o r e m : The question whether two at tuned s a m g ' s
are isomorphic is undecidable.

Because of the equivalence between s a m g ' s and M-
grammars this also applies to arbi t rary a t tuned M-
gr~nmars . Future research is needed to find extensions
for the at tuning measures in a way tha t guarantees iso-
m0tphy if grammar writers adhere to the a t tuning con-
dil~ions. The extensions will probably include restric-
tions on the form of the underlying grammar and on
the expressive power of M-rules. Also formal at tuning
measures between M-rules or sets of M-rules of different
grammars are conceivable.

4Because we are dealing with a subgrammar, the non-
terminal S is discarded from the production rules of the un-
derlying grammar.

SThis attuning measure sketches an ideal sittmtion. In
practice for each subgrarnmar of an samg there is not a cor-
responding fully isomorphic subgrammar but only a partially
isomorphic subgranunar of the other suing. However, the re-
quirement of fully isomorphic subgranunars is not the weak-
est attuning condition that guarantees the equivalence of the
underlying context free grammars. F_,quivalence can also be
guaranteed if XI and X~ satisfy the following condition which
expresses partial isomorphy between subgranunars:

U~x~ ~(nd = Uj~x~ L(B~)

- 2 1 4 -

The current Rosetts grammars obey the three previ-
ously mentioned attuning measures. In practice these
measures provide a good basis to work with. Therefore,
the undecidability of the isomorphy question is not an
urgent topic at the moment.

C o n c l u s i o n s

In thib paper we presented the interpretation of an M-
grammar as a specification of an attribute grammar.
We showed that the resulting attribute grammar is re-
versible and that it can be used in ordinary context
free recognition and generation algorithms. The gen-
eration algorithm is to be used in the analysis phase of
Rosetta, whereas the recognition algorithm should be
used in the generation phase. With respect to the weak
generative capacity it has been concluded that the set
of languages that can be generated and recognized de-
pends on the termination conditions that are imposed
on the grammar. If the weakest termination condition
is assumed, the set of languages that can be defined by
an M-grammar is equivalent to the set of languages that
can be recognized by a deterministic Turin8 Machine
in finite time. Using more realistic termination condi-
tions, the computational complexity of the recognition
and generation problem can still be classified as NP-
hard and, consequently, as computationally intractable.
Finally, it was concluded that the question whether two
attuned M-grammars are isomorphic, is undecidable.

A c k n o w l e d g e m e n t s

The author wishes to thank Jan Landsbergen, Jan
Odijk, Andr~ Schenk and Petra de Wit for their helpful
comments on earlier versions of the paper. The author
is also indebted to Lisette Appelo for encouraging him
to write the paper and to Ren6 Leermakers with whom
he had many fruitful discussions on the subject.

R e f e r e n c e s

Appelo, L. , C. Fellinger and J. Landsbergen (1987),
'Subgrammars, Rule Classes and Control in the
Rosetta Translation System', Philips Research
M.S. 14.131, Proceedings of 3rd ACL Conference
, European Chapter, pp. 118-133.

Barton, G., R. Berwick and E. Ristad (1987), Com.
putational Compi~ity and Natural Language, MIT
Press, Cambridge, Mass.

Chomsky, N. (1965), Aspects of the Theory of Syntax,
MIT Press, Cambridge, Mass.

Cook, S. A. (1971), Characterizations of Pushdown
Machines in Terms of Time-bounded Computers,
Journal of the Association for Computing Machin-
ery 18, 1, pp. 4-18.

Deransart, P., M. Jourdan, B. Lorho (1988), 'Attribute
Grammars', Lecture Notes in Computer Science
323, Springer-Verlag, Berlin.

Earley, J. (1970), 'An efficient context-free parsing al-
gorithm', Commun. ACM 13 (1970), pp. 94-102.

Engelfriet, J. (1986), 'The Complexity of Languages
Generated by Attribute Grammars' , SIAM Journal
on Computing 15, l, pp. 70-86.

Haas, A. (1989), 'A Generalization of the Offiine
Parsable Grammars' , Proceedings of the ~7th An-
nual Meeting of the Association for Computational
Linguistics, pp. 237-242.

Hemerik, C. (1984), 'Formal definitions of program-
ming languages as a basis for compiler construc-
tion', Ph.D. th., University of Eindhoven.

Hopcroft, J.E. and J.D. Ullman (1979), 'Introduction
to Automata Theory, Languages and Computa-
tion', Addison Wesley Publishing Company, Read-
ing, Mass.

Isabelle, P. (1989) , 'Towards Reversible M.T. Systems',
MT Summit'lI, pp. 67-68.

Knuth, D.E. (1968), 'Semantics of Context-Free Lan-
guages', Math. Systems Theory ~, 2, pp. 127-145
(June 1968).

Landsbergen, J. (1981), 'Adaptation of Montague
grammar to :the requirements of parsing', in: For-
real Methods in the Study of Language Part ~, MC
Tract 136, Mathematical Centre, Amsterdam.

Landsbergen, J. (1982), 'Machine Translation based on
logically isomorphic Montague grammars', Coling
8~, North-H011and, Amsterdam, pp. 175-181.

Landsbergen, J. (1987), 'Isomorphic grammars and
their use in the Rosetta Translation system', Ma-
chine Translation, the State of the Art, M. King
(ed.), Edinburg University Press.

Leermakers, R (1991), 'Non-deterministic recursive as-
cent parsing', Proceedings of the 5th ACL Confer.
ence, European Chapter, forthcoming.

Noord, van G. (1990), 'Reversible Unification Based
Machine ~l~anslation', in Proceedings of the 13th In-
ternational Conference on Computational Linguis-
tics, Helsinki.

Pereira, F., D. Warren (1983), 'Parsing as deduction',
Proceedings .of the ~lth Annual Meeting of the As-
sociation for Computational Linguistics, pp. 137-
144. :'

Perrault, C.R. C1984), 'On the Mathematical Proper-
ties of Linguistic Theories', Computational Linguis-
tics 10, pp. 165-176.

Ritchie, G. (1986), 'The computational complexity of
sentence derivation in functional unification gram-
mar', Proceedings of Coling'86, pp. 584-586.

Rohrer, C. (1989), 'New directions in MT systems',
MT Summit II, pp. 120-122.

Rounds, W. (1975), 'A grammatical characterization
of the exponential languages', Proceedings of the
16th Annual Symposium on Switching Theory and
Automata, IEEE Computer Society, New York, pp.
135-143.

Shieber, S. M. (!987), 'Separating Linguistic Analyses
from Linguistic Theories', in Linguistic Theory and
Computer Applications, Academic Press.

- 215 -

