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A b s t r a c t :  We present the formal 
• processing model of  CLG, a logic grammar 

formalism based on complex  constraint  
resolution. In particular, we show how to 
monotonically extend terms and their unification 
to constrained terms and their resolution. The 
simple CLG constraint rewrite scheme is 
presented and its consequence for CLG's 
multiple delay model explained. 

K e y w o r d s :  Grammatical formalisms, 
Complex constraint resolution. 

Introduction 

CLG is a family of grammar formalisms 
based on complex constraint resolution designed, 
implemented and tested over the last three years. 
CLG grammars consist of  the description of 
global and local constraints of linguistic objects 
as described in [1] and [2]. 

For the more recent members of the CLG 
family, global constraints consist  of  sort 
declarations ~md the definition of relation between 
sorts, while local constraints consist of  partial 
lexical and phrasal descriptions. The sorts 
definable in CLG are closed, in a way akin to the 
ones used by UCG 13]. Relations over sorts 
represent the statement of linguistic principles in 
the spirit of HPSG [4]. 

The constraint language is a classical first 
order language with the usual unary and binary 
logical connectives, i.e. negation (-), conjunction 

(&), disjunction (I), material implication (---)), 

equivalence ( , -))  and a restricted form of  

quan t i f i ca t ion  ('7' and Zl) over finitely 
instantiatable domains. The interpretation of these 
¢onneclives in CLG is strictly classical as in 
Smolka's FL 16] and Johnson's AVL [5], unlike 
the intuitionistic interpretation of negation of  
Moshier and Rounds [7]. A more detailed 

description of CLG including its denotational 
semantics can be found in 121. 

In this paper we present the tormal processing 
model of CLG, which has been influenced by the 
Constraint Logic Programming paradigm 18] 191. 
We show in what way it extends pure unilication 
based formalisms and how it achieves a sound 
implementation of classically interpreted first 
order  logic while mainta in ing practical 
computational behaviour by resorting to a simple 
set of  constraint rewrite rules and a lazy 
evaluation model for constraints satisfaction thus 
avoiding the problem ment ioned in I10] 
concerning the non-monotonic properties of 
negation and implication intcrpretcd in the 
Herbrand universe. 

The paper is organized as follows: in the first 
part we show how we extend term unification to 
accommodate complex constraint resolution. We 
then explain what rewrites are involved in CLG 
constraint resolution, proceeding to show what 
the benefits of  the delayed evaluation model of 
CLG are. We conclude by discussing some of the 
issues involved in our approach and compare it to 
other approaches based on standard first order 
logics. 

From Unification to Constraint 
Solving 

We will first show how to extend a unilication 
based parsing algorithm for a grammar formalism 
based on an equational theory, to an algorithm for 
a formalism with complex constraints attached to 
rules. 

Assume a countable set V of variables x, y, 

z, ... and a countable set F of function symbols 
f, g, h . . . .  each one equipped with an arity 
expressed as W. Let T he the term algebra over F 
and V, and TO be the corresponding set of  
ground terms. 
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Assume lurthermorc that rules are of thc form: 

t ----> tl ...tn 

for t ,  tl ..... tn are in T 

and that the parsing algorithm relies solely on the 
unification algorithm for its operation, applying it 
to terms andeither computing a unifier of  those 
terms or failing. 

Associating with a term t its usual denotation 

I I t B = { S t  E TO} 

(where S denotes a substitution of  terms for 
variables) the unifier t of  two terms t '  and t" 
has tile following important property 

I[ t ]1 = [I t']l n Ht"]l 

Next we introduce constraints over terms in 
T. For the moment we will assume that 
constraints c include at least atomic equality 
constraints between terms and formulas built 
from the atomic constraints using the standard 
logic operators, namely disjunction, conjunction 
and negation, and that a notion of validity can be 
defined for closed formulas (see however [2] for 
an extended constraint language). 

We will extend terms to constrained terms t:c, 
where c is a constraint involving only variables 
occurring in t, and take 

Ilt:cll = { S t  ~W0 I I - - S c }  

as its denotation. 

Now, given constrained terms t:c, t':c' and 
t":c" we say that t:c is a unifier oft ' :c '  and t":c" 
iff 

lit :c ]l = [[t':c']ln I[t":c"]]. 

