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ABSTRACT 

This paper proposes an LR parsing 
algorithm modified for grammars with 
feature-based categories. The proposed 
algorithm does not instantiate categories 
during preprocessing of a grammar as 
proposed elsewhere. As a result, it 
constructs a minimal size of GOTO/ACTION 
table and eliminates the necessity of search 
for GOTO table entries during parsing. 

1 I n t r o d u c t i o n  

The LR method is known to be a very 
efficient parsing algorithm that involves no 
searching or backtracking. However, recent 
formalisms for syntactic analyses of natural 
language make maximal use of complex 
feature-value systems, rather than atomic 
categories that have been presupposed in the 
LR method. This paper is an attempt to 
incorporate feature-based categories into 
Tomita's extended LR parsing algorithm 
(Tomita 1986). 

A straightforwmd adaptation of feature- 
based categories into the algorithm introduces 
the necessity of partial instantiation of 
categories during preprocessing, of a grammar 
as well as a nontenmnat~on problem. 
Furthermore, the parser is forced to search 
through instantiated categories for desired 
GOTO table entries during parsing. The 
major innovations of the proposed algorithm 
include the construction of a minimal size of 
GOTO table that does not require any 
preliminary instantiation of categories or a 
search for them, and a reduce action which 
pe,forms instanliation tit)ring parsing. 

Some details of the LR parsing algorithm 
are assumed from Aho and Ullman (1987) 
and Aho and Johnson (1974), and more 
formal definitions and notations of a feature- 
based grammar formalism from Pollard and 
Sag (1987) and Shieber (1986). 

2 T h e  L R  P a r s i n g  Algor i thm 

The LR parser is an efficient shift-reduce 
parser with optional lookahead. Parse u'ees 
for input strings are built bottom-up, while 
predictions are made top-down prior to 
parsing. The ACTION/GOTO table is 
constructed during preprocessing of a 
grammar and deterministically guides the 
parser at each step during parsing. The 
ACFION table determines whether the parser 
should take a shift o1" a reduce action next. 
The GOTO table determines the state the 
parser should be in after each action. 

Henceforth, entries for the ACTION/ 
GOTO table are referred to as the values of 
functions, ACTION and GOTO. The 
ACTION function takes a current state and an 
input string to return a next action, and 
GOTO takes a previous state and a syntactic 
category to return a next state. 

States of the LR parser are sets of dotted 
productions called items. The state, i.e. 
dotted productions, stored on top of the stack 
is called current state and the dot positions on 
the right hand side (rhs) of the productions 
indicate how much of the rhs the parser has 
found. Previous states are stored in the stack 
until the entire rhs, or the left hand side (lhs), 
of a production is found, at which time a 
reduce action pops previous states and 
pushes a new state in, i.e. the set of items 
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with a new dot position to the right, reflecting 
the discovery of the lhs of the production. 

If a grammar contains two productions 
VP~V NP and NP~Det N, for example, then 
the state sl in Fig.l(i) (the state numbers are 
arbiu'ary) should contain the items <VP-oV. 
NP> and <NP-~.Det N> among others, after 
shifting an input string "saw" onto the stack. 
The latter item predicts strings that may 
follow in a top-down manner. 

sl 
v(saw) 

(i) 

s4 I I 
N(dog) ] 

I s13 I NP(d,et(a)N(dog)) I Pet(a) 

v(saw) v(saw) 
• o 

(ii) (iii) 

Figure 1: Stacks 

After two morestrings are shifted, say "a 
dog", and the parser encounters the end-of-a- 
sentence symbol "$" (Fig.l(ii)),  the next 
action, ACTION(s4,$), should be "reduce by 
NP-~Det N". The reduce action pops two 
states off the stack, and builds a constituent 
whose root is NP (Fig.l (iii)). At this point, 
GOTO(sI ,NP)  should be a next state that 
includes the item <vP~v NP. >. 

The ACTION/GOTO table used in the 
above example can be constructed using the 
procedures given in Fig.2 (adapted flom Aho 
and Uliman (1987)). The procedure 
CLOSURE coml~utes all items in each state, 
and the procedure NEXT-S, given a state and 
a syntactic category, calculates the next state 
the parser should be in. 

procedure CLOSURE(I); 
beg in  

repeat  
for each item <A~w.Bx> in I, and each 
production B-oy such that <B-o.y> is not 
m I do 

add <B~.y>to I; 
until no more items can be added to I; 
re turn  1 

end; 

procedure  NEXT-S(I,B) 
;for each category B in grammar 
beg in  

let J be the set of items <A-,wB.x> 
such that <A~w.Bx> is in I; 
return CLOSURE(J) 

end; 

Figure  2. CLOSURE/NEXT-S Procedures 
for Atomic Categories 

It should be clear from the preceding 
example that upon the completion of all the 
constituents on the rhs of a production, the 
GOTO table entry for the lhs is consulted. 
Whether a category appears on the lhs or the 
rhs of productions is a trivial question, 
however, since in a grammar with atomic 
categories, every category that appears on the 
lhs also appears on the rhs and vice versa. 
On the other hand, in a grammar with feature- 
based categories, as proposed by most recent 
syntactic theories, it is no longer the case. 

