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A B S T R A C T  
In this document, we present a language which 

associates type construction principles to constraint 
logic programming. We show that it is very 
appropriate for language processing, providing more 
uniform, expressive and efficient tools and 
treatments. We introduce three kinds of constraints, 
that we exemplify by motivational examples. 
Finally, we give the procedural semantics of our 
language, combining type construction with SLD- 
resolution. 

Introduction 

With the development of highly parameterized 
syntactic theories like Government and Binding 
theory and Head-Driven phrase structure grammars 
and with the development of theories where rewriting 
and unification plays a central role, like Categorial 
grammars and Unification Grammars, there is an 
increasing need for more appropriate and more 
efficient feature systems. 

Feature systems must be designed to preserve the 
adequacy, the expressiveness and the explanatory 
power of the linguistic system that one wants to 
model. Real parsing as well as generation systems 
often require the manipulation of  large sets of 
features, these systems must therefore offer a great 
flexibility in the specification of features in grammar 
symbols and a significant modularity so that each 
linguistic aspect (morphological, categorial ... .  ) can 
be dealt with independently. Features are often subject 
to various constraints. These constraints cannot 
always be evaluated at the level they are formulated 
(e.g. a feature value is not yet known) bu~t have to be 
evaluated later and must be true throughout the whole 
parsing or generation process. 

The development of principled-based approaches to 
language processing also require the definition of 
more abstract formal systems to handle in an adequate 
way these principles. Principles indeed often apply 
not at grammar rule level but they involve a large 
part of a parse tree. They must be expressed by a 
constraint system which is global to the whole 
grammar and not local to a rule, as for example, in 
DCGs. 

These brief considerations have motivated our 
approach: syntactic rules are viewed as type 
constructions on which constraints arc applied. These 
constraints are themselves part of the type. To give 
an appropriate expressive power to constraints and an 
efficient interpretation, they are interpreted within 
the Constraint Logic Programming framework. 

In the next sections, we introduce our description 
language based on types and constraints. We then 
give motivational examples which clarify its use. 
Then we give its procedural interpretation and a 
constraint resolution mechanism system. 

1. A t y p e d - b a s e d  d e s c r i p t i o n  
l a n g u a g e  

Three main types of operations are at the basis of 
the typed-based language we have designed for 
language processing, namely: 

- the expression of type construction to describe 
phrase structures, 

- the expression of relations (either local or long- 
distance) between types, 

- the expression of weU-formedness constraints on 
types. 
The term type refers here to structured data 
representation. They must not be confused with types 
defined in linguistics, as in the eategorial system. 

The starting point of our description language is 
CIL (Mukai 85), a language designed to model 
Situation Semantics which permits the expression of 
some constraints on typed descriptions called 
complex indeterminates; and Login (AR-Ka~i and 
Nasr 86), a typed-based language with a built-in 
inheritance schema. To these languages we have added 
specific feature treatments and constraints usually 
necessary for language processing that we now find 
in advanced unification grammar systems (Sheiber 
87, Emele & Zajae 90). We have also provided a 
specific declarative and procedural semantics merging 
type construction and resolution of  constraints, 
viewed as active constraints of the constraint logic 
programming framework (noted hereafter as CLP) 
(Colmerauer 90), (Jaffar and Lassez 87). 

We now informally present the syntax of our type- 
based language. It is directly derived from the syntax 
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of Login. The syntactic representation of a structured 
term is called a w-term. It consists of: 

(1) a root symbol, which is a type constructor and 
denotes a class of entities, 

(2) attribute labels, which are record field symbols. 
Each attribute denotes a function in extenso, from the 
root to the attribute value. The attribute value can 
itself be a reference to a type o~" to an instance of a 
type. 

(3) coreference constraints among paths of labels, 
indicate that the corresponding attributes denote the 
same function. They are indicated by variables. 

Here is an example: 
person( id => name(f i rs t  => str ing, 

last => X: str ing),  
born => date(day => integer, 

month => monthname, year => integer), 
father => person( id => name(last => X ))). 

The root symbol is person; id, born and father are 
three sub-wterms which have either constants or 
types as values. X indicates a coreference. All 
different type structures are tagged by different 
symbols. Notice also that in the latter field only 
relevant information about person is mentioned. 
Infinite structures can also be specified by coreference 
links. Variables are in capital letters, constants in 
small letters. To this description, we have added the 
treatment of negation on constants, and the treatment 
of  conjunctions and disjunctions, in a way quite 
s imilar  to (Johnson 90). Taxonomic  re la t ions  
between identifiers are also taken into account in the 
unification mechanism. These features will not 
however be developed, since this is not central to 
what we want to explain here. 

