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Abstract

This paper describes a classical logic for attribute-value (or fea-
ture description) languages which are used in unification gram-
mar to describe a certain kind of linguistic object commonly
called attribute-value structure (or feature structure). The al-
gorithm which is used for deciding satishability of a featurc
description is based on a restricted deductive closure construc-
tion for sets of literals (atomic formulas and negated atomic
formulas). In contrast to the Kasper/Rounds approach (cf.
{Kasper/Rounds 90}), we can handle cyclicity, without the need
for the introduction of complexity norms, as in [Johnson 88]
and [Beierle/Pletat 88]. The deductive closure construction is
the direct proof-theoretic correlate of the congruence closure
algorithm (cf. [Nelson/Oppen 80)), if it were used in attribute-
value languages for testing satisfiability of finite sets of literals.

1 Introduction

This paper describes a classical logic for attribute-value (or fea-
ture (lcscnphon) langnages which are used in unification gram-
mar to describe a certain kind of linguistic object commonly
called attribute-value structure (or feature structure). From a
logical point of view an attribute-value structure llke e.g. the
following (m matrix notation)

PRED- ’PROMISE’
TENSE ~ PAST
a| SUBI @ PRED JOHN ]
: SUB) @
XCOMP [ PRED 'COME’ ]

can be regarded as a graphical representation of a mini-
mal model of a satisfiable feature description. If we assume
that the attributes (in the example: PRED, TENSE, SUBJ,
XCOMP) are unary partial function symbols and the values
(2, 'PROMISE?, PAST, 'JOIIN’, 'COME’) are constants then
the given feature stricture represents graplucally e.g. the min-
imal model of the following descnptlon

PRED SUBJa » "JOHN’ & TENSEa ~ PAST &
PREDa = 'PROMISE’ & SUBJa =~ SUBJ XCOMPa &
PRED XCOMPa ~ 'COME".!

"Note that the terms ave formed without using brackets. (Since
all function symbols are unary, the introduction of brackets would

So, in the following attribute-value languages are regarded ac
quantifier-free sublanguages of classical first order languager
with equality whose (noulogical) symbols are given by a set o
unary partial function symbols (attributes) and a set of con-
stants (atomic and complex values). The logical vocabulary
includes all propositional connectives; negation is interpreted
classically.?

For quantifier-free attribute-value languages L we give an ax-
iomatic or Hilbert type system H%, which simply results from
an ordinary first order system (with partial function symbols),
if its language were restricted to the vocabulary of L. Accord-
ing to requirements of the applications, axioms for the constant-
consistency, constant/complex-consistency and acyclicity can
be added to force these properties for the {eature structures
(models).

For deciding consistency (or satisfiability) of a feature descrip-
tion, we assume - first, that the conjunction of the formulas
in, the feature description is converted to disjunctive normal
form. Since a formula in disjunctive normal form is consis-
tent, il at least one of its disjuncts is consistent, we only need
an algorithm for-deciding consistency of finite scis of literals
{atomic formulas or negated atomic formulas) S. In contrast
to the reduction algorithins which normalize a set S accord-
ing to a complexity norm in a sequence of norm decreasing
rewrite steps® we use a restricted deductive closure algorithm
for deciding the consistency of sets of literals.* The restric-
tion results from the fact that it is sufficient for deciding the
consistency of S to consider proofs of equations from S with
a certain subterin property. For the closure construction only
those equations ate derived from S whose terms are subterms of
the terms occurring in the formulas of S. This guarantees that
the construction terminates with a finite set of literals. The ad-
equacy of this subterm property restriction, which was already
shown for the number theoretic calculus K in [Kreisel/Tait 61)
by [Statman 74], is a necessary condition for the development
of more efficient Cut-free Gentzen type systems for attribute-

not improve the readability essentially.) Therefore we write e.g.
PRED SUBJa instcad of PRED(SUBI(a)).

2For intuitionistic negation cf. e.g. [Dawar/Vijay-Shanker 80]
and [Langholm 89]. '

3CI.  e.g. [Kreisel/Tait 61], [Knuth/Bendix 70}, and ap-
plied to attribute-value languages [Johneon 88}, [Beierle/Pletat 88],
[Smolka 89].