3 Cons truc t ion  o f  the G O T O  Table  
for Fea ture -Based  Categor ies :  
A P r e l i m i n a r y  M o d i f i c a t i o n  

Fig.3 is an example production using 
feature-based syntactic categories. The 
notations are adapted from Pollard and Sag 
(1987) and Shieber (1986). The tags [~], 

~-] .... roughly correspond to variables of 
logic unification with a scope of single 
productions: if one occurrence of a particular 
tag is instantiated as a result of unification, so 
are other occurrences of the same tag within 
the production. 

CAT V "1 
SUBCAT [~]/-o 

E II I-VIRST NNP 

TENSE [~] 

[~]NP 

Figure 3. Example Production 
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Recm.'sive applications of the production 
assigns the constituent structure to strings 

"gave boys trees" in Fig.4. The assumed 
lexical category for "gave" is given in Fig.5. 

TNS [~]PAST J 

[" r FS T [~]N p " ~ ~  " ~ ~ , . . . . . ~  
s c  171 FST NP 

LTNS F~PA S T ~  ..] 

F [" FST[i-]NP ~ qq 
/ s c  / F FST E]N P "l I I 
v 1 /RST l~h,~T ~ I-FST NP'l I I I ~NP 
[ L L . . . .  t-:--I LRST NILJAA [ ] 

L T N S  ~ I P A S T  I ~ [ 

gave boys toys 

Figure 4. Example Parse Tree 

/ YFST NP 
SC/RST / rFST NP 

L LRST tRs'r ~ t .  
T N S  PAST 

Figure 5. Lexical Category for "gave" 

In grammars that use feature-based 
syntactic categories, categories in productions 
are taken to be underspecified: that is, they 
are further instantiated through the unification 
operation during parsing as constituent 
structures are built. The pretenninal category 
for "gave" in Fig.4 is the result of unification 
between the lexical category for "gave" in 
Fig.5 and the first category on the rhs of the 
production in Fig.3. This unification also 
results in the instantiation of the lhs through 
the tags. The category for the constituent 
"gave boys" is obtained by unifying the 
instantiated Ihs and the first category of the 
rhs of the same production in Fig.3. In order 
to accommodate  the instantiation of 
underspecified categories, the CLOSURE 
and NEXT-S procedures in Fig.2 can be 
modified as in Fig.6, where ^ is the 
unification operator. 

procedure CLOSURE(I); 
begin 

repeat 
for each item <A~w.Bx> in I, and each 
production C-)y such that C is unifiable 
with B and <C^B~.y'> is not in I do 

add <C^B--,.y'> to I; 
until no more items can be added to I; 
re turn I 

end; 

procedure NEXT-S(I,C) 
for each category C that appears to the right 

; of the dot in items 
begin 

let J be the set of items <A-)wB.x> such 
that <A~w.Bx> is in I and B is unifiable 
with C; 
return CLOSURE(J) 

end; 

Figure 6. Preliminary CLOSURE/NEXT-S 
Procedures 

The preliminary CLOSURE procedure 
Unifies the lhs of a predicted production, i.e. 
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C~y, and the category the prediction is made 
fl'om, i .e .B.  This approach is essentially 
top-down l)rOl)agation of instantiated features 
and well documented by Shieber (1985) in 
the context of Earley's algorithm. A new 
item added to the state, <C^B--,. y'>, is not 
the production C--,y, but its (partial) 
instantiation, y is also instantiated to be y' as 
a result of the unification C^B if C and some 
members of y share tags. Thus, given the 
production in Fig.3 and a syntactic category 
v[SC NiL] to make predictions from, for 
example,  the prel iminary CLOSURE 
procedure creates new items in Fig.7 among 
others. The items in Fig.7 are all different 
instantiations of the same production in 
Fig.3. 