This  fo rmal i sm permi t s  us to de f ine  type  
inheritance and the possibility to define in a clean 
way classes  and subclasses  cor responding  to 
structured linguistic objects (Saint-Dizier 91). 

2 .  D e a l i n g  w i t h  c o n s t r a i n t s  

The general form of a type is • 
Type :- Constraints. 

Constraints belong to the following classes: 
- constraints on attribute values not yet known, 
- constraints on values of two attributes, 
- constraints on the existence of  an attribute 

possibly with a given associated value, 
- constraints on the co-existence of attributes (to 

express dependencies), 
- constraints expressing precedence relations on 

strings of words. 
The first two classes of constraints being developed 
by F. Giinthner (Gtinthner 88) within the framework 
of Prolog III, we will here concentrate on the three 
last types of constraints, which are quite different in 
nature from the two first ones. We view constraints 
as part of the type: (Type :- Constraints) is itself a 
type, subsumed by Type. 

The linear precedence constraint: 
precede(X,Y), 

where X and Y are of type string. It imposes that the 
string X precedes  of  the string Y. Precedence  
constraints on constituents are stated in the grammar 
rules and at the lexical level. At each stage i of a 
parse, a partial and coherent order Pl(i) on the words 
and structures already processed can be constructed. 
On the other hand, the input sentence to parse has a 
strict order P2 on words. Then, at each stage of the 
parsing process, Pl(i)  and P2 must be satisfiable. As 
shown in the ID/LP framework, having precedence 
relations permits us to have a more general and 
flexible description of  phrase structures. The CLP 
interpretation of  precedence permits us to have a 
more efficient system because backtracking will 
occur as soon as a precedence violation is detected. 

The next constraint imposes the presence of a 
certain attribute in a type: 

has(Att r ibute,  Type) 
where Attr ibute is either an attribute label or a pair 
a t t r ibute-value  (a sub-w-term) and T y p e  is a 
reference to a type. This constraint imposes that at 
some stage there is an attribute in Type which is 
subsumed by or equal to Attr ibute.  Informally, (1) 
when incoherence with At t r ibu te  is detected or (2) 
when Type is fully constructed, the non-satisfaction 
of has(attr ibute,type) will provoque backtracking. 
This  cons t ra in t  also permi ts  us to encode  the 
inclusion of a set of values into another. 

TIae  last class of constraint is mainly related to the 
express ion  of  long-dis tance  relat ions between 
sentence constituents.  Within the framework of 
types, the notion of  long-distance is somewhat  
obsolete since there is no ordering relation on 
subtypes in a type (attributes may be written in any 
order). Thus, the notion of long-distance dependency 
will be here formulated as a sub-type co-occurence 
constraint. This constraint emerged from Dislog 
(Saint-Dizier 87, 89), that we now briefly present. 

A D i s l o g  c l a u s e  is a finite, unordered set of 
Horn clauses fi of the form: 

 h.f2 ......... f,, ;. 
The informal meaning of  a Dislog clause is: i f  a 
clause j~ in a Dislog clause is used to construct a 
given proof tree, then all the other ~ of that Dislog 
clause must be used to construct that proof tree, 
with the same substitutions applied to identical 
variables. Moreover, there are no hypothesis made on 
the location of these clauses in the proof tree. For 
example, the following Dislog clause composed of 
twoProlog facts: 

{ arc(a,b), arc(el) }. 
means that,  in a graph,  the use o f  arc(a,b) to 
construct a proof is conditional to the use of arc(el). 
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If one is looking for paths in a graph, this means 
that all path going through the arc(ah) will have to 
go through the arc(el), or conversely. 

A Dislog clause thus permits us to express co- 
occurence of clauses in a proof tree. The constraint 
stating that all identical variables in an instance of a 
Dislog clause must be substituted for the same terms 
permits the transfer of argument values between non- 
contiguous elements in a very convenient way. A 
Dislog clause can be subject to various types of 
restrictions such as: linear precedence constraints on 
the f / ,  modalities on applications of somef  i and the 
specification of bounding domains in which an 
Dislog clause instance must be fully used (Saint- 
Dizier 89). 

