
H O R N E X T E N D E D F E A T U R E S T R U C T U R E S :
F A S T U N I F I C A T I O N W I T H N E G A T I O N A N D L I M I T E D D I S J U N C T I O N t

Ste phe n J . Hegner
D e p a r t m e n t of C o m p u t e r Science and E lec t r i ca l Eng inee r ing

Votey Bui ld ing
Univers i ty of Vermont

Bur l ing ton , V T 05405 USA
te lephone : (802)656-3330

in te rne t : hegne r@uvm.edu
uucp: . . uune t !uvm-gen!hegner

A B S T R A C T

The notion of a Horn extended feature structure
(HoXF) is introduced, which is a feature s tructure
constrained so that its only allowable extensions are
those satisfying some set of llorn clauses in feature-
term logic, l loXF ' s greatly generalize ordinary fea-
ture structures in admit t ing explicit representation of
negative and implicational constraints. In contradis-
tinction to the general case in which arbi t rary logical
constraints are allowed (for which the best known al-
gori thms are exponential) , there is a highly tractable
algorithm for the unification of HoXF's.

1 . PRELIMINARY CONCEPTS

1.1 U n i f i c a t i o n - b a s e d g r a m m a r f o r m a l i s m s
Unification-based grammar formalisms consti tute a
cornerstone of many of the most impor tant approaches
to natural- language understanding (Shieber, 1986),
(Colban, 1988), (Fenstad etal., 1989). The basic idea
is that the parser generates a number of part ial repre-
sentations of the total parse, which are subsequently
checked for consistency and combined by a second pro-
cess known as a unifier. A common form of represen-
tation for the part ial representations is that o f /ca ture
structures, which are record-like da t a structures which
are allowed to grow in three dist inct ways: by adding
missing values, by adding at t r ibutes , and by coalescing
existing a t t r ibutes (forcing them to be the same). The
last operat ion may lead to cyclic structures, which we
do not exclude. If the feature s t ruc ture Sz is an ex-
tension of $1 (i.e., $1 grows into $2 by application of
some sequence of the above rules), we write $1 E $2
and say tha t St subsumes $2. Intuitively, if Sl E: $2,
S~ contains more information than does Sl . I t is easy
to show that E: is a part ial order on the class of all
feature structures.

Each feature s tructure represents part ial informa-
tion generated during the parse. To obtain the total
picture, these part ial components must be combined

t T h e r e s e a r c h r e p o r t e d here in was p e r f o r m e d whi le t he
a u t h o r was v i s i t i ng the C O S M O S C o m p u t a t i o n a l L ingu i s t i c s
G r o u p of t he M a t h e m a t i c s D e p a r t m e n t a t t he Un ive r s i ty o f
Oslo . l i e w i shes to t h a n k J e n s Erik F e n s t a d a n d t h e m e m b e r s
o f t h a t g r o u p for p r o v i d i n g a s t i m u l a t i n g r e sea rch e n v i r o n m e n t .
P a r t i c u l a r t h a n k s a re d u e Tore L a n g h o l m for m a n y i n v a l u a b l e
d i s c u s s i o n s r e g a r d i n g the i , , t e rp l ay o f logic, f e a t u r e s t r u c t u r e s ,
a n d un i f i ca t i on .

into one consistent piece of knowledge. The formal
process of unification is precisely this operat ion of com-
bination. The most general unifier (mgu) $1 LI $2 of
feature s tructures Sj and Sa is the least feature struc-
ture (under E) which is larger than both Sl and $2.
Such an mgu exists if and only if $1 and $2 are con-
sistent; that is, if and only if they subsume a common
feature structure.

1.2 U n i f i c a t i o n a l g o r i t h m s a n d t h i s p a p e r
While the idea of a most general unifier is a pleasing
theoretical notion, its real util i ty rest with the fact
tha t there are efficient algorithms for i ts computat ion.
The fastest known algorithm, identified by Ait-Kaci
(1984), runs in time which is, for all practical pur-
poses, linear in the size of the input (i.e., the combined
sizes of the structures to be unified). In proposing any
extension to the basic framework, a pr imary considera-
tion must be the complexity of the ensuing unification
algorithm. The principal contribution of the research
summarized here is to provide an extension of ordinary
feature structures, admit t ing negation and l imited dis-
junction, while at the same time continuing to admit
a provably efficient unification algorithm.

