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ABSTRACT

Use of Lambek’s (1958) categorial grammar for lin-
guistic work has generally been rather limited. There
appear to be two main reasons for this: the nota-
tions most commonly used can sometimes obscure the
structure of proofs and fail to clearly convey linguistic
structure, and the calculus as it stands is apparently
not powerful enough to describe many phenomena en-
countered in natural language.

In this paper we suggest ways of dealing with both
these deficiencies. Firstly, we reformulate Lambek’s
system using proof figures based on the ‘natural de-
duction’ notation commonly used for derivations in
logic, and discuss some of the related proof-theory.
Natural deduction is generally regarded as the most
economical and comprehensible system for working
on proofs by hand, and we suggest that the same
advantages hold for a similar presentation of cate-
gorial derivations. Secondly, we introduce devices
called structural modalities, based on the structural
rules found in logic, for the characterization of com-
mutation, iteration and optionality. This permits the
description of linguistic phenomena which Lambek’s
system does not capture with the desired sensitivity
and generality.

LAMBEK CATEGORIAL
GRAMMAR

PRELIMINARIES

Calegorial grammar is an approach to language de-
scription in which the combination of expressions is
governed not by specific linguistic rules but by general
logical infereuce mechanisms. The point of departure
can be seen as Frege's position that there are certain
‘complete expressions’ which are the primary bear-
ers of meaning, and that the meanings of ‘incomplete
expressions’ (including words) are derivative, being
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their contribution to the meanings of the expressions
in which they occur. We suppose that linguistic ob-
jects have (at least) two components, form (syntactic)
and meaning (semantic). We refer to sets of such ob-
jects as categories, which are indexed by types, and
stipulate that all complete expressions belong to cat-
egories indexed by primitive types. We then recur-
sively classify incomplete expressions according to the
means by which they combine (syntactically and se-
mantically) with other expressions.

In the ‘syntactic calculus’ of Lambek (1958) (var-
iously known as Lambek categorial grammar, Lambek
calculus, or L), expressions are classified by means of
a set of bidirectional types as defined in (1).

(1) a
b. I X and Y are types then X/Y and Y\X

are types.

If X is a primitive type then X is a type.

X/Y (resp. Y\X) is the type of incomplete expres-
sions that syntactically combine with a following (resp.
preceding) expression of type Y to form an expression
of type X, and semantically are functions from mean-
ings of type Y to meanings of type X.

Let us assume complete expressions to be sen-
tences (indexed by the primitive type S), noun phrases
(NP), common nouns (N), and non-finite verb phrases
(VP). By the above definitions, we may assign types
to words as follows:

(2) John, Mary, Suzy := NP
man, paper =N
the := NP/N
likes, read := (NP\S)/NP
quickly := (NP\S)\(NP\S)
without := ((NP\S)\(NP\S))/VP
understanding ;= VP/NP

We represent the form of a word by printing it in
italics, and its meaning by the same word in boldface.
For instance, the form of the word “man” will be
represented as nian and it8 meaning as man.

PROOF FIGURES

We shall present the rules of L by means of proof
figures, based on Prawitz’ (1965) systems of ‘nat-

“ural deduction’. Natural deduction was developed

by Gentzen (1936) to reflect the natural process of
mathematical reasoning in which one uses a number
of inference rules to justify a single proposition, the
conclusion, on the basis of having justifications of a
number of propositions, called assumptions. During



a proof one may temporarily make a new assumption
if one of the rules licenses the subsequent withdrawal
of this assumption. The rule is said to discharge the
assumption. The conclusion is said to depend on the
undischarged assumptions, which are called the hy-
potheses of the proof.

A proof is usually represented as a tree w1th the
assumptions as leaves and the conclusion at the root.
Finding a proof is then seen as the task of filling this
tree in, and the inference rules as operations on the
partially completed tree. One can write the infer-
ence rules out as such operations, but as these are
rather unwieldy it is more usual to present the rules
in a more compact form as operations from a set of
subproofs (the premises) to a conclusion, as follows
(where m > 1 and n 2 0):

3) . M) (Yol
X) . Xvnen Xm;n+l v Xm
zZ

Ro’

This states that a proof of Z can be obtained from
proofs of X3, ..., Xm by discharging appropriate oc-
currences of assumptions Yj, ..., Yan. The use of
square brackets around an assumption indicates its
discharge. R is the name of the rule, and the index i

is included to disambiguate proofs, since there may be

an uncertainty as to which rule has dnscharged which
assumption.

