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A B S T R A C T  

The notion of a Horn extended feature structure 
(HoXF) is introduced, which is a feature s tructure 
constrained so that  its only allowable extensions are 
those satisfying some set of llorn clauses in feature- 
term logic, l loXF ' s  greatly generalize ordinary fea- 
ture structures in admit t ing explicit  representation of 
negative and implicational  constraints.  In contradis- 
tinction to the general case in which arbi t rary  logical 
constraints are allowed (for which the best known al- 
gori thms are exponential) ,  there is a highly tractable 
algorithm for the unification of HoXF's.  

1 .  PRELIMINARY CONCEPTS 

1.1 U n i f i c a t i o n - b a s e d  g r a m m a r  f o r m a l i s m s  
Unification-based grammar  formalisms consti tute a 
cornerstone of many of the most impor tant  approaches 
to natural- language understanding (Shieber, 1986), 
(Colban, 1988), (Fenstad etal., 1989). The basic idea 
is that  the parser generates a number of part ial  repre- 
sentations of the total parse, which are subsequently 
checked for consistency and combined by a second pro- 
cess known as a unifier. A common form of represen- 
tation for the part ial  representations is that  o f /ca ture  
structures, which are record-like da t a  structures which 
are allowed to grow in three dist inct  ways: by adding 
missing values, by adding at t r ibutes ,  and by coalescing 
existing a t t r ibutes  (forcing them to be the same). The 
last operat ion may lead to cyclic structures,  which we 
do not exclude. If the feature s t ruc ture  Sz is an ex- 
tension of $1 (i.e., $1 grows into $2 by application of 
some sequence of the above rules), we write $1 E $2 
and say tha t  St subsumes $2. Intuitively, if Sl E: $2, 
S~ contains more information than does Sl .  I t  is easy 
to show that  E: is a part ial  order on the class of all 
feature structures.  

Each feature s tructure represents part ial  informa- 
tion generated during the parse. To obtain the total  
picture, these part ial  components  must be combined 
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into one consistent piece of knowledge. The formal 
process of unification is precisely this operat ion of com- 
bination. The most general unifier (mgu) $1 LI $2 of 
feature s tructures Sj and Sa is the least feature struc- 
ture (under E)  which is larger than both Sl and $2. 
Such an mgu exists if and only if $1 and $2 are con- 
sistent; that  is, if and only if they subsume a common 
feature structure.  

1.2 U n i f i c a t i o n  a l g o r i t h m s  a n d  t h i s  p a p e r  
While the idea of a most general unifier is a pleasing 
theoretical notion, its real util i ty rest with the fact 
tha t  there are efficient algorithms for i ts computat ion.  
The fastest known algorithm, identified by Ait-Kaci  
(1984), runs in time which is, for all practical pur- 
poses, linear in the size of the input  (i.e., the combined 
sizes of the structures to be unified). In proposing any 
extension to the basic framework, a pr imary considera- 
tion must  be the complexity of the ensuing unification 
algorithm. The principal contribution of the research 
summarized here is to provide an extension of ordinary 
feature structures,  admit t ing negation and l imited dis- 
junction, while at  the same time continuing to admit  
a provably efficient unification algorithm. 

Due to space l imitations,  we must omit  substan- 
tial background material  from this paper. Specifically, 
we assume that  the reader is familiar with the no- 
tat ion and definitions surrounding feature structures 
(Shieber, 1986; Fenstad et al., 1989), as well as the 
t radi t ional  unification algori thm (Colban, 1990). We 
also have been forced to omit  much detail  from the 
description and verification of our algorithm. A full 
report  on this work will be available in the near fu- 
ture. 