Due to space l imitations, we must omit substan-
tial background material from this paper. Specifically,
we assume that the reader is familiar with the no-
tat ion and definitions surrounding feature structures
(Shieber, 1986; Fenstad et al., 1989), as well as the
t radi t ional unification algori thm (Colban, 1990). We
also have been forced to omit much detail from the
description and verification of our algorithm. A full
report on this work will be available in the near fu-
ture.

2. U N I F I C A T I O N I N T H E P R E S E N C E
O F C O N S T R A I N T S

2.1 C o n s t r a i n t s o n f e a t u r e s t r u c t u r e s Not ev-
ery feature s t ructure is a possibility as the ul t imate
output of the parsing mechanism. Typically, there are
constraints which must be observed. One way of en-
suring this sort of consistency is to build the checks
right into the grammar, so tha t the feature s tructures
generated are always legi t imate substructures of tile
final output . The CLG formalism (Dumas and Vat-
lie, 1989) is an example of such a philosophy. |n many
ways, this is an at t ract ive option~ because i t provides a

- 3 3 -

unified context for expressing all aspects of the gram-
mar. liowever, this approach has the disadvantage
that it l imits the use of independent parsing subalgo-
r i thms whose results are subsequently unified, since
the consistency checks nmst be performed before the
feature s tructures are presented to the unifier. There-
fore, to maintain such independence, it would be a
dist inct advantage if some of the constraint checking
could be relegated to the unification process.

To establish a formal framework in which this is
possible, we must s ta r t by extending our notion of a
feature structure. Following the ideas of Moshier and
Rounds (1987) and Langholm (1989), we define an ex-
tended fcature structure to be a pair (N, K:) in which
/C is a set of feature s tructures and N is the least ele-
ment of/C under the ordering _ . (Titus, by definition,
K: has a least element, and K: determines N.) Think of
N a.s the "current" feature structure, and/C as the set
of all s tructures into which N is allowed to grow. We
define (N~,K:t) C:~ (N~,/C~) to mean precisely that
K~ C_ /C~. In other words, the set of all s tructures
which N~ can grow into is a subset of those which N~
can grow into. (It follows necessarily that N~ ~_ N2
in this case.) Note that if we identify the ordinary
feature s tructure N with the pair (N, IM I N ~ M}),
we precisely recapture ordinary subsumption. Finally,
the notion of unification associated with _~ is given
by

(Mr, /Ct) LI= (M~,/C:~) =

(M , / ~ 17/C2) if/C~ n/c2
has a least element M;

undefined oOmrwise.

2.2 L o g i c a l f e a t u r e s t r u c t u r e s w i t h con-
s t r a i n t s To operate on pairs of the form (N~/C) al-
gorithmically, we must have in place an appropr ia te
representation for the set g:. There are many possible
choices; ours is to let it be the set of all s tructures
satisfying a set of sentences iu a part icular logic. The
logic which we use is a simple modification of the lan-
guage of Rounds and Ka.sper (1986) (see also (Kasper
and Rounds, 1990)) admit t ing negation but only bi-
nary path equivalences. Specifically, an atomic feature
term is one of the following.

FormltJa
T
±
(~ : a)

(,~ × f~)

Semantics
The identically true term.
The identically false term.
The path (nesting of a t t r ibutes) cz exists

and terminates with label a.
The paths cr and /? have a common end

point (coalesced end points).

In (a : a), the label a may be T, denoting a miss-
ing value. The notation (a ~ /~) is borrowed from
(Langholm, 1989), and has the same semantics as
{ , ,B} o f (Rounds and Kasper, 1986). A (general)fea-
tur~ term is b . i l t up from atomic feature terms using
the connectives ^, v, and -., with the usual semantics.
In particular, the negation we use is the classical no-
tion; a s tructure sa t is fes (-,~0) if and only if it does

not satisfy ~ . For any set • of feature terms, Mod(&)
denotes the set of all feature s tructures for which each

E r~ is true. For a formal definition of satisfaction,
we refer the reader to the above-cited references. In-
tuitively, any set of terms which defines a consistent
rooted, directed graph is satisfiable. Ilowever, let us
specifically remark that only nodes with no outgoing
edges may have labels other than T, tha t labels other
than T may occur at at most one end point, tha t no
two outgoing edges from the same node may have the
same label, and that any term of the form (a : .L) is
equivalent to _L, and so inconsistent.