As propositions are represented by formulas in
logic, so linguistic categories are represented by type
formulas in L. The left-to-right order of types indi-
cates the order in which the forms of subexpressions
are to be concatenated to give a composite expres-
sion derived by the proof. Thus we must take note
of the order and place of occurrence of the premises
of the rules in the proof figures for L. There is also
a problem with the presentation of the rules in the
compact notation as some of the rules will be written
as if they had a number of conclusions, as follows:

(4) : :
X1 - Xm
Y,

R

This rule should be seen as a shorthand for:
(5) : :
X: -+ Xm

et R
" ... Yn

z

If the rules are viewed in this way it will be seen that
they do not violate the single conclusion nature of the
figures.

As with standard natural deduction, for each con-
nective there is an elimination rule which states how
a type containing that connective may be consumed,
and an introduction rule which states how a type con-
taining that connective may be derived. The elimi-
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nation rule for / states that a proof of type X/Y
followed by a proof of type Y yields a proof of type
X. Similarly the elimination rule for \ states that
a proof of type Y\ X preceded by a proof of type Y
yields a proof of type X. Using the notation above,
we may write these rules as follows:

(6)

...

Xjy Y rix
/ Ve \
X X

\E

We shall give a semantics for this calculus in the same
style as the traditional functional semantics for intu-
itionistic logic (Troelstra 1969; Howard 1980). In the
two rules above, the meaning of the composite expres-
sion (of type X) is given by the functional application
of the meaning of the functor expression (i.e. the one
of type X/Y or Y\ X) to the meaning of the argument
expression (i.e. the one of type Y). We represent func-
tion application by juxtaposition, so that likes John

" means likes applied to John.

Using the rules /E and \E, we may derive “Mary
likes John” as a sentence as follows:

(7) Mary likes John
(NP\S)/NP NP
NP NP\S\
S \

The meaning of the sentence is read off the proof by
interpreting the /E and \E inferences as function ap-
plication, giving the following:

(8) (likes John) Mary

The introduction rule for / states that where the
rightmost assumption in a proof of the type X is of
type Y, that assumption may be discharged to give
a proof of the type X/Y. Similarly, the introduction
rule for \ states that where the leftmost assumption
in a proof of the type X is of type Y, that assumption
may be discharged to give a proof of the type Y\ X.
Using the notation above, we may write these rules
as follows:

© a [F b [
" v

Note however that this notation does not embody the
conditions that have been stated, namely that in /I
Y is the rightniost undischarged assumption in the
proof of X, and’'in \I Y is the leftmost undischarged
assumption in the proof of X. In addition, L carries
the condition that in both /I and \I the sole assump-
tion in a proof cannot be withdrawn, so that no types
are assigned to the empty string,

In the introduction rules, the meaning of the re-
sult is given by lambda-abstraction over the meaning
of the discharged assumption, which can be repre-
sented by a variable of the appropriate type. The re-
lationship between lambda-abstraction and function
application is given by the law of f-equality in (10),



where a{Bly] means ‘a with 8 substituted for y’. (See
Hindley and Seldin 1986 for a full exposition of the
typed lambda-calculus.)

(10)  (Ay[a))B = ofBly]

Since exactly one assumption must be withdrawn, the
resulting lambda-terms have the property that each
binder binds exactly one variable occurrence; we refer
to this as the ‘single-bind’ property (van Benthem
1983). The rules in (9) are analogous to the usual
natural deduction rule of conditionalization, except
that the latter allows withdrawal of any number of
assumptions, in any position.

The /1 and \I rules are commonly used in con-
structions that are assumed in other theories to in-
volve ‘empty categories’, such as (11):

(11) (John is the man) who Mary likes.