2.  U N I F I C A T I O N  I N  T H E  P R E S E N C E  
O F  C O N S T R A I N T S  

2.1 C o n s t r a i n t s  o n  f e a t u r e  s t r u c t u r e s  Not ev- 
ery feature s t ructure  is a possibility as the ul t imate 
output  of the parsing mechanism. Typically, there are 
constraints which must be observed. One way of en- 
suring this sort of consistency is to build the checks 
right into the grammar,  so tha t  the feature s tructures 
generated are always legi t imate substructures  of tile 
final output .  The  CLG formalism (Dumas and Vat- 
lie, 1989) is an example of such a philosophy. |n many 
ways, this is an at t ract ive option~ because i t  provides a 
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unified context for expressing all aspects of the gram- 
mar. liowever, this approach has the disadvantage 
that  it  l imits the use of independent  parsing subalgo- 
r i thms whose results are subsequently unified, since 
the consistency checks nmst be performed before the 
feature s tructures are presented to the unifier. There- 
fore, to maintain such independence, it  would be a 
dist inct  advantage if some of the constraint  checking 
could be relegated to the unification process. 

To establish a formal framework in which this is 
possible, we must s ta r t  by extending our notion of a 
feature structure.  Following the ideas of Moshier and 
Rounds (1987) and Langholm (1989), we define an ex- 
tended fcature structure to be a pair (N, K:) in which 
/C is a set of feature s tructures and N is the least ele- 
ment of/C under the ordering _ .  (Titus, by definition, 
K: has a least element, and K: determines N.)  Think of 
N a.s the "current" feature structure,  and/C as the set 
of all s tructures into which N is allowed to grow. We 
define (N~,K:t) C:~ (N~,/C~) to mean precisely that  
K~ C_ /C~. In other words, the set of all s tructures 
which N~ can grow into is a subset of those which N~ 
can grow into. (It  follows necessarily that  N~ ~_ N2 
in this case.) Note that  if we identify the ordinary 
feature s tructure N with the pair (N, IM I N ~ M}), 
we precisely recapture ordinary subsumption.  Finally, 
the notion of unification associated with _~ is given 
by 

(Mr, /Ct)  LI= (M~,/C:~) = 

( M , / ~  17/C2) if/C~ n/c2 
has a least element M; 

undefined oOmrwise. 

2.2 L o g i c a l  f e a t u r e  s t r u c t u r e s  w i t h  con-  
s t r a i n t s  To operate  on pairs of the form (N~/C) al- 
gorithmically, we must have in place an appropr ia te  
representation for the set g:. There are many possible 
choices; ours is to let it be the set of all s tructures 
satisfying a set of sentences iu a part icular  logic. The 
logic which we use is a simple modification of the lan- 
guage of Rounds and Ka.sper (1986) (see also (Kasper 
and Rounds, 1990)) admit t ing negation but  only bi- 
nary path equivalences. Specifically, an atomic feature 
term is one of the following. 

FormltJa 
T 
± 
( ~ :  a)  

(,~ × f~) 

Semantics 
The identically true term. 
The identically false term. 
The path (nesting of a t t r ibutes)  cz exists 

and terminates with label a. 
The paths cr and /? have a common end 

point (coalesced end points). 

In (a  : a), the label a may be T,  denoting a miss- 
ing value. The  notation (a  ~ /~) is borrowed from 
(Langholm, 1989), and has the same semantics as 
{ , ,B}  o f (Rounds  and Kasper,  1986). A (general)fea- 
tur~ term is b . i l t  up from atomic feature terms using 
the connectives ^, v, and -., with the usual semantics. 
In particular,  the negation we use is the classical no- 
tion; a s tructure sa t is fes  (-,~0) if and only if it  does 

not satisfy ~ .  For any set • of feature terms, Mod(&) 
denotes the set of all feature s tructures for which each 

E r~ is true. For a formal definition of satisfaction, 
we refer the reader to the above-cited references. In- 
tuitively, any set of terms which defines a consistent 
rooted, directed graph is satisfiable. Ilowever, let us 
specifically remark that  only nodes with no outgoing 
edges may have labels other than T, tha t  labels other 
than T may occur at  at  most one end point, tha t  no 
two outgoing edges from the same node may have the 
same label, and that  any term of the form (a  : .L) is 
equivalent to _L, and so inconsistent. 

Now we define a logical extended feature structure 
(LoXF) to be an extended feature s tructure iN,  K:) 
in which K: = M o d ( ¢ )  for some consistent finite 
set ~ of feature terms. In part icular,  Mod(~ )  must 
have a least model. We also denote this pair by 
Y(~)  = (g . ,M od(~b ) ) .  Now Y(~b,) E_, ~ ' (~2) re- 
duces to M o d ( ~ )  C_ Mod(4,a), and 

{ ~(~ u ¢2) 

undefined 

if Mod(&a U q~) 
has a least element under E; 
otherwise. 