Now we define a logical extended feature structure
(LoXF) to be an extended feature s tructure iN, K:)
in which K: = M o d (¢) for some consistent finite
set ~ of feature terms. In part icular, Mod(~) must
have a least model. We also denote this pair by
Y(~) = (g . ,M od(~b)) . Now Y(~b,) E_, ~ ' (~2) re-
duces to M o d (~) C_ Mod(4,a), and

{ ~(~ u ¢2)

undefined

if Mod(&a U q~)
has a least element under E;
otherwise.

2.3 R e m a r k o n n e g a t i o n A full discussign of the
nature of negation in LoXF's is complex, and will be
the focus of a separate paper. IIowever, because this
topic has received a great deal of at tent ion (Moshier
and Rounds, 1987), (Langholm, 1989), (Dawar and
Vijay-Shanker, 1990), we feel it essential to remark
here tha t ~'(¢~) does not have the "classical" nega-
tion semantics which can be determined by looking
solely at the least element. Indeed, the appropr ia te
definition is tha t .~'(~) satisfies -'7' precisely when no
member of Mod(&) satisfies ¢; in other words, the
s t ructure N . is not allowed to be extended to satisfy
~o.

2.4 U n i f i c a t i o n a l g o r i t h m s fo r l o g i c a l ex-
t e n d e d f e a t u r e s t r u c t u r e s In view of the defini-
tion immediately above, i t is easy to see that that any
unification algorithm for LoXF's must solve the fol-
lowing two problems in the course of a t t empt ing to
unify ~'(~ i) and ~'(~2).

(u l) It must decide whether or not ~ i U q~2 is consis-
tent; i.e., whether or not there is a feature struc-
ture satisfying all sentences of both ~ i and cb2.

(u2) In case that 4~I U~2 is satisfiable, it must also de-
termine if there is a least model, and if so, identify
it.

Now it is well known that (u l) is an NP-complete
problem, even if we disallow negation and path equiva-
lence (Rounds and Kasper, 1986, Thin. 4). Therefore,
barring the eventuality that P = NP, we cannot ex-
pect to allow ~I and ~2 to be arbitrary finite sets of
feature terms and still have a tractable algorithm for
unification. One solution, which has been taken by a
number of authors, such as Kasper (1989) and Eisele
and D6rre (1988), is to devise clever algorithms which
apply to the general case and appear empirically to
work well on "typical" inputs, but still are provably

- 3 4 -

exponential in the worst case. While such work is un-
deniably of great value, we here propose a companion
strategy; namely, we restrict at tention to pairs {N, ~)
such tha t the very nature of • guarantees a t ractable
algorithm.

3. H O R N F E A T U R E L O G I C

In the field of mathematicM logic in general, and
in the computat ional logic relevant to computer sci-
ence in part icular , Horn clauses play a very special r61e
(Makowsky, 1987). Indeed, they form the basis for the
programming language Prolog (Sterling and Shapiro,
1986) and the database language Datalog (Ceri et ai.,
1989). This is due to the fact that while they possess
substant ial representational power, t ractable inference
algorithms are well known. It is perhaps the main the-
sis of this work that the utility of l lorn clauses carries
over to computat ional linguistics as well.

3.1 H o r n f e a t u r e c l a u s e s A feature literal is ei-
ther an atomic feature term (e.g., (~ : a), (~ ~-. /~),
or _L) or its negation. A feature clause is a finite
disjunction £ l v t ~ v . . . v l , n of feature literals. A fea-
ture clause is florn if at most one of the t i ' s is not
negated. A Horn extended feature structure (l loXF)
is a LoXF ~'(4,) such that • is a finite set of llorn
feature clauses.

3.2 A t a x o n o m y o f H o r n f e a t u r e c l a u s e s Be-
fore moving on to a presentation of algorithms on
t IoXF's , it is appropriate to provide a brief sketch of
thc utility and limits of restricting our attention: to col-
lections of lIorn clauses, hnplicat ion here is classical;

in the case of ordinary propositional logic, we use
the notat ion e t^~r~^. . . ^am =~ p to denote the clause
~O'l v-~0r2v... V'~O'rnVp. Horn feature clauses may then
be thought of as falling into one of the following four
categories.

(l I l) A clause of the form a, consisting of a single
positive literal, is jus t a fact.