It is easy to see that there is at least one 
algorithm which given two constrained terms 
either fails, if they do not admit a unifier, or else 
returns one unifier of the given terms. As a matter 
of  fact it is enough to apply the unification 
algorithm to t' and t" to obtain an unifying 
substitution S and to return S(t':c'&c"). 

We can then annotate the rules of  our formalism 
with constraints and use any algorithm for 
computing the unifier of the constrained terms to 
obtain a new parsing algorithm for the extended 

tormalism. It is interesting to note that, if we 
used the trivial algorithm described above for 
computing the unifier of  constrained terms, we 
would obtain exactly the same terms as in the 
equational  case but annotated with the 
conjunction of  all the constraints attached to the 
instances of  the rules involved in the derivation. 

One of  the obvious drawbacks of using such a 
strategy for computing unifiers is that there is no 

guarantee that the denotation of  S(t':c'&c") is 

not empty since S(c'&c") may be unsatisfiable. 
We will now give two properties of  unifiers 
which can be used to derive more interesting 
algorithms. 

Assume t:c is an unifier of  t':c' and t":c" and 
c is logically equivalent to d, then t:d is also a 
unifier. Similarly if, for some variable x and 
term r, we can derive x=r from c, then [r/x](t:c) 
is also a unifier for t':c' and t":c", where [r/xl 
denotes substitution of  r for x. 

It is obvious that by using an algorithm 
similar to the one used by Jonhson 151 for 
reducing the constraint c to normal form, it is 
possible to find all the equalities of  the form x=r 
which can be derived from c, and also decide if c 
is satisfiable. This strategy, however,  suffers 
from the inherent NP hardness, and, for practical 
implementations we prefer to use, at most  
unification steps, an incomplete algorithm 
reserving the complete algorithm for special 
points in the computation process which include 
necessarily the final step. 

Rewriting and Delaying 
Constraints 

In this section we present a slightly simplified 
version of  the constraint rewriting system which 
is at the core of  the CLG model. As will be 
apparent from these rules they attempt a partial 
rewrite to conjunctive rather than to the more 
common disjunctive normal form. Some of the 
reasons for this choice will be explained below. 

Another point worthwhile mentioning here is 
that linguistic descr ipt ions and l i ngu i s t i c  
representations are pairs consisting of  a partial 
equational description of  an object  and 
constraints (cf. [2]) in contrast to [12,14] where 
constraints are kept within linguistic objects. 
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T h c  C L G  c o n s t r a i n t  l a n g u a g e  i n c l u d e s  
e x p r e s s i o n s  i n v o l v i n g  pa th s  w h i c h  a l l o w  
, 'eference to a spec i f ic  a r g u m e n t  o f  a c o m p l e x  
term in o rde r  to avoid  the need  for  in t roduc ing  
exis tent ia l  quan t i f i e r s  and ex t r aneous  var iab les  
w h e n  s p e c i f y i n g  cons t r a in t s  on a r g u m e n t s  o f  
terms. 

We def ine  paths p, va lues  v and const ra ints  c 
as fo l lows  (,q~antification is omi t t ed  Ibr reasons  
o f  simplicity): 

p ::= <empty>  

p. tn..~:i 

V :~= t 

t.p 

_L 

c ::= t .p . f  n 

V = V 

-'-C 

c & c  

c I c 

In the above  def in i t ions  ni deno tes  the i -th 

project ion while the superscript  in I n indicates the 
ari ty o f  f as before.  As an example ,  if t denotes  

f (a,g (c,d))  

the fo l lowing constraints  are satisfied: 

t . f  2 t.l'2.rc2.g 2 

t .f2.rq = a t.12.rt2.g2.r(:2 = d 

We can now state the C L G  rewri t ing rules for  
values: 

Rewriting Values 

f (.t I ..... tn ).Pa..ni.p --+ ti. p 

f (tl ..... tn ) .gk ' . r t i  --+ J_ i f t  n ¢ g k  

and fo r  c o n s t r a i n t s  ( k e e p i n g  in m i n d  tha t  
implicat ion and equ iwdence  are just  shorthands):  

Rewriting Constraints 

lrue & c C 

false I c 

N false --+ 

- t rue  --+ 

true I c --~ 

false & c --+ 

~(c I c ' )  