The co-occurence of two subtypes in a larger type 
is expressed by the constraint: 

pending(A,B) 
where A is a type specification and B is a list of type 
specifications. Informally, this constraint means that 
A originates the pending of the types in B, in other 
terms that A can be used as a type constructor if, 
somewhere else in the main type (corresponding to 
sentence), all the types in B are also used as type 
constructors with identical substitutions applied to 
identical variables. Notice that this constraint is not 
equivalent to a conjunction of has(X,T) constraints 
because the has(X,T) constraint imposes that T is 
fully defined whereas pending(A,B) does not impose, 
a priori, any constraints on the location in the main 
type of the types in B. The constraint resolution 
mechanism of this constraint is given in section 6. 

3. P a r s i n g  w i t h  t y p e s  a n d  c o n s t r a i n t s  
We first present simple, motivational examples. A 

more abstract syntactic description of the X-bar 
system follows and shows more clearly the 
expressive power of the formalism. The following 
examples show that our description language can 
accomodate principled-based descriptions of language 
like Government and Binding theory as well as 
lexically and head driven descriptions like in the 
HPSG framework (which also follow principles, but 
not in the same sense). 

3.1  A s i m p l e  g r a m m a t i c a l  s y s t e m :  
In the following examples, we only have two 

main type constructors: 
- x0 corresponding to lexical entries, 
- xp corresponding to phrase structures. 

Here is the description of the lexical entry 
corresponding to the verb to give: 
xO( cat => v, string => [give] ):- 

pending(xO(cat => v), [xp( cat => n, 
role => patient, case => acc ), 
xp( cat => p, role => recipient, 

case => dative ) ] ). 
This entry indicates that give is a verb which 

subcategorizes for an np with role patient and case 
accusative and a pp with role recipient and case 
oblique, which are left pending since they do not 
necessarily immediately follow the verb in a 
sentence. These constraints will be dealt with by the 
type describing the structure of a vp. The whole 
description xO construction and the constraints is the 
type of the verb to give. 

Let us now consider the construction of a vp with 
an np and a pp complements: 

xp( cat => v, s t r ing  => S, 
const l  ;> xO(cat => v, s t r i ng  => S1 ), 
const2 --> X : xp(cat => n, s t r ing  => $2), 
const3 => Y : xp( cat => p, s t r ing  => $3)) :- 

has(role, X), has(case, X), 
has(role,  Y), has(case, Y), 
precede(S 1 ,$2), precede(S2,S3). 

The const i attributes in the type constructor xp  
permits the satisfaction of the pending constraints 
specified in the lexical entries. We view phrase 
structure type constructors both as a descriptive and a 
computational mean to construct structures. The 
constraints has(role,X) and has(role, Y) impose that 
the constituents const2 and const3 have a role 
assigned at some level in the type construction 
process. The same situation holds for case. This is a 
simple expression, for example, of the Case Filter 
and the 0-criterion in GB theory. Notice that most 
pending situations are satisfied locally, which limits 
complexity. Finally, notice that the denotation of this 
type is the set of sentences S which can be 
constructed and which meet the constraints. 

3.2  E x p r e s s i n g  X - b a r  s y n t a x  
Our description language permits the expression of 

most current versions of X-bar theory that we now 
illustrate. X-bar syntax is a typical example of type 
construction. Let us consider the rule: 

X 1 --> X 0, complement. 
The element X 0 is a direct reference to the type 
constructor x0, as described in the preceding section. 
We now show how X 1 is defined by the type 
constructor xl; the nature of the complement is 
induced from lexical descriptions given in x0: 
xl( cat => C, bar => I, string=> S, 

head =>xO( cat => C, bar => O, string => S l, 
complement  => Z : xp( cat => Compl, 
bar=> B l , r o l e  => R, s a t i s f i e d ; >  1) ), 

complement => xp( syntax => Z ,  
case ;> Case, s t r i ng  ;> $2 ) ) :- 

atom(R), atom(Ca), 
precede(S 1 ,$2), 
C =/= inf l ,  C=/= comp, 
assign(C, Case). 

Notice how a co-reference link is established by 
means of the variable Z between the 
subcategorization frame given in the head and the 
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syntactic characteristics of  the complement. The 
subcategorization data is not left pending since it is 
contiguous to the head and can be moved only by 
another mean, namely, within GB theory, by move- 
a .  The subcategorization of a complement is satified 
(i.e. satisfied => 1), the complement is assigned the 
appropriate 0-role. Case is also assigned whenever 
appropriate, by the call to assign_case. 