4Since we allow cyclicity, unrestricted deductive closure algo-
rithms (cf. e.g. [IKasper/Rounds 86] and [Kasper/Rounds 90]) can-
not be applied.
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value languages.®

Moreover, this closure construction is the direct proof-
theoretic correlate of the congruence closure algorithm (cf.
{Nelson/Oppen 80}), if it were used for testing satisfiability of
finite sets of literals in HYy. As it is shown there, the congru-
ence closure algorithm can be used to test consistency if the
terms of the equations are represented as labeled graphs and
the equations as a relation on the nodes of that graph.

On the hasis of the algorithm for deciding satisﬁabilit& of finite
sets of formulas we then show the completencss and decidability

of H:V'

2 Attribute-Value Languages

In this section we define the type of language we wait to con-
sider and introduce some additional notation.

2.1 Syntax

2.1. DEFINITION. A quantifier-free attribute-value language
(LeLY%y) consists of the logical connectives L (false), ~ (nega-
tion), O (implication), the equality symbol =~ and the paren-
theses (,). The nonlogical vocabulary is given by a finite set of
constants C and a finite set of unary partial function symbols

R (C NnFH =0).
2.2. DEFINITION. The class of terms (T) of L is recursively

defined as follows: each constant is a term; if f is a function
symbol and T is a term, then fr is a term.

2.3. DEFINITION. The set of atomic fonnulas of L is
{rg | n,ndd}u{l)

2.4. DEFINITION. The formulas of L are the atomic formulas
and, whenever ¢ and ¢ are formulas, then so are (~ ¢) and

(629

2.5. DEFINITION. If a is a well-formed expressioﬁ (term or
formula), then afr;/r;] is used to designate an expression ob-
tained frqm a by replacing some (possibly all or none) occur-
rences of 71 in a by .

We assume that the connectives V (disjunction), &7(conjunc-
tion) and = (equivalence) are introduced by their usual defi-
nitions, Furthermore, we write sometimes 1, # r2 instead of
~TI R and drop the parentheses according to: the usual
conventions.®

2,2 Semantics

A model for L consists of a nonempty universeld and an inter-
prefation function Q. Since not every term denotes an element
in M if the function symbols are interpreted as unary partial
functions, we generalize the partiality of the denotation by as-
suming that < itself is a partial function. Thus in general not

$CI. also (Statman 77).
éWe drop the outermost brackets, assuine that the connectives
haye the precedence ~> & > Vv >0, = and are left associative.

all of the constants and function symbols are interpreted by Q.
Redundancies which result from the fact that non-interpreted
function symbols and function symbols interpreted as empty
functions are then regarded as distinct are removed by requiring
these partial functions to be nonempty. Suppose [X s+ Y}y
designates the set of all (partial) functions from X to Y, then
a model is defined as follows:

2.68. DEFINITION. A model for L is a pait M = (U,S), con-
sisting of a nonempty set & and an interpretation function
Q= Jc U gy, such that
() Scelc — Uly
(i) Sre[Fy U Ulplp
(iii) VfeFi(feDom(S) — 3(f) # 6).

The (partial) denotation function for terms § (Se[T + U]p)
induced by S is defined as follows:”

2.7. DEFINITION. For every ¢cC and frcT (feFy),

_ _ (c) if ceDom(S)
) = {undcﬁned otherwise

_ S(N)(S(r)) if feDom(S) AT(r) definedA
S(fr) = G(r)eDom(3(f))
undefined otherwise.

2.8. DEFINITION. The satisfaction relation between models
M and formulas ¢ (=m ¢, read: M satisfies ¢, M is a model
of ¢, ¢ is true in M) is defined recursively:

Fem L
EmMrzr « 9(7),8(r') defined A X(r) = (r')
Fu~ ¢ = (=m9)

EmMvdx ~ Emd—Emx

A formula ¢ is valid (= ¢), iff ¢ is true in all models. A
formula ¢ is satisfiable, iff it has at least one model. Given
a set of formulas T', we say that M satisfies I' (}=m ), iff M
satisfies cach formula ¢ in T'. T is satisfiable, iff there is a model
that satisfies each formula in T'. ¢ is logical consequence of T’
(T |= ¢), iff every model that satisfies I' is a model of ¢.