2.3 R e m a r k  o n  n e g a t i o n  A full discussign of the 
nature of negation in LoXF's  is complex, and will be 
the focus of a separate  paper.  IIowever, because this 
topic has received a great  deal of at tent ion (Moshier 
and Rounds, 1987), (Langholm, 1989), (Dawar and 
Vijay-Shanker, 1990), we feel it  essential to remark 
here tha t  ~'(¢~) does not  have the "classical" nega- 
tion semantics which can be determined by looking 
solely at  the least element. Indeed, the appropr ia te  
definition is tha t  .~'(~) satisfies -'7' precisely when no 
member of Mod(&) satisfies ¢; in other words, the 
s t ructure  N .  is not allowed to be extended to satisfy 
~o. 

2.4 U n i f i c a t i o n  a l g o r i t h m s  fo r  l o g i c a l  ex-  
t e n d e d  f e a t u r e  s t r u c t u r e s  In view of the defini- 
tion immediately above, i t  is easy to see that  that  any 
unification algorithm for LoXF's  must solve the fol- 
lowing two problems in the course of a t t empt ing  to 
unify ~'(~ i )  and ~'(~2). 

(u l )  It must decide whether or not ~ i  U q~2 is consis- 
tent; i.e., whether or not there is a feature struc- 
ture satisfying all sentences of both ~ i  and cb2. 

(u2) In case that  4~I U~2 is satisfiable, it  must  also de- 
termine if there is a least model, and if so, identify 
it. 

Now it  is well known that  (u l )  is an NP-complete 
problem, even if we disallow negation and path equiva- 
lence (Rounds and Kasper,  1986, Thin. 4). Therefore, 
barring the eventuality that P = NP, we cannot ex- 
pect to allow ~I and ~2 to be arbitrary finite sets of 
feature terms and still have a tractable algorithm for 
unification. One solution, which has been taken by a 
number of authors, such as Kasper (1989) and Eisele 
and D6rre (1988), is to devise clever algorithms which 
apply to the general case and appear empirically to 
work well on "typical" inputs, but still are provably 
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exponential  in the worst case. While such work is un- 
deniably of great value, we here propose a companion 
strategy; namely, we restrict  at tention to pairs {N, ~)  
such tha t  the very nature of • guarantees a t ractable 
algorithm. 

3. H O R N  F E A T U R E  L O G I C  

In the field of mathematicM logic in general, and 
in the computat ional  logic relevant to computer  sci- 
ence in part icular ,  Horn clauses play a very special r61e 
(Makowsky, 1987). Indeed, they form the basis for the 
programming language Prolog (Sterling and Shapiro, 
1986) and the database  language Datalog (Ceri et ai., 
1989). This is due to the fact that  while they possess 
substant ial  representational power, t ractable  inference 
algorithms are well known. It is perhaps the main the- 
sis of this work that  the utility of l lorn clauses carries 
over to computat ional  linguistics as well. 

3.1 H o r n  f e a t u r e  c l a u s e s  A feature literal is ei- 
ther an atomic feature term (e.g., ( ~ :  a), (~ ~-. /~), 
or _L) or its negation. A feature clause is a finite 
disjunction £ l v t ~ v . . . v l , n  of feature literals. A fea- 
ture clause is florn if at most one of the t i ' s  is not 
negated. A Horn extended feature structure ( l loXF) 
is a LoXF ~'(4,) such that  • is a finite set of llorn 
feature clauses. 

3.2 A t a x o n o m y  o f  H o r n  f e a t u r e  c l a u s e s  Be- 
fore moving on to a presentation of algorithms on 
t IoXF's ,  it  is appropriate  to provide a brief sketch of 
thc utility and limits of restricting our attention: to col- 
lections of lIorn clauses, hnplicat ion here is classical; 

in the case of ordinary propositional logic, we use 
the notat ion e t^~r~^. . .  ^am =~ p to denote the clause 
~O'l v-~0r2v... V'~O'rnVp. Horn feature clauses may then 
be thought  of as falling into one of the following four 
categories. 