LTNS [7] 

F @.P17 

LTNs [7] 

RST NIL < 
LTNS [~] 

11 • v UJ [RST NILI 

L'rNS 
[~]NP> 

s c [ FST NP 1 
<V RST I_ RST NIL/  

LTNS  

F II 
SC / I- FST NP l / /  

V RST [~] FST NP 

LTNS Q] . J 

Ii]"> 

Figure 7. Items Created flom the Same 
Production in Figure 3 

As can be seen in Fig.7, the procedure 
will add an infinite number of different 
instantiations of the same production to the 

state. The list of items in Fig.7 is not 
complete: each execution of the repeat-loop 
adds a new item from which a new prediction 
is made during the next execution. That is, 
instantiation of productions introduces the 
nontermination problem of left-recursive 
productions to the procedure, as well as to 
the Predictor Step of Earley's algorithm. To 
overcome this problem, Shieber (1985) 
proposes "restrictor", which specifies a 
maximum depth of feature-based categories. 
When the depth of a category in a predicted 
item exceeds the limit imposed by a restrictor, 
further instantiation of the category in new 
items is prohibited. The Predictor Step 
eventually halts when it starts creating a new 
item whose feature specification within the 
depth allowed by the resu'ictor is identical to, 
or subsumed by, a previous one. 

In addition to the halting problem, the 
incorporation of feature-based syntactic 
categories to grammars poses a new problem 
unique to the LR parser. After the parser 
assigns a constituent structure in Fig.4 during 
parsing, it would consult the GOTO table for 
the next state with the root category of the 
constituent, i.e. v i s e  [FST NP, RST NIL], 
TNS PAST]. There is no entry in the table 
under the root category, however, since the 
category is distinct from any categories that 
appear in the items partially intstantiated by 
the CLOSURE procedure. 

The problem stems fi'om the fact that the 
categories which are partially instantiated by 
the preliminary CLOSURE procedure and 
consequently constitute the domain of the 
GOTO function may be still underspecified as 
com.pared with those that arise during 
parsing. The feature specif icat ion 
[TNS PAST] in the constituent structure in 
Fig.4, for example, originates from the 
lexical specification of "gave" in Fig.5, and 
not from productions, and therefore does not 
appear in any items in Fig.7. Note that it is 
possible to create an item with the pm'ticular 
feature instantiated, but there are a potentially 
infinite number of instantiations for each 
underspecified category. 

Given the preliminary CLOSURE/ 
NEXT-S procedures, the parser would have 
to search in the domain of the GOTO function 
for a category that is unifiable with the root of 
a constituem in order to obtain the next state, 
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while a search operation is never required by 
the original  LR parsing algori thm. 
Furthermore, there may be more than one 
such category in the domain, giving rise to 
nondeterminism to the algorithm. 

4 Construct ion of  the G O T O  Table 
for Feature-Based Categories:  
A Final  Modif icat ion 

The final version of CLOSURE/NEXT-S 
procedures in Fig.8 circumvents the 
described problems. While the CLOSURE 
procedure makes top-down predictions in the 
same way as before, new items are added 
without instantiation. Since only original 
productions in a grammar appear as items, 
productions are added as new items only 
once and the nontermination problem does 
not occur, as is the case of the LR parsing 
algorithm with atomic categories. The 
NEXT-S procedure constructs next states for 
the lhs category of each production, rather 
than the categories to the right of a dot. 
Consequently, from the lhs category of the 
production used for a reduce action, the 
parser can uniquely determine the GOTO 
table entry for a next state, while constructing 
a constituent structure by instantiating it. No 
search for unifiable categories is involved 
during parsing. 

procedure CLOSURE(I); 
b e g i n  

repeat 
for each item <A-~w.Bx> in 1, and each 
production C~y such that C is unifiable 
with B and <C-~.y> is not in I do 

add <C-~.y> to I; 
until no more items can be added to I; 
re turn 1 

end; 

procedure  NEXT-S(I,C) 
;for each category C on the lhs of productions 
begin  

let J be the set of items <A~wB.x> such 
that <A-,w.Bx> is in I and B is unifiable 
with C; 
return CLOSURE(J) 

end; 

Figure 8. Final CLOSURE/NEXT-S 
procedures 

Note, furthermore, the size of GOTO 
tab le  p roduced  by the f ina l  
CLOSURE/NEXT-S procedures is usually 
smaller than the table produced by the 
preliminary procedures for the same 
grammar. It is because the preliminary 
CLOSURE procedure creates one or more 
instantiations out of a single category, each of 
which the preliminary NEXT-S procedure 
applies to, creating separate GOTO table 
entries. Although a smaller GOTO table does 
not necessarily imply less parsing time, since 
there ale entry reu'ieval algorithms that do not 
depend on a table size, it does mean fewer 
operations to construct such tables during 
preprocessing. 