Similar rules can be defined for X 2 and adjuncts, 
with the difference that adjuncts are usually not 
obligatory. Rules involving non lexical categories 
like INFL and COMP are described in the same 
manner .  H o w e v e r ,  at the leve l  of  INFL,  the 
assignment of the external 0-role and case to the 
subject position is carried out using a long-distance 
constraint, expressed in Dislog. 

3 . 3  O n  G o v e r n m e n t  
The  not ion o f  G o v e r n m e n t  in GB theory  

introduces an interesting use of the constraint has to 
control the well-formedness of a construction. We 
now present a model for Government, so that 0-roles 
and cases can be properly assigned. In what follows, 
we refer to Government and to the notion of Barriers 
as defined in (Chomsky 86). 

Government can be modeled as a well-formedness 
constraint on X 2 categories. Indeed, each X 2 which 
can be a barrier (i.e. all categories except INFL) 
prevents a category above it from governing a 
category dominated by that X 2. Thus, for all rules of 
the general form: 

Z --> W, X2, T. 
where Z, W and T are any kind of non-terminal 
symbol,  a control  has to be made on the well- 
formedness of X 2 if X 2 is a barrier. This control 
consists in three constraints: 

- every N2 is assigned a case (Case Filter in GB), 
- every N2 is assigned a thematic role (0-criterion), 
- all obl iga tory  subcategor izat ion has to be 

satisfied (Projection Principle). 
The two first constraints have been already given in 
3.1, the latter is carried out by checking that the 
following sub-y- term is not present in th~ type 
constructor x2 corresponding to the category X~': 

xp( obl iga tory  => 1, s a t i s f i e d  => 0 ) 
which can be expressed by the negated constraint: 
not(has(xp(  ob l i ga to ry  => 1, 

s a t i s f i e d  => 0 ),Type). 
The a t t r ibute  obligatory comes  from lexical  
descr ip t ion  where  it is speci f ied  whether  an 
complement  is obl igatory or not. The attribute 
satisfied is proper ly  instanciated to 1 when a.~ 
complement is constructed (see 3.2). 

3 . 4  O n  L o n g - D i s t a n c e  D e p e n d e n c i e s  
Let  us f inal ly  cons ider  an example  of  the 

expression of long-distance dependencies for which 

we use the pending constraint:  wh-movement .  
Refering to X-bar syntax, the general annotated 
surface form is: 
[COMP PROi ........ [N2 tracei ] ..... ] as in: 
[COMP THATi John met [N2 tracei ]yesterday] 

Within the framework of our type-based approach, 
a pending constraint specifies the co-occurence of two 
type constructions, which must be both used during 
the type construct ion process associated to the 
sentence being parsed. In our example, the first 
subtype constructor will describe the adjunction of an 
N2 to a COMP node (here COMP0) while the second 
subtype constructor will express that that N2 is 
constructed from a trace. A shared variable, I, 
represents the co-indexation link: 

{ xp( cat  => X: compO, s t r i n g  => S, 
¢ons t l  => xp(cat  => n, fo rm => pro, 

index => I, s t r i n g  => S1 ), 
cons t2=>  x p ( c a t  => X , s t r i n g = >  $ 2 )  , 

x p ( c a t  => n, fo rm => t race ,  s t r i n g = >  $3, 
lndex => I ) } :- precede(5,S3).  

Since the adjunction to COMP is always to the left 
of the trace, this Dislog clause can be translated into 
a single type specification by means of the pending 
constraint: 

xp(: cat  => X: compO, s t r i n g  => S, 
cons t l  => xp(cat  => n, fo rm => pro, 

index => I, s t r i n g  => S1 ), 
cons t2  => xp( cat  => X , s t r i n g  => $2 )) :- 

p e n d i n g ( x p ( c a t  => compO), xp( ca t  => n, 
fo rm -=> t race,  s t r i n g  => $3, index => I ) ), 

precede(S,S3) .  

To summarize, in lexical entries we express the 
subcategorization requirements and the precedence 
relations; in types expressing syntactic constructions, 
we have controls  on the contents  of  types and 
pending constraints due to long-distance dependencies 
between sentence constituents. 

4 .  A n  a b s t r a c t  m a c h i n e  f o r  t y p e  
c o n s t r u c t i o n  

Parsing a sentence is constructing a well-formed 
type describing the sentence structure. We present in 
this section an abstract machine which describes how 
types are constructed. This machine is based on the 
procedural semantics of Prolog but it resembles a 
push-down tree automaton whose stack is updated 
each time a subtype is modified. 