(lI2) A clause of the form -~e, consisting of a single
negative literal, is a negated fact. In terms of
l loXF ' s , if -~a E ¢ , this means tha t within ~'(&),
no extension of N¢ in which a is true is permit-
ted. As a concrete example, a constraint s tat ing
that a subject may not have an a t t r ibute named
"tense" would be of this form.

(H3) A clause of the form ai ^*2 . . . am =~ p is called a
rule or an implication. Numerous examples of the
utility of implication in linguistics are identified in
(Wedekind, 1990, Sec. 1.3). Kasper 's conditional
descriptions (Kasper, 1988) are also a form of im-
plication. More concretely, the requirement that
a transit ive verb requires a direct object is easily
expressed in this form.

(114) A clause of the form a l ^ a 2 ^ . . . ^ a m =~ 1 is
called a compound negation. The formalization
of the constraint that a verb cannot be both in-
transit ive and take a direct object is an example
of the use of such a clause,

The type of knowledge which is not recapturable using
llorn feature logic is positive disjunction; i.e., formu-
las of tim form ~rlva2, with both a.l and aa feature

terms. Of course, this has nothing in part icular to
do with feature-term logic, but is well-known limita-
tion of Itorn clauses in general. However, in accepting
this l imitat ion, we also obtain many key properties,
including t ractable inference and the following impor-
tan t property of genericity.

3.3 T o t a l l y g e n e r i c L o X F ' a Let now • be any
finite set of feature terms. We say tha t • is totally
generic if, for any set q of facts (see (H1) above),
if Mod(O 0 #) is nonempty then it contains a least
element under E. Intuitively, if we use • to define
the LoXF ~ (~) , total genericity says tha t however
we extend the base feature s t ructure N¢ (consistently
with O), we will continue to have a LoXF. Remarkably,
we have the following.

3.4 T h e o r e m A set of feature terms ~p is totally
generic if and only if it is equivalent to a set of Horn
feature clauses.

Proof outline: This result is essentially a translation
of (Makowsky, 1987, Thm. 1.9) to the logic Of feature
structures. In words, it says that if (and only if) we
work with l loXF's , condition (u2) on page 4 becomes
superfluous (except for explicitly identifying the least
model.) t3

4. T H E E X T E N D E D U N I F I C A T I O N
A L G O R I T H M

It has been shown by Dowling and Gallier (1984)
tha t satisfiability for finite sets of proposit ional IIorn
formulas can be tested in time linear in the length of
the formulas. Their algorithms can easily be modified
to deliver the least model as well. Since unification
of HoXF's is essentially testing for satisfiability plus
identifying the least model (see (u l) -u (2) on the previ-
ous page), a natural approach would be to adapt one
of their algorithms. Essentially, this is what we do.
Like theirs, our algorithm is]orward chaininff, we s tar t
with the facts and "fire" rules until no more can be
fired, or until a contradiction appears. However, the
adapta t ion is not trivial, because feature-term logic is
more expressive than proposit ional logic. In particu-
lar, feature-term logic contains countably many tau-
tologies which have no correlates in ordinary proposi-
tional logic. The main contr ibution of our algori thm
is to implicit ly recapture the full semantics of these
tautologies while keeping the t ime complexity within
reasonable bounds. Due to space l imitations, we can-
not present tile full formality of the rather complex
da t a structures. Rather, to highlight tile key features,
we step through an annotated example. We focus only
upon the special problems inherent in the extension
to feature-term logic, and assume familiarity with the
forward-chaining algori thm in (Dowling and Gallier,
1984) and the graph unification algorithm in (Colban,
1990).

4.1 A n e x a m p l e t h e o r y a n d e x t e n d e d f e a t u r e
g r a p l m The set E contains the following eight l lorn
feature clauses.

(~,) (AA : a).

(~ ,) (n : a) .

- 3 5 -

(~) (AA : a)^(B : a)=v (CCDDG : t).

(~) (A : T) ^ (C : T) =:, (A B D D G : T).

(~s) (AA.X B) ^ (A B D D G : T)=} (A B D D E F : T).

(~) (A13DD : T)^ (B : T) =:, (CCD x ABD).

(~,) (CCDD x ABDD) =} (AC : T).

(~s) (ACD : T) =v (ACC : t).