3 The System HYy,

In this section we describe an aziomatic or Hilbert type system
HSy for quantifier-free attribute-value languages L. We give a
decision procedure for the satisfiability of finite sets of formulas
and show the completeness and decidability of H%, on the basis
of that procedure. ‘

3.1 Axioms and Inference Rules

If L is a fixed attribute-value language, then the system consists
of a traditional axiomatic propositional calculus for L and two
additional equality axioms. For any formulas ¢, ¢, x, terms

7In the text following the definition we drop the overline.
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r, 7', and every sequence of functors o (a¢Fy) of L the formulas
under Al- A4 are propositional axioms® and the formulas under
El and E2 are cquality axioms.? ‘I'hc¢ Modus Ponens (MP) is
the only inference rule.'®

Al F~ L

A2 F¢D(¥D¢)

A3 F(@D(@Dx)D((4D¢)D(¢6Dx)
Ad H(~¢D~yY)D(¥D¢)

El Forz=r'Drx=r

E2 Fr=1'D>(4D4[r/r])

MP ¢DyvAdt9

A formula ¢ is derivable from a set of formulas I' (I' + ¢), iff
there is a finite sequence of formulas ¢;...¢,, such that ¢, = ¢
and every ¢ is an axiom, one of the formulas in [ or follows by
MP from two previous formulas of the sequence. ¢ is a theorem
(F ¢),iff ¢ is derivable from the empty set. A is derivable from
[' (T'F A), iff each formula of A is derivable from . T and A
are deductively equivalent (I' - A), it '+ A and AF T

The system is sound:'?
3.1. THEOREM. For every formula ¢: If+ ¢, then |= ¢.

Beside this weak version also the strong soundness theorem is
provable for HGy:

3.2. THEOREM. For every set of formulas T and every for-
mula ¢: IfT'F ¢, then T |= ¢.

3.2 Satisfiability

We now prove

3.3. THEOREM. The satlisfiability of a ﬁmtc set of formulas
' is decidable.

by providing a terminating procedure: First the conjunction of
all formulas in T (denoted by AT) is converted into disjunctive
normal form (DNF) using the well-known standard techniques.
Then AT is equivalent with a DNF

F AL = (61 &di&. &k, )V (67&..&08%,) V... V ($T &.. &¢F,)
where the conjuncts ¢§ (i = 1,.,n; 7 = 1,.., k) are either

atomic formulas or negations of atomic formulas, henceforth
called literals. By the definition of the satisfiability we get:

8Cf. e.g. [Church 56).

9 Axiom E1 restricts the reflexivity of dentity to denoting terms:
if a term denotes, then also its subterms do (cf. the definition of ).
Thus equality is not a reflexive, but only a subterm reflexive relation.

10Jf (i.) constant-consistency and (ii.) constant/complex-
consistency are to be guaranteed for a set of atomic values V (V C C),
for eacha,beV (a # b) and felFy, axioms of the form (i.) - a % b and
(ii.) F fa % fa have to be added (a finite set). If also acychcnty has
to be ensured, axioms of the form (m ) F o7 % 7, with aeF, 7T,
have to be added. Although this sct is infinite, we only need a finite
subset for the satisfiability test and for decidability (sce bhelow).

N For the prapositional calculus ¢f. the standard proofs. For ax-
ioms E1 and E2 cf. [Johnson 88).

3.4. LEMMA. Let /\Sl V/\S2 V..V AS" bea DNF of AT
consisling of conjunctions A S* of the literals in S*, then /\ r
is satisfiable, iff at lcast one disjunct A S* is satufable

We complete the proof of Theorem 3.3 by an algorithm that
converts a finite set of literals S' into a deductively equivalent
sct of literals in normal form S! which is satisfiable iff it is not
equal to {1}.

3.2.1 A Normal Form for Sets of Literals

The normal form is construcied by closing S deductively by
those equations whose terms are subterms of the terms occur-
ring in S. For the construction we use the following derived
rules:

Rl orx=r'br=r Subterm Reflexivity
R2 r=7'Agt ¢[r/7’] Substitutivity
R} raerbFrixr Symmetry.