( l I l )  A clause of the form a,  consisting of a single 
positive literal, is jus t  a fact. 

(lI2) A clause of the form -~e, consisting of a single 
negative literal, is a negated fact. In terms of 
l loXF ' s ,  if -~a E ¢ ,  this means tha t  within ~'(&), 
no extension of N¢ in which a is true is permit-  
ted. As a concrete example, a constraint  s tat ing 
that  a subject  may not have an a t t r ibute  named 
"tense" would be of this form. 

(H3) A clause of the form ai  ^*2 . . .  am =~ p is called a 
rule or an implication. Numerous examples of the 
utility of implication in linguistics are identified in 
(Wedekind, 1990, Sec. 1.3). Kasper 's  conditional 
descriptions (Kasper,  1988) are also a form of im- 
plication. More concretely, the requirement that  
a transit ive verb requires a direct object  is easily 
expressed in this form. 

(114) A clause of the form a l ^ a 2 ^ . . . ^ a m  =~ 1 is 
called a compound negation. The formalization 
of the constraint  that  a verb cannot  be both in- 
transit ive and take a direct object  is an example 
of the use of such a clause, 

The type of knowledge which is not recapturable using 
llorn feature logic is positive disjunction; i.e., formu- 
las of tim form ~rlva2, with both a.l and aa feature 

terms. Of course, this has nothing in part icular  to 
do with feature-term logic, but  is well-known limita- 
tion of Itorn clauses in general. However, in accepting 
this l imitat ion,  we also obtain many key properties,  
including t ractable  inference and the following impor- 
tan t  property of genericity. 

3.3 T o t a l l y  g e n e r i c  L o X F ' a  Let now • be any 
finite set of feature terms. We say tha t  • is totally 
generic if, for any set q of facts (see (H1) above), 
if Mod(O 0 # )  is nonempty then it contains a least 
element under E. Intuitively, if we use • to define 
the LoXF ~ ( ~ ) ,  total  genericity says tha t  however 
we extend the base feature s t ructure  N¢ (consistently 
with O), we will continue to have a LoXF. Remarkably, 
we have the following. 

3.4 T h e o r e m  A set of feature terms ~p is totally 
generic if and only if it is equivalent to a set of Horn 
feature clauses. 

Proof outline: This  result is essentially a translation 
of (Makowsky, 1987, Thm. 1.9) to the logic Of feature 
structures.  In words, it  says that  if (and only if) we 
work with l loXF's ,  condition (u2) on page 4 becomes 
superfluous (except for explicitly identifying the least 
model.) t3 

4. T H E  E X T E N D E D  U N I F I C A T I O N  
A L G O R I T H M  

It  has been shown by Dowling and Gallier (1984) 
tha t  satisfiability for finite sets of proposit ional IIorn 
formulas can be tested in time linear in the length of 
the formulas. Their  algorithms can easily be modified 
to deliver the least model as well. Since unification 
of HoXF's  is essentially testing for satisfiability plus 
identifying the least model (see (u l ) -u (2 )  on the previ- 
ous page), a natural  approach would be to adapt  one 
of their algorithms. Essentially, this is what  we do. 
Like theirs, our algorithm is ]orward chaininff, we s tar t  
with the facts and "fire" rules until no more can be 
fired, or until a contradiction appears.  However, the 
adapta t ion is not trivial,  because feature-term logic is 
more expressive than proposit ional  logic. In particu- 
lar, feature-term logic contains countably many tau- 
tologies which have no correlates in ordinary proposi- 
tional logic. The  main contr ibution of our algori thm 
is to implicit ly recapture the full semantics of these 
tautologies while keeping the t ime complexity within 
reasonable bounds. Due to space l imitations,  we can- 
not present tile full formality of the rather complex 
da t a  structures.  Rather,  to highlight tile key features, 
we step through an annotated example.  We focus only 
upon the special problems inherent in the extension 
to feature-term logic, and assume familiarity with the 
forward-chaining algori thm in (Dowling and Gallier,  
1984) and the graph unification algorithm in (Colban, 
1990). 

4.1 A n  e x a m p l e  t h e o r y  a n d  e x t e n d e d  f e a t u r e  
g r a p l m  The set E contains the following eight l lorn 
feature clauses. 

