
A N E X T E N D E D L R P A R S I N G A L G O R I T H M
FOR G R A M M A R S USING FEATURE-BASED SYNTACTIC C A T E G O R I E S

Tsuneko Nakazawa
Beckman Institute for Advanced Science and Technology

and
Linguistics Department
University of Illinois

4088 FLB, 707 S. Mathews, Urbana, IL 61801, USA
tsuneko@grice.cogsci.uiuc.edu

ABSTRACT

This paper proposes an LR parsing
algorithm modified for grammars with
feature-based categories. The proposed
algorithm does not instantiate categories
during preprocessing of a grammar as
proposed elsewhere. As a result, it
constructs a minimal size of GOTO/ACTION
table and eliminates the necessity of search
for GOTO table entries during parsing.

1 I n t r o d u c t i o n

The LR method is known to be a very
efficient parsing algorithm that involves no
searching or backtracking. However, recent
formalisms for syntactic analyses of natural
language make maximal use of complex
feature-value systems, rather than atomic
categories that have been presupposed in the
LR method. This paper is an attempt to
incorporate feature-based categories into
Tomita's extended LR parsing algorithm
(Tomita 1986).

A straightforwmd adaptation of feature-
based categories into the algorithm introduces
the necessity of partial instantiation of
categories during preprocessing, of a grammar
as well as a nontenmnat~on problem.
Furthermore, the parser is forced to search
through instantiated categories for desired
GOTO table entries during parsing. The
major innovations of the proposed algorithm
include the construction of a minimal size of
GOTO table that does not require any
preliminary instantiation of categories or a
search for them, and a reduce action which
pe,forms instanliation tit)ring parsing.

Some details of the LR parsing algorithm
are assumed from Aho and Ullman (1987)
and Aho and Johnson (1974), and more
formal definitions and notations of a feature-
based grammar formalism from Pollard and
Sag (1987) and Shieber (1986).

2 T h e L R P a r s i n g Algor i thm

The LR parser is an efficient shift-reduce
parser with optional lookahead. Parse u'ees
for input strings are built bottom-up, while
predictions are made top-down prior to
parsing. The ACTION/GOTO table is
constructed during preprocessing of a
grammar and deterministically guides the
parser at each step during parsing. The
ACFION table determines whether the parser
should take a shift o1" a reduce action next.
The GOTO table determines the state the
parser should be in after each action.

Henceforth, entries for the ACTION/
GOTO table are referred to as the values of
functions, ACTION and GOTO. The
ACTION function takes a current state and an
input string to return a next action, and
GOTO takes a previous state and a syntactic
category to return a next state.

States of the LR parser are sets of dotted
productions called items. The state, i.e.
dotted productions, stored on top of the stack
is called current state and the dot positions on
the right hand side (rhs) of the productions
indicate how much of the rhs the parser has
found. Previous states are stored in the stack
until the entire rhs, or the left hand side (lhs),
of a production is found, at which time a
reduce action pops previous states and
pushes a new state in, i.e. the set of items

- 69 -

with a new dot position to the right, reflecting
the discovery of the lhs of the production.

If a grammar contains two productions
VP~V NP and NP~Det N, for example, then
the state sl in Fig.l(i) (the state numbers are
arbiu'ary) should contain the items <VP-oV.
NP> and <NP-~.Det N> among others, after
shifting an input string "saw" onto the stack.
The latter item predicts strings that may
follow in a top-down manner.

sl
v(saw)

(i)

s4 I I
N(dog)]

I s13 I NP(d,et(a)N(dog)) I Pet(a)

v(saw) v(saw)
• o

(ii) (iii)

Figure 1: Stacks

After two morestrings are shifted, say "a
dog", and the parser encounters the end-of-a-
sentence symbol "$" (Fig.l(ii)), the next
action, ACTION(s4,$), should be "reduce by
NP-~Det N". The reduce action pops two
states off the stack, and builds a constituent
whose root is NP (Fig.l (iii)). At this point,
GOTO(sI ,NP) should be a next state that
includes the item <vP~v NP. >.