We get R and R2 from E1 and E2 by the deduction theorem.
k3 is derivable from R1 and R2, since we get from 7 = 7' first
T~ 1 by R1 and then 7’ = r by R2.

If 75 denotes the set of terms occurring in the formulas of S
(Ts = {r, 7' | (~)r = 7'¢S}), and SUB(7s) denotes the set of
all subterms of the terms in 7Ts

SUB(7s) = {r | oreTs, with oeFy},

then the normal form is constructed according to the following
inductive definition.

3.5. DEFINITION. For a given sct of literals S we deﬁﬁe a
sequence of sets S; (i > 0) by induction:

With Sp = SU{r' = | r=r'cS),
s {L) il LeS; otherwise
7 Sou{rxr|or =S}

{1} if 3geSi(~ ¢eSi); otherwise

Sit1 = n R, TR TSA
SiU {(n = n)[r/7] v
(r =l Tirimra)irsrpy & SUB(Ts)

Since Si € Si41, for Sig1 # {1}, the construction terminates
on the basis of the subterm condition either with a finite set of
literals or with {L}. If each term of the equations in Si41 is a
subterm of the terms in 75, no term of the equations in Si4;
can be longer than the longest term in Ts.

EXAMPLE 1. Assume that L consists of the constants @, b, c, e
and the function symbols f,g, h,m,n,p. Then, for the set of
literals

s { ge & pmb,e s me,mb = ngffc,c = a, }
ffangffae
the following sequence of sets is constructed. . We represent

the equations of a set S, by the system of sets of equivalent
terms induced by Si. Le.: If © is a set of terms under S; and

ga = ha,a =

1275 C SUB(75s) holds by definition.
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r,7'¢®, then r = r'eSi. Furthermore, we mark by an arrow
that a set under S; is also induced (without modifications) by
the equations in Si4y.

SQ=SV

So Si

ngffaze — —
{e,me} — —
{c,a)

{a, ffa} > f{c,a,ffa,ffc) —
{1f¢c) v

{ge, pmb} - —

{mb,ngffc} {mb,ngffc,ngffa} —
i > (fe,fa) ~
{91 fc} {9ffc,9ffa}

{oaha) {90, ha gffa) > loffe.afJa, g0, ha)

3.6. DEFINITION. Let S, = S; with t = min{i | Si = Si41).
3.7. LEMMA. For S, Izo{da: S S,.

PROOF. If S, # {1}, then S and S, are deductively equiva-
lent, since S is a subset of S, and S, only contains formulas
derivable from S. For S, = {1} the same holds for S._;. Since
Sy—1 is inconsistent, S is deductively cquivalent with {1}. O

Note that for each equation in S; (S; # {.L}) there is a proof
from S with the sublerm property, as defined below. This fol-
lows from the subterm condition in the inductive construction.

3.8. DEFINITION. A proof of an equation from S has the
subterm property, ifl each term occurring in the equations of

that proof is a subterm of the terms in 73, i.e. an element of
SUB(7s). :

So, if S is not trivially inconsistent (L not in §), the con-
struction terminates with {1}, since there ¢xists a proof of an
equation from S with the subterm property, whose negation is
in S.

"EXAMPLE 2. For the inconsistent set
S' = SU {gmme % pnhffa} the construction terminates after
4 steps (S; = {L}), since there is a proof of gmme ~ pnhf fa
from S’ with the subterm property of depth 3.

emme exxme mbrngffc cRa gaRha a=ffa
gess pmb e mme mbx ngffa gffax hffae
gmme = pmb mbxsnhffa

gmme & pnhffa

The deductive closure construction restricted by the subterm
property is a proof-theoretic simulation of the congruence clo-
sure algorithm (cf. [Nelson/Oppen 80}]'*), if used for testing
satisfiability of finite sets of literals in /%y Strictly speaking,
if

i. the congruence closure algorithm is weakened for partial
functions,
ii. Sis not trivially inconsistent (L not in S), and

iii. the failure in the induction step of 3.5. is overrunled,

13Cf. also [Gallier 87).

then r = ' is in S, iff the nodes which represent the terms r
and 7' in the graph constructed for S are congruent.’* More-
over, for unary partial functions the algorithm is simpler, since
the arity does not have to be controlled.