Just as we may represent a set of atomic feature terms
with a feature graph, so too may we represent, in part,
a set of l lorn feature clauses with an extended feature
graph. Shown in Figure I below is the initial extended
feature graph for the set ~, representing the state of
inference before any deductions are made.

a

t

a • -~ • i • i • i •

@ ° . D • , - ® -,,=.
c D D a__

• i • .~ I , i , • i t

Figure 1: Initial extended feature structure for ~.

Every path and every node label which occurs in
some literal of E is represented. The labels of all edges,
as well as all non-T node labels, are underscored, de-
noting that they are virtual, which means that they
are only possibilities for the minimal model, and not
yet actually part of it. The root node is denoted by
®, and nodes with value T are denoted with a . . Note
that paths with common virtual end labels (e.g., AA
and B) are not coalesced; virtual nodes and edges are
never unified. As a result, the predecessors (along any
directed path) of any actual node or edge is itself ac-
tual. As inferences are made, edges and nodes become
actual (depicted by deleting underscores), and actual
nodes with common labels are ultimately coalesced.
The final extended feature graph is shown in Figure
2 below. For easier visibility, actual edges are also
highlighted with heavier lines.

A B D
a 4 ' • ~ • --~ @

C /
• ' ~ •

D G
: • - - - - i , - t

Figure 2: Final extended feature structure for .~..

If we delete the remaining virtual nodes and edges,
we obtain the graphical representation of the least
model of ::.

4.2 C o m p u t i n g t he m i n i m a l m o d e l o f the ex-
a m p l e Now let us consider the process of actually
obtaining the structure of Figure 2 from E. In the

propositional forward chaining approach, we start by
pooling the facts that we know - - in this ease {~1, ~2}.
We then look for rules whose left-hand sides have been
satisfied. In the example, the left-hand side of~3 is sat-
isfied, so we may fire that rule and add (C C D D G : t)
to our list of known facts, exactly as in the proposi-
tional case. We may also conclude that (AA x B),
because both are actual paths which terminate with
the same label a, and non-T labels are unique. The
representative extended feature graph at this point is
shown in Figure 3 below.

A B D D O_
a - q l ' - , , ~ - Q ~- • , ~ • D- • ~- •

(~) • D ql D •

N "=" C D D G
I I ~ o ~ • .,,,-.,...--i,- • ~ 1~

Figure 3: Intcrmcdlate structure for ~.

There are other things which we may implicitly con-
clude, and which we must conclude to fire the other
rules. For example, we may fire rule ~4 at this point,
because (AA : a) =~ (A : T) and (IJ : a) =¢~ (/3 : T)
are both tautologies in tile logic of feature terms, and
so its left-hand side is satisfied. Thus, we may add
(A:BDDG : T) to our list of known facts. Similarly,
since, as noted above, (AA ~ 13) holds, we <may fire
rule ~5 to conclude (A B D D E F : T). Likewise, we
may now fire rule ~s and conclude (CCD x ABD).
The representative extended graph structure at this
pc4nt is shown in Figure 4 below.

A B D D G

(D • • ~ i l

C G
• ~ • • ~ t

Figure 4: Intermediate structure for E.

We mr, st eventually invoke a unification at the com-
mon end point of CCD and ABD. Such unification
implicitly entails the tautology (CCD x ABD) :~
(CCDD x A13DD) and permits us to conclude that
rule ~7 should fire and add (AC : T) to the set of facts
of the least model. The result represented by the final
extended feature graph of Figure 2. Note that rule ~s
never fires, and that there are virtual edges and nodes
left at the conclusion of the process.

4.3 A t a x o n o m y o f i m p l i c i t r u l e s for se t s o f
H o r n f e a t u r e c l auses As we remarked in the in-
troduction to this section, to correctly adapt forward
chaining to the context of IIoXF's, we must implicitly
iticlude the semantics of countably many tautologies.
These fall into three classes.

(i l) Whenever an atomic term of the form (or// : a)
is determined to be true (ap denotes the concate-

,nation of a and fl), and another term of the form

- 3 6 -

(c, : T) occurs as au antecedent of a ilorn feature
clause, (with either fl not the empty string or else
a :fl T), we must be able to automatically make
the deduction of the tautology (oq~ : a) =~ (~ : T)
to conclude that (c~ : T) is now true. We call this
node and path subsumption. In computing the least
model of =, the deductions (AA: a) =~ CA: T) and
(B : a) =~ (B : T) are examples of such rules.