_l_,f k 

f (t I ..... tn ) . fn  

g( t l  ..... tn) . f  k "+ 

v= v' -~  false 

v = v' --+ true 

C 

C 

t r u e  

false 

true 

false 

~C & ~C'  

false 

true 

false if  f k ~e gn 

if  e i ther  v or  v' is _1_ 

if v and v' are the same value  

v = v' --+ false if  v and v' are a tomic  and v~v '  

f 0 1  ..... t n ) = f ( u ~  ..... u n )  

t l = U l  & ... & t n = U n  

f ( t l  ..... t n )  = g ( u l  ..... Un)  ~ false 

W e  wil l  u se  se t  n o t a t i o n  to d e n o t e  a 
con junc t i on  o f  the cons t r a in t s  in the set. Us ing  
this nota t ion we can state the fo l lowing  rules for  
rewrit ing constrained terms: 

Rewriting Constrained Terms 

t :{ .... false .... } --+ F A I L  

t : {  .... t rue .... } ---) t :{ ....... } 

t : {  . . . .  e l & C 2  .... } ---4 t :{ . . . .  C l , C 2 . . .  } 

t :{ .... x.p - t',...} ---) [p(t')  / X ] t:{ .. . . . . .  } 

t :  { .... x . p = y . q  .... } 

[ p ( z ) / x  , q  ( z ) / y  ] t :{ ....... } 

t :{ .... x .p.fk .... } 

[P ( f ( z l  ..... zk)) / x I t :{ ....... } 

whe re  z ,Zl ..... Zn are new va r i ab le s  and p(. . .)  
which  can be def ined is by: 

< e m p t y >  (x) = x 

fn .n l .p  ( x )  = fn (z I ..... zi-¿, p (x)  ..... Zn ) 

r e tu rns  a n e w  g e n e r i c  t e rm t such  that  the  
const ra int  t.p = x is sat isfied.  
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The above is a slight simplification: 
constraints associated with terms come in fact in 
pairs, the second element of which is omitted 
here for the sake of simplicity and contains 
essentially negated literals and inequations. The 
reason for this is that we want to give the system 
a certain inferencing capability without having to 
resort to expensive exhaustive pairwise search 
through the constraint set. 

It should also be mentioned that after one 
constraint in a set is rewritten it will only be 
rewritten again if some variable occurring in it is 
instantiated. 

Comple t ing  Rewrites  

As "already mentioned the set of rewrite rules 
given above is not complete in the sense that it is 
not sufficient to reduce all constraints to 
conjunctive normal form, although CLG has a 
complete set of rewrite rules available to be used 
whenever needed. At least at the end of 
processing, representations are reduced to 
conjunctive form. 

Sets of rules for rewriting first order logic 
formulae to conjunctive normal form can be 
found in the literature [1!]. The specific set of 
complete rewrites currently used in CLG includes 
e.g.: 

(1) c l ( c ' & c " ) - - ~  ( c l c ' ) & ( c l c " )  

(2) -(c&c') ~clNc' 

(3) (c lc ' )&(-clc")----~ c ' lc"  

There are various reasons for not using them 
at every unification step. The application of the 
distributive law (1) is avoided since it contributes 
to the P-Space completeness of the reduction to 
normal form: in general we avoid using rules 
which are input length increasing. 

As for the de Morgan law (2), we do not use 
it because by itself it does neither help to detect 
failure nor does it contribute to add positive 
equational information. 

Lastly, the cut rule (3) is just too expensive to 
be used in a systematic way. 

Our current experience shows that the number 
of constraints which need the complete set of 
rewrite rules to be solved is usually nil or 

extremely small even for non-trivial grammars 
[11. 

D i s c u s s i o n  

The three main characteristics of  the CLG 
processing model are the use of constrained terms 
to represent partial descriptions, the lack of 
systematic rewriting of constraints to normal 
form and the lazy evaluat ion of  complex 
constraints. 

The choice of constrained terms instead of the 
more common sets of constraints is motivated by 
methodological rather than theoretical reasons. 
The two representations are logically equivalent 
but CLG's commitment  to naturally extend 
unification to constraint resolution makes the 
latter better suited if, as in the present case, we 
want to use existing algorithms where they have 
shown successful. 