(~,) (AA : a). 

( ~ , )  ( n :  a ) .  
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(~)  (AA : a)^(B : a)=v (CCDDG : t). 

(~ )  (A : T ) ^ ( C :  T) =:, ( A B D D G :  T). 

(~s) (AA.X B ) ^ ( A B D D G  : T)=} ( A B D D E F  : T). 

(~)  (A13DD : T )^ (B  : T) =:, (CCD x ABD).  

(~,) (CCDD x ABDD)  =} (AC : T). 

(~s) (ACD : T) =v (ACC : t). 

Just as we may represent a set of atomic feature terms 
with a feature graph, so too may we represent, in part, 
a set of l lorn feature clauses with an extended feature 
graph. Shown in Figure I below is the initial extended 
feature graph for the set ~, representing the state of 
inference before any deductions are made. 

a 

t 

a • -~ • i • i • i • 

@ ° .  D • , - ®  -,,=. 
c D D a__ 

• i • .~ I ,  i ,  • i t 

Figure 1: Initial extended feature structure for ~. 

Every path and every node label which occurs in 
some literal of E is represented. The labels of all edges, 
as well as all non-T  node labels, are underscored, de- 
noting that they are virtual, which means that they 
are only possibilities for the minimal model, and not 
yet actually part of it. The root node is denoted by 
®, and nodes with value T are denoted with a . .  Note 
that  paths with common virtual end labels (e.g., AA 
and B) are not coalesced; virtual nodes and edges are 
never unified. As a result, the predecessors (along any 
directed path) of any actual node or edge is itself ac- 
tual. As inferences are made, edges and nodes become 
actual (depicted by deleting underscores), and actual 
nodes with common labels are ultimately coalesced. 
The final extended feature graph is shown in Figure 
2 below. For easier visibility, actual edges are also 
highlighted with heavier lines. 

A B D 
a 4 ' • ~ • --~ @ 

C / 
• ' ~ • 

D G 
: • - - - - i , -  t 

Figure 2: Final extended feature structure for .~.. 

If we delete the remaining virtual nodes and edges, 
we obtain the graphical representation of the least 
model of ::. 

4.2 C o m p u t i n g  t he  m i n i m a l  m o d e l  o f  the  ex-  
a m p l e  Now let us consider the process of actually 
obtaining the structure of Figure 2 from E. In the 

propositional forward chaining approach, we start  by 
pooling the facts that we know - -  in this ease {~1, ~2}. 
We then look for rules whose left-hand sides have been 
satisfied. In the example, the left-hand side of~3 is sat- 
isfied, so we may fire that rule and add ( C C D D G  : t) 
to our list of known facts, exactly as in the proposi- 
tional case. We may also conclude that  (AA x B), 
because both are actual paths which terminate with 
the same label a, and non-T labels are unique. The 
representative extended feature graph at this point is 
shown in Figure 3 below. 

A B D D O_ 
a - q l ' - , , ~ -  Q ~- • , ~ • D- • ~- • 

(~)  • D ql D • 

N "=" C D D G 
I I  ~ o ~ • .,,,-.,...--i,- • ~ 1~ 

Figure 3: Intcrmcdlate structure for ~. 

There are other things which we may implicitly con- 
clude, and which we must conclude to fire the other 
rules. For example, we may fire rule ~4 at this point, 
because (AA : a) =~ (A : T) and (IJ : a) =¢~ (/3 : T) 
are both tautologies in tile logic of feature terms, and 
so its left-hand side is satisfied. Thus, we may add 
(A:BDDG : T) to our list of known facts. Similarly, 
since, as noted above, (AA ~ 13) holds, we <may fire 
rule ~5 to conclude ( A B D D E F  : T). Likewise, we 
may now fire rule ~s and conclude (CCD x ABD).  
The representative extended graph structure at this 
pc4nt is shown in Figure 4 below. 

A B D D G 

( D  • • ~ i l  

C G 
• ~ • • ~ t 

Figure 4: Intermediate structure for E. 