There are two kinds of type constructors: those 
corresponding to non-terminal structures (such as xp 
and xl  in our examples) and those corresponding to 
terminal structures (e.g. x0). We now present a step 
in the construction of a type. It can be decomposed 
into 3 levels: 

(1) current state cr i : 
Co( a 1 => t 1, a 2 => t 2 . . . . .  a n => tn), 
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(2) selection in the current programme P of a type 
construction specification: 

Cl( b 1 => t' 1 . . . . .  b m => t' m ) 
such that tl subsumes it (or unifies with it) modulo 
the mgu 0 i. 

(3) New state Oi+l : t l  is replaced by : 
Cl( bl  => t' 1 . . . . .  b m => t' m ), 

with, as a result, the following type: 
Co( a 1 => Cl( bl  => t' 1 . . . . .  b m => t' m ) ,  

a 2 = > t  2, a ->  )0.  .... n -  tn | 
The process goes on and processes t 1" The type 

construction strategy is here similar to Prolog 's  
strategy and computation rule : depth-f'trst and from 
left to right. The main difference at this level with 
SLD-resolution is that only types corresponding to 
non-terminal structures are expanded. Informally, 
when a type t  i corresponds to a terminal structure, 
attempt is maae to find a terminal type description t : 

. . . .  J 

in the programme whmh ~s subsumed by or umfies 
with tj and, if so, a replacement occurs, t'j is said to 
be in a final state. If t'j does not exist, backtracking 
OCCURS. 

The next type description immediately to the 
right of t'j is then treated in the same manner. The 
type construction process successfully ends when all 
subtypes corresponding to terminal symbols are in a 
final state and it fails if a terminal type description tp 
cannot reach a final state. 

5. E x t e n s i o n  o f  the  a b s t r a c t  m a c h i n e  
t o  h a n d l e  c o n s t r a i n t s  

The above abstract machine can be extended in a 
simple way to deal with constraints. Constraint 
resolution mechanisms are similar to usual constraint 
logic programming systems like Prolog III. The 
three above levels become: 

(1) current state c i represented by the couple: 
< c0 (a  l = > t  1, a 2 = > t  2 . . . . .  a n = > t n ) ,  S > 

where S is the set of current constraints, 

(2) selection in the current programme P of a type 
construction specification: 

Cl (b  1 => t '  1 . . . . .  b m = > t '  m ) : - R ,  w h e r e R i s  
the set o f  constraints  associated to c 1, and t l  
subsumes (or unifies with) t' 1" 

( 3 )  New state ~ i + l  character ized by the 
following couple: 

< c0(a  l = > c l ( b l = > t '  1 . . . . .  b m = > t '  m ) ,  
a 2 => t 2 . . . . .  a n => t n) , 

S u R u subsume(t 1, Cl( b 1 => t' 1 . . . . .  
b m => t' m ) ) > 

with the condition that the new set of  constraints 
must be satisfiable with respect to the constraint 
resolution axioms defined for each type of constraint 
and, if not, a backtracking occurs. At this level 
constraints simplifications may also occur. Mgu 0 i is 

replaced here by the subsumption constraint. 

6 .  A C o n s t r a i n t  L o g i c  P r o g r a m m i n g  
i n t e r p r e t a t i o n  o f  t h e  ' p e n d i n g '  
c o n s t r a i n t  

The pending constraint is interpreted within the 
Const ra in t  Log ic  p rogramming  f ramework  
(Colmerauer 90, Jaffar and Lassez 87) in a very 
simple way. The constraint solving approach of the 
CLP corresponds better to programming practice and 
to p rogramming  language design.  Constraints  
directly state properties on objects of the domain 
being dealt with which have to be always true, in 
contrast to coding them by means of terms. The CLP 
framework offers a global rule-based framework to 
handle and to reason about constraints. 

The domain of objects on which constraints of a 
CLP interpretation of Dislog operate is a domain of 
types. Let  us first consider a simple translation 
example of a Dislog clause into a CLP clause. A 
Dislog clause like: 

{ a , b }  
where  a and b are type cons t ruc t ion  (TC) 
specifications, is translated as follows in CLP: 

a :- pending(a, [b]). 
b :- pending(b, [a]). 
The constraint pending(A,B) states here that the 

TC A is at the origin of the pending TC B. The 
general case is interpreted as follows. Let us consider 
the Dislog clause: 

{A.B ..... N}. 
it is translated into a set of CLP clauses as follows: 

A :- pending(A, [B .. . . .  N] ). 
B :- pending(B, [A . . . . .  N] ). 