The ACTION/GOTO table used in the
above example can be constructed using the
procedures given in Fig.2 (adapted flom Aho
and Uliman (1987)). The procedure
CLOSURE coml~utes all items in each state,
and the procedure NEXT-S, given a state and
a syntactic category, calculates the next state
the parser should be in.

procedure CLOSURE(I);
beg in

repeat
for each item <A~w.Bx> in I, and each
production B-oy such that <B-o.y> is not
m I do

add <B~.y>to I;
until no more items can be added to I;
re turn 1

end;

procedure NEXT-S(I,B)
;for each category B in grammar
beg in

let J be the set of items <A-,wB.x>
such that <A~w.Bx> is in I;
return CLOSURE(J)

end;

Figure 2. CLOSURE/NEXT-S Procedures
for Atomic Categories

It should be clear from the preceding
example that upon the completion of all the
constituents on the rhs of a production, the
GOTO table entry for the lhs is consulted.
Whether a category appears on the lhs or the
rhs of productions is a trivial question,
however, since in a grammar with atomic
categories, every category that appears on the
lhs also appears on the rhs and vice versa.
On the other hand, in a grammar with feature-
based categories, as proposed by most recent
syntactic theories, it is no longer the case.

3 Cons truc t ion o f the G O T O Table
for Fea ture -Based Categor ies :
A P r e l i m i n a r y M o d i f i c a t i o n

Fig.3 is an example production using
feature-based syntactic categories. The
notations are adapted from Pollard and Sag
(1987) and Shieber (1986). The tags [~],

~-] roughly correspond to variables of
logic unification with a scope of single
productions: if one occurrence of a particular
tag is instantiated as a result of unification, so
are other occurrences of the same tag within
the production.

CAT V "1
SUBCAT [~]/-o

E II I-VIRST NNP

TENSE [~]

[~]NP

Figure 3. Example Production

- 70 -

Recm.'sive applications of the production
assigns the constituent structure to strings

"gave boys trees" in Fig.4. The assumed
lexical category for "gave" is given in Fig.5.

TNS [~]PAST J

[" r FS T [~]N p " ~ ~ " ~ ~ , ~
s c 171 FST NP

LTNS F~PA S T ~ ..]

F [" FST[i-]NP ~ qq
/ s c / F FST E]N P "l I I
v 1 /RST l~h,~T ~ I-FST NP'l I I I ~NP
[L L t-:--I LRST NILJAA []

L T N S ~ I P A S T I ~ [

gave boys toys

Figure 4. Example Parse Tree

/ YFST NP
SC/RST / rFST NP

L LRST tRs'r ~ t .
T N S PAST

Figure 5. Lexical Category for "gave"

In grammars that use feature-based
syntactic categories, categories in productions
are taken to be underspecified: that is, they
are further instantiated through the unification
operation during parsing as constituent
structures are built. The pretenninal category
for "gave" in Fig.4 is the result of unification
between the lexical category for "gave" in
Fig.5 and the first category on the rhs of the
production in Fig.3. This unification also
results in the instantiation of the lhs through
the tags. The category for the constituent
"gave boys" is obtained by unifying the
instantiated Ihs and the first category of the
rhs of the same production in Fig.3. In order
to accommodate the instantiation of
underspecified categories, the CLOSURE
and NEXT-S procedures in Fig.2 can be
modified as in Fig.6, where ^ is the
unification operator.

procedure CLOSURE(I);
begin

repeat
for each item <A~w.Bx> in I, and each
production C-)y such that C is unifiable
with B and <C^B~.y'> is not in I do

add <C^B--,.y'> to I;
until no more items can be added to I;
re turn I

end;

procedure NEXT-S(I,C)
for each category C that appears to the right

; of the dot in items
begin

let J be the set of items <A-)wB.x> such
that <A~w.Bx> is in I and B is unifiable
with C;
return CLOSURE(J)

end;

Figure 6. Preliminary CLOSURE/NEXT-S
Procedures

The preliminary CLOSURE procedure
Unifies the lhs of a predicted production, i.e.

-71 -

C~y, and the category the prediction is made
fl'om, i .e .B. This approach is essentially
top-down l)rOl)agation of instantiated features
and well documented by Shieber (1985) in
the context of Earley's algorithm. A new
item added to the state, <C^B--,. y'>, is not
the production C--,y, but its (partial)
instantiation, y is also instantiated to be y' as
a result of the unification C^B if C and some
members of y share tags. Thus, given the
production in Fig.3 and a syntactic category
v[SC NiL] to make predictions from, for
example, the prel iminary CLOSURE
procedure creates new items in Fig.7 among
others. The items in Fig.7 are all different
instantiations of the same production in
Fig.3.