We mr, st eventually invoke a unification at the com- 
mon end point of CCD and ABD. Such unification 
implicitly entails the tautology (CCD x ABD)  :~ 
(CCDD x A13DD) and permits us to conclude that 
rule ~7 should fire and add (AC : T) to the set of facts 
of the least model. The result represented by the final 
extended feature graph of Figure 2. Note that rule ~s 
never fires, and that there are virtual edges and nodes 
left at the conclusion of the process. 

4.3 A t a x o n o m y  o f  i m p l i c i t  r u l e s  for se t s  o f  
H o r n  f e a t u r e  c l auses  As we remarked in the in- 
troduction to this section, to correctly adapt forward 
chaining to the context of IIoXF's, we must implicitly 
iticlude the semantics of countably many tautologies. 
These fall into three classes. 

( i l)  Whenever an atomic term of the form (or// : a) 
is determined to be true ( ap  denotes the concate- 

,nation of a and fl), and another term of the form 
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(c, : T) occurs as au antecedent of a ilorn feature 
clause, (with either fl not the empty string or else 
a :fl T), we must be able to automatically make 
the deduction of the tautology (oq~ : a) =~ (~ : T )  
to conclude that (c~ : T) is now true. We call this 
node and path subsumption. In computing the least 
model of =, the deductions (AA:  a) =~ CA: T)  and 
(B : a) =~ (B : T) are examples of such rules. 

(i2) Whenever we deduce two terms of the form (a : a) 
and (fl : a) to be true, with a ~ T, we must implic- 
itly realize the semantics of the rule (a : a)^(fl : 
a) ~ (a x fl), due to tile constraint that non- 
T labels are unique. We call this label matching. 
In computing the least model of E, tile deduction 
(AA : a)A(B : a) ::*. (AA X B) is a specific example. 

(i3) Whenever we coalesce two paths, we must per- 
form local unification on the subgraph rooted at the 
point of coalescence. More precisely, if we coalesce 
the paths cY and fl, and the atom (~7 : a) is true, we 
re,st  deduce that both (cr7 x [/7) and (f17 : a) are 
true; i.e., we must implicitly realize the compound 
rule (c¢ y. fl)^(c*7 : a) =~ (a'r x f17)^(f17 : a). This 
is just  a logical representation of local unification. In 
computing the least model of E, a specific example 
is the deduction (CCD ~ A B D ) ^ ( C C D D G  : t) 
(CCDDG .~ A B D D G ) ^ ( A B D D G  : t). 

4.4 Data structures To support these inferences, 
several specific data structures are supported. They 
are sketched below. 

(dl)  There is tile list of clauses. Each clause has a 
counter associated with it, indicating the number of 
literals which remain to be fired before its left-hand 
side is satisfied. When this count drops to zero, the 
clause fires and its consequent becomes true. 

(d2) There is a list of atoms which occur in the an- 
tecedents of clauses. With each literal is associated 
a set of pointers, one to each clause of which it is 
an antecedeut literal. When an atom becomes true, 
the appropriate clauses are notified, so they may 
decrement their counters. 

(d3) Tile working extended fealure structure, as illus- 
trated in Figures 1-4, is maintained throughout. 

(d4) For each node in the working extended feature 
structure, a list of atoms is maintained. If the node 
label is a, then each such atom in the list is of the 
form (c~ : a), with c, a path from the root node to the 
node under consideration. When that node becomes 
actual, that atom is notified that is is now satisfied. 

(d5) For each non-T node label a which occurs in 
some atom, a list of all virtual nodes with that la- 
bel is maintained. When one such node becomes 
actual, the other are checked to see if an inference 
of the form (i2) should be made. 

(dr) For each atom of the form (or x fl) occurring 
as an antecedent in some clause, the nodes at the 
ends of tl,ese paths in the working extended feature 
structure are endowed with a common tag. When- 
ever nodes are coalesced, a check for such common 
tags is made, so the appropriate atom may be noti- 
fied that it is now true. 

4.5 I n d e p e n d e n t  p rocesses  a n d  u n i f i c a t i o n  
The algorithm also maintains a ready queue of avail- 
able processes. These processes are of three types. 
A process of the form Actual(or : a), when exe- 
cuted, makes the identified path and label actual in 
the extended feature graph. A process of the form 
Coalesce(hi ,ha)  coalesces the end points of the two 
nodes nl  and n2 in the extended feature graph. A pro- 
cess of the form Unify(n) performs a local unification 
at the subgraph rooted at node n, using an algorithm 
such as identified in (Colban, 1990). All processes in 
the ready queue commute; they may be executed in 
any order. 