N :- pending(N, [A, B .. . .  ] ). 

The constraint resolution procedure associated to 
pending consists in a simplification rule for the 
elimination of pending TCs when the co-occurence 
contraint is satisfied. This simplification rule is 
written as follows for the simple example given 
above in section 2: 

pendlng(A,B)A pending(B,A) - -> O . 
Notice that we have a symmetric treatment for A and 
B. The general simplification rule is the following, 
where LA, LB and LC are lists of pending TCs: 

( p e n d i n g ( A ,  LA) ,  p e n d i n g ( B ,  LB) - - >  
pending(A, LC) ) :- 

mb(A, LB), mb(13, LA), 
Withdraw(B, LA, LC). 

LC is the resulting pending list equal to LA 
minus B. 

This constraint resolution mechanism can be 
further extended quite straightforwardly to handle 
linear precedence restrictions and modalities. Linear 
precedence constraints.are dealt with independently 
from each other. The Dislog clause: 
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{ A , B  . . . . .  X . . . . .  Y . . . . .  N}  .... X < Y  . . . .  
is translated into a CLP clause as follows: 
Z <> p e n d i n g ( X ,  [ A ,  B . . . .  , .... Y . . . .  , N ] )  ^ n o t  

( p e n d i n g ( Y , [ A ,  B . . . . .  X . . . . . . . .  , N ] ) ) .  
The coherence control is the following: 
p e n d i n g ( X ,  L A ) ^ n o t ( p e n d l n g ( X ,  L A ) )  - - >  f a i l u r e .  
the simplification rule is: 
n o t  ( p e n d i n g ( Y ,  [A ,  B . . . . .  X . . . .  , ..., N]  ) )  - - >  O 
or, more simply, since all negations are withdrawn at 
each stage: not (pending(_,_) --> O .  

7.  S p e c i f i c  f e a t u r e s  o f  o u r  a p p r o a c h  
Our approach can be contrasted mainly with the 

usual systems based on unification grammar (UG) 
formalisms. The first major difference is that the 
unification and rewriting mechanisms usually 
associated with UG are replaced by a more 
constraining operation, type construction, which 
always proceeds by sucessive restrictions (or 
monotone increasing specialisation) each time a type 
is further expanded. From that point of view, our 
approach also substancially differs from (Emele & 
Zajac 90) who propose a powerful and semantically 
clear mechanism for typed unification associated to 
type inheritance. 

Next, we have a single operation: type 
construction; we do not have on the one hand 
grammar rules and on the other hand, associated to 
each rule, a set of equations to deal with feature 
values and constraints. The constraints we have 
associated with our types are not of the same nature 
and cannot be compared to the equations of UGs. 
They are moreover a part of the type. 

Constraints added to types are interpreted within 
the CLP framework, this permits us to have a more 
expressive and powerful constraint system, which is 
also more efficient and simpler to write. Constraint 
satisfaction is not indeed guaranteed at the level they 
are given, but throughout the whole type 
construction process. 

Our approach is compatible with the current 
principled-based approaches to describing languages. 
This is exemplified in section 4 by the constraints on 
role and case assignments. In a more general way, the 
description language we have presented here is 
particularly appropriate for highly abstract 
descriptions of language, which corresponds to 
several current trends in computational linguistics. 
Our description language is, in the same time, well- 
adapted to deal with lexical-based approaches to 
language processing (those approaches like lexicon 
grammars where the lexicon plays a central role) and 
to describe representations developed within lexical 
semantics. 

Finally, a constraint like pending generalises the 
notion of long-distance dependency to several other 
kinds of dependencies. This generalization is in 
particular a consequence of the fact that type 
structures do not have any ordering on subtypes and 

they cannot, thus, directly express the difference 
between remote and close constituents. 

The abstract machine we have described gives a 
clear procedural semantics to the system. A similar 
machine can be defined for natural language 
generation. Our description language has now being 
fully implemented in Prolog on a SUN workstation 
following the abstract machine description given 
above. The first version is an interpreter; a compiler 
is under development. Experiments with GB theory 
descriptions (Saint-Dizier 90) have been successfully 
carried out. It is however important to notice that our 
formalism is not specifically designed for GB theory 
and that it can express with the same accuracy other 
approaches such as HPSGs and lexicon grammars. 
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