LTNS [7]

F @.P17

LTNs [7]

RST NIL <
LTNS [~]

11 • v UJ [RST NILI

L'rNS
[~]NP>

s c [FST NP 1
<V RST I_ RST NIL/

LTNS

F II
SC / I- FST NP l / /

V RST [~] FST NP

LTNS Q] . J

Ii]">

Figure 7. Items Created flom the Same
Production in Figure 3

As can be seen in Fig.7, the procedure
will add an infinite number of different
instantiations of the same production to the

state. The list of items in Fig.7 is not
complete: each execution of the repeat-loop
adds a new item from which a new prediction
is made during the next execution. That is,
instantiation of productions introduces the
nontermination problem of left-recursive
productions to the procedure, as well as to
the Predictor Step of Earley's algorithm. To
overcome this problem, Shieber (1985)
proposes "restrictor", which specifies a
maximum depth of feature-based categories.
When the depth of a category in a predicted
item exceeds the limit imposed by a restrictor,
further instantiation of the category in new
items is prohibited. The Predictor Step
eventually halts when it starts creating a new
item whose feature specification within the
depth allowed by the resu'ictor is identical to,
or subsumed by, a previous one.

In addition to the halting problem, the
incorporation of feature-based syntactic
categories to grammars poses a new problem
unique to the LR parser. After the parser
assigns a constituent structure in Fig.4 during
parsing, it would consult the GOTO table for
the next state with the root category of the
constituent, i.e. v i s e [FST NP, RST NIL],
TNS PAST]. There is no entry in the table
under the root category, however, since the
category is distinct from any categories that
appear in the items partially intstantiated by
the CLOSURE procedure.

The problem stems fi'om the fact that the
categories which are partially instantiated by
the preliminary CLOSURE procedure and
consequently constitute the domain of the
GOTO function may be still underspecified as
com.pared with those that arise during
parsing. The feature specif icat ion
[TNS PAST] in the constituent structure in
Fig.4, for example, originates from the
lexical specification of "gave" in Fig.5, and
not from productions, and therefore does not
appear in any items in Fig.7. Note that it is
possible to create an item with the pm'ticular
feature instantiated, but there are a potentially
infinite number of instantiations for each
underspecified category.

Given the preliminary CLOSURE/
NEXT-S procedures, the parser would have
to search in the domain of the GOTO function
for a category that is unifiable with the root of
a constituem in order to obtain the next state,

- 7 2 -

while a search operation is never required by
the original LR parsing algori thm.
Furthermore, there may be more than one
such category in the domain, giving rise to
nondeterminism to the algorithm.

4 Construct ion of the G O T O Table
for Feature-Based Categories:
A Final Modif icat ion

The final version of CLOSURE/NEXT-S
procedures in Fig.8 circumvents the
described problems. While the CLOSURE
procedure makes top-down predictions in the
same way as before, new items are added
without instantiation. Since only original
productions in a grammar appear as items,
productions are added as new items only
once and the nontermination problem does
not occur, as is the case of the LR parsing
algorithm with atomic categories. The
NEXT-S procedure constructs next states for
the lhs category of each production, rather
than the categories to the right of a dot.
Consequently, from the lhs category of the
production used for a reduce action, the
parser can uniquely determine the GOTO
table entry for a next state, while constructing
a constituent structure by instantiating it. No
search for unifiable categories is involved
during parsing.

procedure CLOSURE(I);
b e g i n

repeat
for each item <A-~w.Bx> in 1, and each
production C~y such that C is unifiable
with B and <C-~.y> is not in I do

add <C-~.y> to I;
until no more items can be added to I;
re turn 1

end;

procedure NEXT-S(I,C)
;for each category C on the lhs of productions
begin

let J be the set of items <A~wB.x> such
that <A-,w.Bx> is in I and B is unifiable
with C;
return CLOSURE(J)

end;

Figure 8. Final CLOSURE/NEXT-S
procedures

Note, furthermore, the size of GOTO
tab le p roduced by the f ina l
CLOSURE/NEXT-S procedures is usually
smaller than the table produced by the
preliminary procedures for the same
grammar. It is because the preliminary
CLOSURE procedure creates one or more
instantiations out of a single category, each of
which the preliminary NEXT-S procedure
applies to, creating separate GOTO table
entries. Although a smaller GOTO table does
not necessarily imply less parsing time, since
there ale entry reu'ieval algorithms that do not
depend on a table size, it does mean fewer
operations to construct such tables during
preprocessing.

5: Fur ther Comparisons and
C o n c l u s i o n

The LR parsing algorithm for grammars
with atomic categories involves no category
matching during parsing. In Fig. l ,
catego~;ies are pushed onto the stack only for
the purpose of constructing a paa'se tree, and
reduce actions are completely independent of
categories in the stack. In parsing with
feature-based categories, on the other hand,
the parser must perform unification
operations between the roots of constituents
and categories on the rhs of productions
during a reduce action. In addition to en'or
entries in the ACTION t~Dble, unification
failure should result in an error also. Since
categories cannot be completely instantiated
in every possible way during preprocessing,
unification operations during parsing cannot
be eliminated.