We assume that the relative clause modifies the noun
“man” and hence should receive the type N\N. The
string “Mary likes” can be derived as of type S/NP,
and so assignment of the type (N\N)/(S/NP) to the
object relative pronoun “who” allows the analysis in
(12) (cf. Ades and Steedman 1982):

(12) who Mary likes
(NP\S)/NP  [NPJ!

NP - NP\S
\E

N\N)/(S/NP siu’/Il
(N\N)/(S/NP) / /E

N\N

The mcaning of the string can be read off the proof by
interpreting /I and \I as lambda-abstraction, giving
the term in (13):

(13) who (Az{(likes z) Mary])

Note that this mechanism is only powerful enough
to allow constructions where the extraction site is
clause-peripheral; for non-peripheral extraction (and
multiple extraction) we appear to need an extended
logic, as described later.

DERIVATIONAL EQUIVALENCE AND
NORMAL FORMS

In the above system it is possible to give more than
one proof for a single reading of a string. For exam-
ple, compare the derivation of “Mary likes John” in
(7), and the corresponding lambda-term in (8), with
the derivation in (14) and the lambda-term in (15):

(14) Mary likes : John
(NP\S)/NP  [NP}!
NP NP\S__
\\E
____/Il —
S/NP NP
S /B

(15) (Az[(likes ) Mary}) ;John
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By the definition in (10), the terms in (8) and (15) are
B-equal, and thus have the same meaning; the proofs
in (7) and (14) are said to exhibit derivational equiva-
lence. The relation of derivational equivalence clearly
divides the set of proofs into equivalence classes. We
shall define a notion of normal form for proofs (and
their corresponding terms) in such a way that each
equivalence class of proofs contains a unique normal
form (cf. Hepple and Morrill 1989). '

We first define the notions of contraction and reduc-
tion. A contraction schema R > C consists of a par-
ticular pattern R within proofs or terms (the redez)
and an equal and simpler pattern C (the contractum).
A reduction consists of a series of contractions, each
replacing an occurrence of a redex by its contractum.
A normal form is then a proof or term on which no
contractions are possible.

We define the following contraction schemas: weak
contraction in (16) for proofs, and S-contraction in
(17) for the corresponding lambda-terms.

(16) a. [v)
_.)."_/p‘ Py
Xy Y :
- P /E
b. vy
: -—);(-\1" P Y
Y Y\X :
RALI
X

d

(17) (Ayla))B b olBly]

From (10) we see that f-contraction preserves mean-
ing according to the standard functional interpreta-
tion of typed lambda-calculus. Therefore the cor-
responding weak contraction preserves the semantic
functional interpretation of the proof; in addition it
pteserves the syntactic string interpretation since the
redex and contractum contain the same leaves in the
same order. For example, the proof in (14) weakly
contracts to the proof in (7), and correspondingly the
term in (15) B-contracts to the term in (8). The
results of these contractions cannot be further con-
tracted and so are the respective results of reduction
to weak normal form and B-normal form.

Weak contraction in L strictly decreases the size
of proofs (e.g. the number of symbols in a contractum
is always less than that in a redex), and f-contraction
in the single-bind lambda-calculus strictly decreases
the size of terms. Thus there is strong normalization
with respect to these reductions: every proof (term)
reduces to a weak normal form (f-normal form) in
a finite number of steps. This has as a corollary
(normalization) that every proof (term) has a nor-
mal form, so that normal forms are fully represen-
tative: every proof (term) is equal to one in normal
form. Since reductions preserve interpretations, an
interpretation of a normal form will always be the



same as that of the original proof (term). Thus re-
stricting the search to just such proofs addresses the
problem of derivational equivalence, while preserving
generality in that all interpretations are found.

Proofs in L and single-bind lambda-terms (like
the more general cases of intuitionistic proofs and full
lambda-terms) exhibit a property called the Church-
Hosser property,' from which it follows that normal
forms are unique. .

