
D A T R AS A L E X I C A L C O M P O N E N T F O R P A T R

James Kilbury, Petra Naerger, Ingrid Renz
Seminar f/lr AUgemeine Sprachwissenschaft

Heinrich-Heine-Universit,'tt Dilsseldorf
Universitatsstrai]e 1

D-4000 l:Ydsseldorf 1
Federal Republic of Germany

e-mail: kilbury@dd0rud81 .bimet
naerger@dd0rud81.bitnet
renz@ dd0rud81 .bitnet

ABSTRACT

The representation of lexical entries
requires special means which basic PATR sys-
tems do not include. The language DATR,
however, can be used to define an inheritance
network serving as the lexical component. The
integration of such a module into an existing
PATR system leads to various problems which
are discussed together with possible solutions
in this paper.

means that associated information is represented
together or bundled. One advantage of this
bundled information is its reusability, which
allows redundancy to be reduced. The represen-
tation of lexical information should enable us
to express a further kind of generalization,
namely the relations between regularity, sub-
regularity, and irregularity. Furthermore, the
representation has to be computationaUy tracta-
ble and -- possibly with the addition of"syntac-
tic sugar" -- more or less readable for human
users.

1 MOTIVATION

In the project "Simulation of Lexical
Acquisition" (SIMLEX) unification is used to
create new lexical entries through the monoto-
nic accumulation of contextual grammatical
information during parsing. The system which
we implemented for this purpose is a variant of
PATR as described in (Shieber, 1986).

Besides collecting the appropriate infor-
marion for an unknown word, i.e. a lexeme not
already specified in the given lexicon, the cre-
ation of its new lexical entry is a major goal.
In this context questions about the nature of
lexical information, the structuring, and the
representation of this information must be an-
swered. The present paper is mainly concerned
with the structuring and representation of infor-
marion in lexical entries.

2 REPRESENTATION OF LEXICAL
INFORMATION

The formalism of PATR offers two
possible means of representing lexical informa-
tion. First of all, the information can be encod-
ed in feature structures directly. Except for
computational tractability, none of the other
criteria are met. The second facility consists of
macros or templates which assemble the lin-
gnistic information so that it can be reused in
various places in the lexicon. This meets the
most important of the above-mentioned condi-
tions and reduces redundancy. But the encoded
information is inherited monotonically, i.e. only
regularities can be expressed. In order to struc-
ture lexical information adequately, other rela-
tions like subregularities and exceptions should
also be expressible.

Macros fail to achieve this, whereas
default inheritance networks are well-suited for
the purpose. In the following section we give
an overview of one such network formalism
which was primarily designed for representing
lexical information.

We assume that certain conditions must
be met by an adequate representation of lexical
information. The most important of these is that
it captures linguistic generalizations, which

- 1 3 7 -

3 O V E R V I E W O F D A T R

DATR (described in detail by Evans/
Gazdar, 1989a; 1989b; 1990)is a declarative
language for the definition of semantic net-
works which allows for defaults as well as
multiple inheritance. Its general properties are
non-monotonicity, functionality, and determinis-
tic search.

A DATR theory (or network descrip-
tion) is a set of axthms (or expressions) which
are related to each other by references. Togeth-
er they define a hierarchical structure, a net.
Both regularities and exceptions can be ex-
pressed, regularities using default inheritance,
and exceptions, overriding.

DATR axioms consist of node-path
pairs associated with a right-hand side. This
can be a value (atomic or lis0, or an evaluable
DATR expression if the value is to be inherit-
ed from another node, path, or node-path pair.
The following DATR theory comprising three
node definitions I encodes familiar linguistic
information to illustrate some relevant DATR
features:

(1)
LEXIC.AL: <syn major bar> ~ zero.

NOUN: <> == LEXICAL
<syn major nv n> == yes
<syn major nv v> == no.

ADJ: o == LEXICAL
<syn major nv n> == NOUN

<syn major nv v> ==
<syn major nv n>.

The represented information can be
retrieved with special DATR queries. These
also consist of a node-path pair, whose evalua-
tion returns the value sought. With the above
DATR description the following examples show
sensible DATR queries and their corresponding
values:

(2)
NOUN:<syn major nv n> 7
yes (atomic value)
NOUN:<syn major nv v> ?
no (atomic value)
NOUN:<syn major bar> ?
zero (inherited from node LEXICAL)

ADJ:<syn major nv n> ?
yes (inherited from node NOUN)
ADJ:<syn major nv v> ?
yes (inherited from node NOUN via path

<syn major nv n> in node ADJ)
ADJ:<syn major bar> ?
zero (inherited from node LEXICAL)

Seven inference rules and a default
mechanism are given for the evaluation of
DATR queries. Their precise semantics and
properties are described in (Evans/Gazdar,
1989b; 1990).