: What motivates partial instantiation of
pJ'oductions during preprocessing as is done
by the preliminary CLOSURE procedure,
then? It can sometimes prevent wrong items
from being predicted and consequently
incorrect reduce actions from entering into an
ACTION table. Given a grammar that
consists of four productions in Fig.9, the
final CLOSURE procedure with an item
<S~. T[F a]> in an input state will add items
<T[F ['1"]]~. T[FtF I-i-I]] T[F[F b]]>.
<T[V[V a]]~. a> and <T[F[F b]]~. b> to the
state. After shift and reduce actions are
repeated twice, each to construct the
constituent in Fig.10(i), the ACTION table
will direct the parse1; to "reduce by p2" to

- 73 -

construct T[F E]b] (Fig.10(ii)), and then to
"reduce by pi", at which time a unification
failure occurs, detecting an error only after all
these operations.

pl: S-,T[F a]
p2: T[F [-i']]~T[F[F I-i'll]
p3: T[F[F a]]-~a
p4: T[F[F b]]~b

T[F [F b]]

Figure 9. Toy Grammar

T[F [-~b]

T[F[F b]] "r[lv[F b]] T[F[F E]b]] T[F[F b]]
I I i I
b b b b

(i) (i i)

Figure 10. Partial Parse Trees

On the other hand, the preliminary
CLOSURE procedure with some restrictor
will add partially instant iated items

<T[F [-i-]a]~. T[F[F [~]a]] T[F[F b]]> and
<T[F[F a]]-~, a>, but not <T[F[F b]]~. b>.
From an en'or enU-y of the ACTION table, the
parser would detect an error as soon as the
first input string b is shifted.

Given the grammar in Fig.9, the
preliminary CLOSURE/NEXT-S procedures
outperform the final version. All grammars
that solicit this performance difference in
e~Tor detection have one property in common.
That is, in those grammars, some feature
specifications in productions which .assign
upper structures of a parse tree prohibit
particular feature instantiations in lower
structures. In the case of the above example,
the [F a] feature specification in pl prohibits
the first category on the rhs of p2 from being
instantiated as T[F[F b]]. If the grammar
were modified to replace pl with pl': S~T,
for example, then the pre l iminary
CLOSURE/NEXT-S procedures will have
nothing to contribute for early detection of
errors, but rather create a larger GOTO/
ACTION lable through which otherwise
unmotivated search must be conducted for
unifiable catcgories to find GOTO table
entries after every reduce action. (With a
restrictor [CAT]IF[F]], the sizi~ of ACTION/

GOTO table produced by the preliminary
procedures is 1 l(states)x9(categories) with a
total of 52 items, while that by the final
procedures is 8x7 with 38 items.)

The final output of the parser, whether
constructed by the preliminary or the final
procedures, is identical and correct. The
choice between two approaches depends
upon particular grammars and is an empirical
question. In general, however, a clear
tendency among grammars written in recent
linguistic theories is that productions tend to
be more general and permissive and lexical
specifications more specific and restrictive.
That is, information that regulates possible
configurations of parse trees for particular
input strings comes from the bottom of trees,
and not from the top, making top-down
instantiation useless.

With the recent linguistic trend of lexicon-
oriented grammars, partial instantiation of
categories while making predictions top-
down gives little to gain for added costs.
Given that run-t ime instant ia t ion of
product ions is unavoidable to build
constituents and to detect en'ors, the
advantages of eliminating an inte~mediate
instantiation step should be evident.

REFERENCES

Aho, Alfred V, and Jeffrey D. Ullman
1987. Principles of Compiler Design.
Addison-Wesley Publishing Company.

Aho, Alfi'ed V. and S. C. Johnson 1974.
"LR Parsing" Computing Surveys Vol.6
No.2.

Pollard, Carl and Ivan A. Sag 1987.
Information-Based Syntax and Semantics
VoI.1. CSLI Lecture Notes 13. Stanford:
CSLI.

Shieber, S. 1985. "Using Restriction to
Extend Parsing Algorithms for Complex-
Feature-Based Formalisms" 23rd ACL
Proceedings.

Shieber, S. 1986. An Introduction to
Unification-Based Approaches to Grammar.
CSLI Lecture Notes 4. Stanford: CSLI.

Tomita, Masaru 1986. Efficient Parsing
for Natural Language: A Fast Algorithm for
Pract ical Systems. Boston: Kluwer
Academic Publishers.

- 7 4 -