The alternative, to develop new algorithms 
and data structures for complex constraint 
resolut ion ( including equat ion solving)  
[12,13,14] is less attractive. It is preferable to 
split the problem into its well understood 
equational subpart and the more speculative 
complex constraint resolution. 

It is also worthwhile noting that terms 
constitute a very compact representation for sets 
of equations and naturally suggest the use of 
conjunctive forms, another dist inguishing 
characteristics o f  CLG. Furthermore, conjunctive 
forms constitute a compact way of representing 
partial objects in that they localise ambiguity. 

We already have discussed the reasons for 
avoiding systematic rewrites of  constraints to 
normal form. This in no way affects the 
soundness of the system although it may prevent 
early failure. Even so it is computationally more 
effective than resorting to normal form reduction 

Note that CLG is not a priori committed to 
check whether newly added constraints will lead 
to inconsistency. However it is often possible to 
check such inconsistencies at little cost without 
full reduction to normal form. A solvability check 
is only performed for a limited number of  easily 
testable situations, mainly for the case of negated 
literals, of which a separate list is kept as 
mentioned above. 
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It has to be pointed out though, that in order 
to  guarantee the global completeness o f  the 
rewrites,  as opposed to potential local 
incompleteness, CLG completes the rewrite to 
normalized form at the latest at the very end of 
processing. Nevertheless this decision is not a 
commitment. Rather, a rewrite to normal form 
could be carried out with the frequency deemed 
necessary. Our present experience however  
shows that a full rewrite at the end is sufficient. 

Finally, the w a y  constraint resolution is 
delayed is a dircct consequence of the rewrites 
available at run-time. Every constraint which 
cannot at a given point in time be reduced with 
one of the above rules is just left untouched in 
that cycle of constraint evaluation, awaiting for 
further instantiations to make it a candidate for 

reduction. 

A last note on some consequences these 
properties have for the user: as with other 
complex constraint based systems, in CLG there 
is no guarantee that all constraints will always be 
solved, not even after the last rewrite to normal 
lotto. As a result (a) the system does not fail 
because all constraints have not been resolved 
and (b) the intermediate and final data structure 
are also partial descriptions, being potentially 
annotated with unresolved constraints, and 
denote not a single, but a class of representations. 

The first consequence is clearly a desirable 
property, for it is unreasonable to think that 
grammatical descriptions will ever be complete to 
the point where all and only the constraints which 
are needed will be expressed in a grammar and all 
and only the infon~ation which is needed to 
satisl'y these constraints will be available at the 
appropriate moment. 

As for the second consequence, We have 
found unresolved constraints to be the best 
possible source of information about the state of 
the computation and the incompleteness of  
grammatical description. 

Relation to Other Work 

Although in this paper we have presented a 
specific (subset ol) constraint language and a 
specific incomplete set of rewrite rules, neither is 
integral part of CLG's theoretical framework. 

In fact the basic ideas behind the CLG 
processing model can be carried over to other 

frameworks, such as the feature logic of Smolka 
16,15t, by replacing the unification of terms with 
the unification of the set of equational constraints 
and by either redefining the constraint language in 
a suitable way (e.g. redefining the notion of path) 
or else by translating the non-atomic formulae of 
the feature logic. 

Finally, note that the processing model 
described in this paper can, and eventually 
should, be complemented with techniques from 
constraint logic programming [16J to handle 
cases such as constraints on finite domain 
variables where the completeness  of the 
constraint handling is computalionally tractable. 

Conclusions 

We have shown how, starting from a purcly 
unification based framework, it is possible to 
extend its expressive power by introducing a 
constraint language for restricting the ways in 
which partial objects can be instantiated, and have 
provided a gcneral strategy for processing in the 
extended framework. 

We have also prcscntcd and justified the use 
of partial rewrite rulcs which, whilc maintaining 
the essen t ia l  formal  p rope r t i e s ,  arc 
computa t iona l ly  e f fec t ive  with avai lable  
technologies. 

We justified the use of conjunctive forms as a 
better option than their disjunctive counterparts as 
a means for providing amongst other things a 
compact representation of partial objects. 

Finally we have emphasized the importance of 
lazy evaluation of complex constraints in order to 
ensure computational tractability. 
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