For formulations of L that are oriented to pars-
ing, defining normal forms for proofs provides a basis
for handling the so-called ‘spurious ambiguity’ prob-
lecm, by providing for parsing methods which return
all and only normal form proofs. Sce Konig (1989)
and Hepple (1990).

STRUCTURAL MODALITIES

From a logical perspective, L can be seen as the weak-
cst of a hierarchy of implicational sequent logics which
difler in the amount of freedom allowed in' the use
of assumptions. The highest of these is (the impli-
cational fragment of) the logistic calculus LJ intro-
duced in Gentzen (1936). Gentzen formulated this
calculus in terms of sequences of propositions, and
then provided explicit structural rules to show the
permitted ways to manipulate these sequences. The
structural rules are permutation, which allows the or-
der of the assumptions to be changed; contraction,
which allows an assumption to be used more than
once; and weakening, which allows an assumption to
be ignored. For a discussion of the logics generated
by dropping some or all of these structural rules see
e.g. van Benthem (1987).

Although freely applying structural rules are clear-
ly not appropriate in categorial grammars for linguis-
tic description, commutable, iterable and optional el-
ements do occur in natural language. This suggests
that we should have a way to indicate that structural
operations are permissible on specific types, while still
forbidding their general application. To achieve this
we propose to follow the precedent of the -ezponen-
tial operators of Girard’s (1987) linear sequent logic,
which lacks the rules of contraction and weakening,
by suggesting a similar system of operators called
struclural modalities. Here we shall describe a sys-
tem of universal modalities, which allow us to deal
with the logic of commutable, iterable and: optional
extractions.?

For each universal modality we shall present an
climination rule, and one or more ‘operational rules’,
which are essentially controlled versions of structural

1This is the property that if a proof (term) M reduces
to two proofs (terms) Ny, Nz, then there is a proof (term)
to which both N; and N2 reduce.

2The above remarks also extend to a second form of re-
duction, strong reduction/n-reduction, which we have not
space to describe here. See Morrill et al. (1990).

3The name is chosen because the elimination and in-
troduction rules appropriate to each operator turn out to
be those for the universal modality in the modal logic S4.
Sce Dosen (1990).
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rules. (Introduction rules can also be defined, but we
omit these here for brevity and because they are not
required for the linguistic applications we discuss.)
Note that these operators are strictly formal devices
and not geared towards specific linguistic phenom-
ena. Their use foi the applications described, which
are suggested purely for illustration, may lead to over-
generation in some cases.*

COMMUTATION

The type AX is assigned to an item of type X which
may be freely permuted. A has the following infer-
ence rules:

18 : :
(18) Y ax

AX Y

AX AX Y

X Y Aax

PrmA

From these rules we see that an occurrence of an item
of type X in any position may be derived from an item
of type AX.

We may use this operator in a treatment of rela-
tivization that will allow not only peripheral extrac-
tion as in (19a), but also non-peripheral extraction as
in (19b): :
(19) a.

b.  (Here is the paper) which Suzy read
quickly.

(Here is the paper) which Suzy read.

We shall generate these examples by assuming that
“which” licenses extraction from any position in the
body of the relative clause. We may accomplish this
by giving “which” the type (N\N)/(S/ANP) (cf. the
extraction operator 1 of Moortgat (1988)). This al-
lows the derivations in (20a-b) (see Figure 1), which
correspond to the lambda-terms in (21a-b) respec-
tively:

(21) a. which (Az[(read z) Suzy])

b.  which (Az{(quickly (read z)) Suzy])

ITERATION

The type X' is assigned to an item of type X which
may be freely permuted and iterated. ' has the fol-
lowing inference rules:

22) A :
(22) Xt X v Yy Xx'
—'E ! Prm —ee———Prm’
X Yy X! Xt v
»
e GO
Xl X!