A major feature of DATR is its distinc-
tion between global and local inheritance. In
the above example only local inheritance is
involved, but global inheritance plays a crucial
role in one of the later examples. Variables
constitute an additional device available in
DATR but are assumed to have the status of
abbreviations.

Despite their syntactic similarities,
DATR and PATR differ completely in their
semantics, so that there is no obvious way of
relating the two formalisms to each other. Some
approaches are discussed in the next section.

4 R E L A T I N G D A T R A N D P A T R

A PATR system needs to have the
lexical information it uses encoded in feature
structures consisting of attribute-value pairs.
The lexical information represented in the
DATR theory above (1) would appear as fol-
lows when stated in feature structures:

- 138 -

(3)
information specific to NO:

s y n . ' or. ~ n v r ; [" '1/11
tv: nOllll

information specific to ADJO:

~ n : najor.
r In

The question that arises is how to relate
DATR and PATR so that the hierarchically
structured lexical information in DATR can be
made available in PATR-usable feature struc-
tures.

4 . 1 A D A T R - P A T R I N T E R F A C E

The first idea that one might have is to
exploit the syntactic similarities between the
two formalisms and encode the lexical informa-
tion in a DATR description like (1). In this way
a DATR axiom like NOUN: <~yn major nv n>
== yes would be directly equivalent to the path
equation <NOUN syn major nv n> = yes in
PATR, where the node name in DATR corre-
sponds to the variable name for a feature struc-
ture in PATR. Although this looks reasonable,
one major problem arises: You must know
exactly the path you want to query, i.e. all its
attributes and their precise order. If such a
query is posed, the answer will be the atomic
value yielded by the DATR evaluation.

Such an approach requires an interface
with the following functions: Queries that the
grammar writer has stated explicitly have to be
passed on to DATR. Every query together with
the resulthag value has to be transformed into
a PATR path equation (that partially describes
a feature structure) and passed on to the PATR
system. What is most disturbing about this
strategy is the fact that for every distinct PATR

path you have to know the corresponding
DATR query. It is tempting to think one could
simply check which paths are defined for a
given node, but this doesn't work because of
inheritance: the entire network is potentially
relevant. So in effect all the PATR structures
except the atomic values have to be defined
twice: once in the DATR statements and once
in the queries. This redundancy cannot be elim-
inated unless types for the feature structure are
declared which are consulted in formulating the
queries.

4.2 USING DATR OUTPUT DIRECTLY

A completely different approach is to
formulate a DATR theory which gives the
lexical information in a PATR-usable format
(i.e. a feature structure) as the result of the
evaluation of a DATR query. Thus, the DATR
description reflects the hierarchical structure of
the lexical information and consequently meet.~
one of the main requirements for an adequate
representation that cannot be met by a simple
PATR formalism. The resulting feature struc-
tures include all the information necessary for
PATR but neglect the inheritance structure,
although the latter is involved in their construc-
tion (i.e. the evaluation of queries). There are
various DATR-programming techniques that
realize these ideas. Three examples will b::
presented here which cover the lexical informa-
tion encoded in (1).

The first technique, which is illustrated
in (4) 2 , uses global inheritance (represented
with double quotation marks) to store the node
at which the query originates. This also allows
other information in the global node to be.
accessed.

- 1 3 9 -

(4)
S Y N T A X :
M A J O R :

(maj ' : '

NV:

(nv ':' [
N O U N :

ADJ:

<> == ([syn ' : ' ["<synpa ths>"]]).
<> == S Y N T A X
<synpa ths> ==

["<tmj~ths>"]).

<> == MAJOR
<majpafils> ==
n ' : ' " < n > " , v ' : ' "<v>"]).
o == N V
< n > == yes
~'W> == no.
<> == N V
<n> == y e s

< v > == y e s .

B A R : <> == MAJOR
<majpaths> == (bar ':' "<bar>").

BAR0: o == BAR
<bar> ~ zero.

This DATR theory makes it possible to
get the feature structure associated with the
node NOUN, i.e. the evaluation of the DATR
query NOUN:<>.

To evaluate this DATR query the nodes
NV, MAJOR, and SYNTAX are visited. In the
node SYNTAX part of the corresponding feature
specification is constructed and the evaluable
path <synpaths> refers back to the original
node NOUN. Then the query NOUN:
<synpaths> is evaluated in the same way up to
the node MAJOR, where the next part of the
feature structure is built and the evaluable path
<majpaths> refers again to the global node
NOUN. At the end of the evaluation the feature
structure [syn:[maj:[nv: ln:yes,v:no1111 emer-
ges.

Lexical entries defined with the DATR
network above have the form FROG: <> ==
("NOUN BARO"), which means intuitively
that the lexeme frog is an nO. Given the net-
work in (4), the value of the query FROG:<>
will inherit the information of the global nodes
NOUN and BARO. Thus, the global environ-
ment is changed in the course of the evaluation.