5: Fur ther  Comparisons  and 
C o n c l u s i o n  

The LR parsing algorithm for grammars 
with atomic categories involves no category 
matching during parsing. In Fig. l ,  
catego~;ies are pushed onto the stack only for 
the purpose of constructing a paa'se tree, and 
reduce actions are completely independent of 
categories in the stack. In parsing with 
feature-based categories, on the other hand, 
the parser must perform unification 
operations between the roots of constituents 
and categories on the rhs of productions 
during a reduce action. In addition to en'or 
entries in the ACTION t~Dble, unification 
failure should result in an error also. Since 
categories cannot be completely instantiated 
in every possible way during preprocessing, 
unification operations during parsing cannot 
be eliminated. 

: What motivates partial instantiation of 
pJ'oductions during preprocessing as is done 
by the preliminary CLOSURE procedure, 
then? It can sometimes prevent wrong items 
from being predicted and consequently 
incorrect reduce actions from entering into an 
ACTION table. Given a grammar that 
consists of four productions in Fig.9, the 
final CLOSURE procedure with an item 
<S~. T[F a]> in an input state will add items 
<T[F ['1"]]~. T[FtF I-i-I]] T[F[F b]]>.  
<T[V[V a]]~. a> and <T[F[F b]]~. b> to the 
state. After shift and reduce actions are 
repeated twice, each to construct the 
constituent in Fig.10(i), the ACTION table 
will direct the parse1; to "reduce by p2" to 
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construct T[F E]b] (Fig.10(ii)), and then to 
"reduce by pi", at which time a unification 
failure occurs, detecting an error only after all 
these operations. 

pl: S-,T[F a] 
p2: T[F [-i']]~T[F[F I-i'll] 
p3: T[F[F a]]-~a 
p4: T[F[F b]]~b 

T[F [F b]] 

Figure 9. Toy Grammar 

T[F [-~b] 

T[F[F b]] "r[lv[F b]] T[F[F E]b]] T[F[F b]] 
I I i I 
b b b b 

( i )  ( i i )  

Figure 10. Partial Parse Trees 

On the other hand, the preliminary 
CLOSURE procedure with some restrictor 
will add partially instant iated items 

<T[F [-i-]a]~. T[F[F [~]a]] T[F[F b]]> and 
<T[F[F a]]-~, a>, but not <T[F[F b]]~. b>. 
From an en'or enU-y of the ACTION table, the 
parser would detect an error as soon as the 
first input string b is shifted. 

Given the grammar in Fig.9, the 
preliminary CLOSURE/NEXT-S procedures 
outperform the final version. All grammars 
that solicit this performance difference in 
e~Tor detection have one property in common. 
That is, in those grammars, some feature 
specifications in productions which .assign 
upper structures of a parse tree prohibit 
particular feature instantiations in lower 
structures. In the case of the above example, 
the [F a] feature specification in pl prohibits 
the first category on the rhs of p2 from being 
instantiated as T[F[F b]]. If the grammar 
were modified to replace pl with pl': S~T, 
for example,  then the pre l iminary  
CLOSURE/NEXT-S procedures will have 
nothing to contribute for early detection of 
errors, but rather create a larger GOTO/ 
ACTION lable through which otherwise 
unmotivated search must be conducted for 
unifiable catcgories to find GOTO table 
entries after every reduce action. (With a 
restrictor [CAT]IF[F]], the sizi~ of ACTION/ 

GOTO table produced by the preliminary 
procedures is 1 l(states)x9(categories) with a 
total of 52 items, while that by the final 
procedures is 8x7 with 38 items.) 

The final output of the parser, whether 
constructed by the preliminary or the final 
procedures, is identical and correct. The 
choice between two approaches depends 
upon particular grammars and is an empirical 
question. In general, however, a clear 
tendency among grammars written in recent 
linguistic theories is that productions tend to 
be more general and permissive and lexical 
specifications more specific and restrictive. 
That is, information that regulates possible 
configurations of parse trees for particular 
input strings comes from the bottom of trees, 
and not from the top, making top-down 
instantiation useless. 

With the recent linguistic trend of lexicon- 
oriented grammars, partial instantiation of 
categories while making predictions top- 
down gives little to gain for added costs. 
Given that run-t ime instant ia t ion of 
product ions  is unavoidable  to build 
constituents and to detect en'ors, the 
advantages of eliminating an inte~mediate 
instantiation step should be evident. 
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