3.9. LEMMA. The set of all equations in S, is closed under
subterm reflezivily, symmelry and transitivity.

PROOF. For S, = {1} trivial. H S, # {Ll}, then S, is
closed under subterm reflexivity and symmetry, since these
propertics are inherited from So to its successor sets. S, is
closed under transitivity, since we first get r3¢SUB(7s) from
1 = 12, 72 & 1€S, and then according to the construction also
7 = nfrz2/r)eSvsr = Su, with n2[r2 /73] = 1. o

3.2.2 Satisfiability of Sets of Literals

For the proof that the satisfiability of a finite set of literals is
decidable we first show that a set of literals in normal form is
satisfiable, iff the sct is not equal to {.L}. For S, = { L} we get
trivially:

3.10. LEMMA. S, = {1} — ~3M(}=m S.).

Otherwise we can show the satisfiability of S, by the construc-
tion of a canonical model that satisfies S..

Let E, be the set of all (nonnegated) equations in Sy, Tg, the
set of terms occurring in E, and =g, the relation induced by
E, on Tg, ({{r,7') | 7 = 1'¢E,}). Then, we choose as the
universe of the canonical model M, = {U,,S,) the set of all
equivalence classes of =g, on 7g,, if Tg, # 8. By Lemma 3.9
this set exists. If S, contains no (unnegated) equation, we set
U, = {#}, since the universe has to be nonempty.

3.11, DEFINITION. For a set of literals S, in normal form, the
canonical term model for S, is given by the pair M, = (U,, D),
consisting of the universe

TE,/ RE, if TE,, # 0
U = { {#) otherwise

and the interpretdtion function 9, which is defined for ecC,
feFy and [r)eld, by:!®

if ceTg,
otherwise

Se(e) | { Encllldeﬁned

{ (/71
undefined

It follows from the definition that 9, is a partial function. Sup-
pose further for S, (f) that [r] = {r2] and that Sp, (f)([n]))
is defined. Then

if 'e[r] and fr'eTg,
otherwise.

)

RIAOL)

S ()n)) = Sn()(n)-

For this, suppose bﬁp,(j)([r,]) = [fr'], with r'¢[r]. Since
g, is an equivalence relation we get 7’'¢[r;] and thus

Sr (/)] = /7).

MCI. [Wedekind 90].
15We drop the /g, -index of the equivalence classes.
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EXAMPLE 3. The canonical model for S of Example 1 which
is constructed using S; = S, is given hy:

{cv""c}r {b}, {c.a, [ fa, ffc}»

U, = < {ge, pmb}, {mb,ngf fc, ngffa},}
{fe.fa),{9ffc,9/fa,ga, ha)

Su(e) = [e]

_ { (allsaD,
s = {(Ual, [ffa])}
(s) = {‘([[f}]-,[@';’]’)'} (4 = {([a] [ha])}
u(n) = {(loal.lnssfe)}  Su(p) = {([mb], Lomt])}

For each term r in Tg, it follows from the definition of S¢ and
Qr: Su(r) =[r]

By the following lemma we show in addition that the domain
of Q. restricted to Ts, is equal to Tg, .

3.12. LEMMA. For each term 1 in Ts,: If S, is defined for
r, then S.(r) = [r], with reTg, .

PROOF. (By induction on the length of r.) Suppose first that
Q, is defined for 7. For every constant c it follows from the
definition of S¢ that ¥c(c) = [c], with ceTg,. Assume for fr by
inductive hypothesis 9,(r) = [r], with 7¢7g,, then it follows
from the definition of Sp, (f) that Sp (f)({7]) = [J'], with
Jr'eTg, and r'¢[r]. Since 7’ is a subterm of fr', we first get
'¢Tg, and by Lemma 3.9 fr' =~ fr',r' = reS,. Because of
freSUB(Ts), then also fr = freS,. So, fr must also be in
Te, and hence S, (f)([7]) = [f7]. a

Next we show for the model M,:
3.13. LEMMA. S, # {1} =M. S..