As a declarative language, DATR is
independent of the procedural evaluation strate-
gies embodied in particular DATR-implementa-
tions. Nevertheless, DATR theories like (4)
may themselves reflect different evaluation
strategies (just as different search strategies
may be implemented in pure PROLOG, inde-

pendently of the particular PROLOG implemen-
tation).

The evaluation strategy in (4) can be
described as top-down depth-first and is rather
costly because of the cyclic returns to the glob-
al nodes. A more efficient strategy is illustrated
in (5). This DATR description embodies a
breadth-first search and uses variables (desig-
nated by the prefix $) instead of changing the
global environment.

(5)
S Y N T A X : < $ N V $ B A R > ==

([syn ':' [MAJOR:<$NV $BAR>]]).

M A J O R : < $ N V $ B A R > ==
(maj ' : ' [N V : < $ N V > , B A R : < $ B A R >]).

NV:

N:
V:
N VAL:

V VAL:

(nv *" [
<$NV> ==
N:<$NV>, V:<$NV>]).
<$NV> == (n ':' N_VAL:<$NV>).
<$NV> == (v ':' V_VAL:<$NV>).
<noun> == yea
<adj> ~ yes
¢ ~ ~---~ 110.
< v e r b > ~ yes
<ad j> ~ yes
~ -~--= no.

B A R : < $ B A R >
(bar ':' BAR_VAL:<$BAR>).

BAR_VAL: <barO> == zero
< b a r l > •= ono
<bar2> =ffi two .

Here an appropriate query would be
SYNTAX: <noun barO>. At the origin of the
query the outer layer o f the feature structure is
already constructed. The rest of the feature
structure results from evaluating MAJOR:<$NV
$BAR>, where SNV is instantiated with noun
and $BAR with barO as in the original query.

We then obtain the feature structure
[syn:[maj:[nv:[n:yes,v:no],bar:zero]]] as the
result of the evaluation. Unlike the network in
(4), it is not possible to ask for just a part o f
this feature structure: Neither the information
about the N/V-scheme nor the information
about the bar level can be queried separately.

A n entry for the lexeme frog given the
network (5) would have the form FROG:<>
== SYNTAX::<noun barO>, which of .course
also means that the lexeme frog is an nO. But
this t ime the information is inherited from the

- 1 4 0 -

node SYNTAX, where the value provides the
frame for the resulting PATR feature structure.

Apart from the differing DATR tech-
niques employed, the resulting feature struc-
tures for a lexical entry also differ slightly.
While the first is nearer to a set of PATR paths
which has to be collapsed into a single feature
structure, the second has exactly the form re-
quired by the PATR system we use.

The third technique is illustrated in (6).

(6)
S Y N T A X :

M A J O R :

NV:
BAR:
N:

V:

<> == (syn ':' [MAJOR]).
<> == (maj ':' [NV, BAR 1).
<> == (nv ':' [N , V]) .
<> == (bar ':' "<bar>").

== (n ':' <value "<eat>">)
<value nO'> == yes
<value adj0> ~ yes
< v a l u e > =--- rio.

0 = = (v ' : ' <va lue "<ca t>">)

<va lue vO> == yes

<va lue adjO> == y e s

<va lue> = = no.

L E X I C A L : ~:> = = ([S Y N T A X])

< b a r > ~ zero.

NOUN: < > = = L E X I C A L

<Cat> == riO.

A D J : < > = = L E X I C A L
<ca t> == adjO.

An appropriate query for this DATR
theory would be NOUN:<>, the value of which
is [syn:lmaj:[nv:[n:yes,v:no1,bar:zero111. The
evaluation of this query is similar to the one in
(5) in that the value of SYNTAX:<> constitutes
the frame of the resulting PATR-usable feature
structure. Unlike (5), no variables are used;
instead, information from the global node is
used via global path inheritance to specify the
values. Notice that whereas with (4) the global
node is changed, it remains unchanged during
the evaluations with (6).

The advantages of (6) are obvious.
Since neither variables nor global nodes are
used, fewer DATR facilities are involved. Nev-
ertheless, the required PATR feature structures
Can be defined. For example, the lexical entry
for frog would be FROG:<>==NOUN, where
the noun-specific information is inherited from
NOUN.

This third approach forms the base for
our current lexicon. Some of the related issues
are raised in the next section.