To unify two distinct sets of terms (perhaps gener- 
ated by independent parts of a parser), we join their 
two extended feature graphs at the root, merge the 
corresponding data structures, and add the command 
Unify(root) to the merged process queue. In other 
words, we perform a unification to match common in- 
formation, and then continue with the inference pro- 
cess. 

4.6 T h e  c o m p l e x i t y  of  t he  u n i f i c a t i o n  a lgo-  
r i t h m  Define the length of a literal to be the number 
of at tr ibute name and at tr ibute value occurrences in 
it. Thus, for example, length((AB ~ CD)) = 4 and 
length((ABCD : a)) = 5. For a set cb of tlorn feature 
clauses, we further define the following quantities. 

L = The length of ~I,; i.e., the sum of the lengths of 
all literals occurring in 4~. 

P = The number of distinct terms of the form (or 
fl) which occur as the right-hand side of a rule in &. 
(Facts are n o t  considered to be rules here.) 

m = The number of distinct at tr ibutes in the in- 
put. (If we collect all of the literMs occurring in 
tile clauses of • and discard any negation to yield a 
large pool of facts, then m is tile number of edges in 
the graph representing the associated feature struc- 
ture. If ~ is a set of positive iiterals to begin with, 
and hence represents an ordinary feature structure, 
then m represents the size of this feature structure.) 

We then have the following theorem. 

4.7 T h e o r e m  The worst.case time complexity 
of our IloXF unification algorithm is O(L + 
(P  + 1). m .  w(m)), where a~(m) is an inverse Acker- 
mann/unction (which grows more slowly than than 
any primitive recursive function - for all practical pur- 
poses w(n) <_ 5). 121 

This may be compared to tile worst-case complex- 
ity of the usual algorithm for unifying ordinary feature 
structures, which is O(m.w(m)) .  The increase in com- 
plexity over this simpler case is due to two factors. 

(cl)  We must read the entire input;  since iiterals may 
be repeated, it is possible that  L > m; hence tile L 
term. 

(c2) Each time that  we deduce that two nodes must 
be coalesced ,  we must perform a unification. This 
can occur at most P times - the number of times 
that  a rule can assert a distinct coalescing of nodes .  
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4.8 F u r t h e r  r e m a r k s  on the  a lgo r i t hm Note in 
particular that there are no restrictions on where path 
equivalences (e.g., (or ~. ~)) may occur in Horn feature 
clauses. In particular, unlike (Kasper, 1988), we do 
allow negated path equivalences, llowever, if we dis- 
allow path equivalences as consequents of rules, then 
the complexity of our algorithm becomes essentially 
that of the traditional unification algorithm (see (c2) 
above). It is primarily deducing path equivalences on 
the fly which results in the additional computational 
burden. 

5. C O N C L U S I O N S ,  F U R T H E R  D I I t E C -  
T I O N S ~  A N D  P R O J E C T  S T A T U S  

5.1 Conclus ions  and  f u r t h e r  d i rec t ions  We 
have identified lloXF's as an attractive compromise 
between ordinary feature structures (in which there is 
no way to express constraints on growth) and full logi- 
cal feature theories (for which the unification problem 
is NP-complete). We view lloXF's not as the "best" 
apl~roach, but rather as a tool to be used to buihl 
better overall unification-based grammar formalisms. 
The obvious next step is to develop an integrated 
framework in which IloXF's are employed to handle 
negation and the disjunction arising from implication, 
while other techniques handle more general disjunc- 
tion and term subsumption (Smolka, 1988). Such an 
optimized approach could lead to much faster overall 
handling of negation and disjunction, but further work 
is clearly needed to bear this out. 

5.2 S t a t u s  o f  the  p r o j e c t  While the algorithm 
has been spelled out in considerable detail, we have 
just begun to build an actual implementation of the 
IIoXF unifier in the programming language Scheme. 
We expect to complete the implementation by the 
summer of 1991. 
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