PROOF. (We prove |=um, ¢, for every ¢ in S, by induction on
the structure of ¢.)

%) )
%u(a) } =l

o = { b}

1 is not element of S,. If L were in S, we would get by the
definition of S, S, = {.L} which contradicts our assumption.

For ¢ =~ L, =M ~ 1 holds trivially.

Suppose ¢ = r = 7', then 7,7’ are in Tg,, 9, is defined for
r and 7', and S.(r) = [r], Qu(7') = [r'). Because of r =~
r'eSy, it follows that [r] = [7')..So 9.(7) = F.(7’) and hence
l=Mu rar.

Assume that ¢ is ~ (7 = ). If r = 7' were satisfied by M,,
9u(7) would be equal to Su(7'). By Lemma 3.12 we would
then get §.(r) = [r] and Qu.(r') = [r’), with 7,7'¢Tg,. Since
g, is an equivalence relation on 7g,, 7 = 7'¢S, would {ollow
from [r] = [*'], and, contradicting the assumption, we would
get S, = {.L} by the definition of S.. 8]

It can be easily shown that M, is a unique (up to isomorphism)
minimal model for S,.'® Strictly speaking, il M is a model for

18]t can be verified very easily by using this fact that we need to
add to a set of literals S only a finite number of axioms to ensure the
acyclicity. All axioms of the form o # 7 (0¢Ft, reT), with for| <
|SUB(7Tg)l, are ¢.g. more than cnough, since from a consistent but
cyclic set of literals $§ must follow an equation o7 & 1 (a.ul’,'r y7¢T),
with [or| < U], and jU.| < [SUB(Tg)| holds by the construction of
Uy

S. homomorphic to M,, then every minimal submodel of M
that satisfies S, is isomorphic to M,,.

From the two lemmata above it follows first that the satisfia-
bility of sets of formulas in normal form is decidable:

S, # (L} = 3IM(=m S.).

Since Sy, and S ate deductively equivalent, we can establish by
the following lemma that the satisfiability of arbitrary finite
sets of literals S is decidable.

3.14. LEMMA. S, # {1} « 3IM (=M S).

PROOF. (—) f S, # {1}, we know by Lemma 3.13 that M,
is a'model for S,. Then, by the soundness S, + S — YM(EM
Sy —k=um S). Since S is derivable from S, it follows =, S
and thus S, # {1} — 3M(=m 5).

(~) If S, = {1}, then for cach model M jp S.. From the
soundness we get S+ S, — YM(l=m S =M Su). Since S,
is derivable from S, it follows VM (& m Sy —f£EMm S) and hence
Sy = {1} = VM(l=m S). 0

3.3 Completeness and Decidability

Using the procedure for deciding satisfiability we can easily
show the completencss and decidability of H.

3.15. THEOREM. For every finile set of formulas T, and for

~each formula ¢: IfT }=¢, thenT + ¢,

PROOF. By definition ¢ is a logical consequence of T, ifl
U {~ ¢} is unsatisfiable. Using the equivalences of Theorem
3.3, we first get:

ru{~¢} 4 {ACU{~¢})}).
Suppose, that A S'V...vA S" isa DNFof A\(TU{~ ¢}), then
ru {~ ¢} {AS'V..VAS"}
and by the decision procedure
ETU{~¢} — S ={L}A...AS] ={L).

If U {~ ¢} is unsatisfiable, it follows that T U {~ ¢} -
{L}, since each §' is deductively equivalent with {L1}.
From ['U {~ ¢} F L it follows by the deduction theorem firat
Tk~¢dgDLland thusTH~ L D¢, From T bk~ L D ¢ and
I'~ L by MP then I' - ¢. o

3.16. COROLLARY. For every finile set of formulas T and
each formula ¢, TV ¢ is decidable.

PROOF. By the completeness and soundness we know I' - ¢ —
I’ |= ¢. Since ¢ is a logical consequence of T, iff & T U {~ ¢},
we can decide T+ ¢ by the procedure for deciding = FU{~ ¢}.

]
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