5 T H E D A T R L E X I C O N

It has been shown above that DATR
theories can serve as a lexicon for a PAT R
system where the lexemes are represented as
DATR nodes and the returned values of queries
are the corresponding feature structures. In a
lexicon which is formulated as in (6), aparl;
from the lexical nodes (i.e. nodes like FROG
which define lexemes) two other kinds of nodes
can be distinguished: nodes like SYNTAX or
NV, which correspond to PATR attributes, and
nodes like NOUN or LEX/CAL, which represent
a kind of type information (see Pollard/Sag,
1987). The lexemes inherit this information
through reference to the type nodes, while the
lexeme-specific information is as~ciated direct.
ly with the lexical nodes.

There are several differences between
these three kinds of nodes. Whereas it is appro.
priate to pose a query like FROG:<> or
NOUN:<>, such queries make no sense for
nodes like SYNTAX. In this respect lexemes and
types are related.

Another property distinguishes lexical
nodes from type nodes. The latter are hierarchi-
cally structured, while the former are unstruc-
tured in the sense that they refer to types but
not to other lexemes. The structuring of the
type nodes reflects the above mentioned regu-
larities as well as irregularities.

The following DATR theory is a lexi-
con fragment for a possible classification of
intransitive verbs in German. Regular verbs
(e.g. schlafen ',sleep') take a nominative subject
and inherit all type-specific information from
the node INTRANS_VERB. One exception are
verbs with expletive subject (e.g. regnen 'rain'),
another those with nonnominative (accusative
or dative) subject (e.g. dilrsten 'suffer from
thirst' with accusative). These verbs refer to the
types nodes INTRANS_VERB_EXPL and IN-
TRANS_VERB_ACC, respectively. The latter
types inherit from the node INTRANS_VERB
but override some of its information.

141 -

(7)
INTRANS_VERB:

INTRANS_VERB_EXPL:

INTRANS_VERB_ACC:

<> == VERB
<cat subject> =ffi n2
<case subject> ~ nm~a~e
<status subject> ~ norm.

== INTRANS_VERB
<status subject> ~ expletive.
<> == INTRANS VERB
<case subject> ~ accusative.

6 C O N C L U D I N G R E M A R K S

We have seen that it is possible to
formulate the lexicon of a PATR system as a
DATR theory. That is, given a lexical entry in
DATR, a corresponding feature structure can be
derived. A system postulating new entries for
unknown words on the basis of contextual
information during parsing (Kilbury, 1990)
must be able to convert a given feature struc-
ture into a corresponding lexical entry in DATR
so that the new lexeme is located and integrated
in the lexical network. To solve this problem
the concept of type nodes can be exploited.

A final difficulty involves certain
PATR-specific devices like disjunctions and
reentrancies for which no obvious DATR facili-
ties are available. At present we still have only
ad hoc solutions to these problems.

F O O T N O T E S

1. NOUN:

abbreviates
NOUN:
NOUN:

<> == LEXICAL
<syn major nv n> == yes.

== LEXICAL
<syn major nv n> == yes.

2. The colons in single quotes, the commas, and the square
brackets are DATR atoms, not part of the language itself.In
contrast, the parentheses of DATR enclose a list value.

A C K N O W L E D G E M E N T S

The research project SLMLEX is supported by
the DFG under grant number Ki 374/1. The
authors are indebted to the participants of the
Workshop on Inheritance, Tilburg 1990.

R E F E R E N C E S

Daelemans, Walter / Oazdar, Gerald
(eds.) (1990)Proc. of the Workshop on Inheri-
tance in Natural Language Processing. 1TK
Tilburg, The Netherlands.

Evans, Roger / Gazdar, Gerald (1989a)
Inference in DATR. In Proc. of the 4th Confer-
ence of the European Chapter of the Associa-
tion for Computational Linguistics, 66-71.

Evans, Roger /Gazdar , Gerald (1989b)
The Semantics of DATR. In A. Cohn (ed.)
AISB89, Proc.:of the 7th Conference of the
Society for the Study of Artificial Intelligence
and Simulation of Behaviour, 79-87. London:
Pitman.

Evans, Roger / Gazdar, Gerald (eds.)
(1990) The DATR Papers: February 1990 (=
Cognitive Science Research Paper 139). School
of Cognitive and Computing Sciences, Univer-
sity of Sussex, Brighton, England.

Gazdar, Gerald (1987) Linguistic appli-
cation of default inheritance mechanisms. In
Peter J. Whitelock et al. (eds.) Linguistic Theo-
ry and Computer Applications, 37-67. London:
Academic Press.

Kilbury, James (1990) Simulation of
Lexical Acquisition. In Proc. of ALLC-ACH 90:
The New Medium, 129-130. University o f
Siegen, FRG.

Pollard, Cad / Sag, Ivan (1987) Infor-
mation-Based Syntax and Semantics, I: Funda-
mentals. Stanford, Calif.: CSLI.

Shieber, Smart M. (1986) An Introduc-
tion to Unification-Based Approaches to Gram-
mar. Stanford, Calif.: CSLI.

142 -