4In Morrill et al. (1990) we give a system of modali-
ties that differs from the present proposal in several re-
spects. There are two unidirectional commutation modal-
ities rather than the single bidirectional modality given
here, and a single operational rule is associated with each
of the universal modalities. We also suggest a (more ten-
tative) system of existential modalitics for dealing with
elements that are themselves commutable, iterable or
optional.



which

Suzy read
[ANP)?
-AE
(NP\S)/NP NP
NP NP ’
\S‘\E
—— ’ /Il
(N\N)/(S/ANP) S/ANP B
N\N /
b, which Suzy read quickly
(NP\S)\(NP\S) [ANP)!
ANP o (NP\S)\(NP\S)
(NP\S)/NP NP
NP\S .
NP NP\S, \E
T \
[—————— /Il
(N\N)/(S/ANP) S/ANP
N\N -
(24) which Suzy read without understanding
[NP'J?
NS ARAL A——Y o }
NP!’E NP!
VP/NP NP
((NP\S)\(NP\S))/VP VP /E /
(NP\S\(NPS) .
NP'!E (NP\S)\(NP\S)
(NP\S)/NP NP/E
NP\S .
NP NP\S \
S \E
—— —_—n
(N\N)/(S/NP') S/NP'/E
N\N _
(28) too long for Suzy to concentrate
(ForP/VP)/NP NP
ForP/VP VP
/B i
ForP (NP} Wikal
ForP .
PredP/(ForP/NPI) ForP/NP“/E
PredP

Figure 1. Derivations illustrating use of structural modalities
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One or more occurrences of items of type X in any
position may be derived from an item of type X'.

We may use this modality in a treatment of mul-
tiple (;xtmction. Consider the parasitic gap construc-
tion in (23):

(23) (Here is the paper) wlnch Suzy read without
understanding,
In order to generate both this example and the ones
in (19), we shall now assume that “which” licenses
exjraction not just from any position in the body of
a relative clause, but from any number of positions
greater than or equal to one. We may do this by al-
tonng the type of “which” to (N\N)/(S/NP'). Since
has all the inference rules of A, the derivations in
(20) will shll go through with the new type. In addi-
tion, the 'Con inference rule allows the derivation of
(23) given in (24) (see Figure 1), and the correspond-
ing term in (25):
(25) which (Az[((without (underatandmg z))
(read z)) Suzy))

OPTIONALITY

The type X" is assigned to an item of type X which
may be freely permuted, iterated and omitted. ¥ has
the {ollowing inference rules;

26 . :
(26) X xll Y y x¥i
—lE _...._,._II Prm .,__‘__..prmll
X x xl
X x0 5'd |
icon i Wkn Wkall
xh o xil Yy

Zcro or more occurrences of items of type X in any
position may be derived from an item of type XU
We may use this modality in a treatment of op-
tional extraction, as illustrated by (27):
(27) a.  (The paper was) tgo long for Suzy to read.
b,  (The paper was) too long for Suzy to read
guickly.
c.  (The paper was) too long for Suzy to read
withqut understanding.
d.  (The paper was) too long for Suzy to con-
centrate. .
We shall assume for simplicity that “to”-infinitives
are single lexical items of type VP, that “for-t0” clauses
have a special atomic type ForP (so that “for” has
the type (ForP/VP)/NP), and that predicate phrases
have a special atomic type PredP. Given these assign-
ments, the type PredP/(ForP/NP') for “too long”
would allow (2Ta—¢), but not (27d). In order to gener-
ate all four examples, we shall assume that “too long”
licenses extraction from any number of positions in
the embedded clause greater than or equal to zero,
and thus give it the type PredP/(ForP/NP¥), Again,
¥ has all the mfercnca rules of !, generating (27n—c),
and the Wknl rule allows (27d) to be derived as in
(28) (sce Figure 1), giving the term in (29):
(29) tao-long (Az{for (to-concentrate Suzy)])

CONCLUSIONS

We have introduced a scheme of proof figures for Lam-
bek categorial grammar in the style of natural de-
duction, and proposed structural modalities which we
suggest are suitable for the capture of linguistic gen-
eralizations. It remains to extend the semantic treat-
ment of the structural modalities, to refine the proof
theory, and hence to develop more efficient parsing al+
gorithms. For the pmseyt, we hope that the proposals
magde can be seen as pmmng linguistic practicality in
the categorial description of patural language, with-
out losing mathematical elcgapcc
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