(i2) Whenever we deduce two terms of the form (a : a)
and (fl : a) to be true, with a ~ T, we must implic-
itly realize the semantics of the rule (a : a)^(fl :
a) ~ (a x fl), due to tile constraint that non-
T labels are unique. We call this label matching.
In computing the least model of E, tile deduction
(AA : a)A(B : a) ::*. (AA X B) is a specific example.

(i3) Whenever we coalesce two paths, we must per-
form local unification on the subgraph rooted at the
point of coalescence. More precisely, if we coalesce
the paths cY and fl, and the atom (~7 : a) is true, we
re,st deduce that both (cr7 x [/7) and (f17 : a) are
true; i.e., we must implicitly realize the compound
rule (c¢ y. fl)^(c*7 : a) =~ (a'r x f17)^(f17 : a). This
is just a logical representation of local unification. In
computing the least model of E, a specific example
is the deduction (CCD ~ A B D) ^ (C C D D G : t)
(CCDDG .~ A B D D G) ^ (A B D D G : t).

4.4 Data structures To support these inferences,
several specific data structures are supported. They
are sketched below.

(dl) There is tile list of clauses. Each clause has a
counter associated with it, indicating the number of
literals which remain to be fired before its left-hand
side is satisfied. When this count drops to zero, the
clause fires and its consequent becomes true.

(d2) There is a list of atoms which occur in the an-
tecedents of clauses. With each literal is associated
a set of pointers, one to each clause of which it is
an antecedeut literal. When an atom becomes true,
the appropriate clauses are notified, so they may
decrement their counters.

(d3) Tile working extended fealure structure, as illus-
trated in Figures 1-4, is maintained throughout.

(d4) For each node in the working extended feature
structure, a list of atoms is maintained. If the node
label is a, then each such atom in the list is of the
form (c~ : a), with c, a path from the root node to the
node under consideration. When that node becomes
actual, that atom is notified that is is now satisfied.

(d5) For each non-T node label a which occurs in
some atom, a list of all virtual nodes with that la-
bel is maintained. When one such node becomes
actual, the other are checked to see if an inference
of the form (i2) should be made.

(dr) For each atom of the form (or x fl) occurring
as an antecedent in some clause, the nodes at the
ends of tl,ese paths in the working extended feature
structure are endowed with a common tag. When-
ever nodes are coalesced, a check for such common
tags is made, so the appropriate atom may be noti-
fied that it is now true.

4.5 I n d e p e n d e n t p rocesses a n d u n i f i c a t i o n
The algorithm also maintains a ready queue of avail-
able processes. These processes are of three types.
A process of the form Actual(or : a), when exe-
cuted, makes the identified path and label actual in
the extended feature graph. A process of the form
Coalesce(hi ,ha) coalesces the end points of the two
nodes nl and n2 in the extended feature graph. A pro-
cess of the form Unify(n) performs a local unification
at the subgraph rooted at node n, using an algorithm
such as identified in (Colban, 1990). All processes in
the ready queue commute; they may be executed in
any order.

To unify two distinct sets of terms (perhaps gener-
ated by independent parts of a parser), we join their
two extended feature graphs at the root, merge the
corresponding data structures, and add the command
Unify(root) to the merged process queue. In other
words, we perform a unification to match common in-
formation, and then continue with the inference pro-
cess.

4.6 T h e c o m p l e x i t y of t he u n i f i c a t i o n a lgo-
r i t h m Define the length of a literal to be the number
of at tr ibute name and at tr ibute value occurrences in
it. Thus, for example, length((AB ~ CD)) = 4 and
length((ABCD : a)) = 5. For a set cb of tlorn feature
clauses, we further define the following quantities.

L = The length of ~I,; i.e., the sum of the lengths of
all literals occurring in 4~.

P = The number of distinct terms of the form (or
fl) which occur as the right-hand side of a rule in &.
(Facts are n o t considered to be rules here.)

m = The number of distinct at tr ibutes in the in-
put. (If we collect all of the literMs occurring in
tile clauses of • and discard any negation to yield a
large pool of facts, then m is tile number of edges in
the graph representing the associated feature struc-
ture. If ~ is a set of positive iiterals to begin with,
and hence represents an ordinary feature structure,
then m represents the size of this feature structure.)

We then have the following theorem.

4.7 T h e o r e m The worst.case time complexity
of our IloXF unification algorithm is O(L +
(P + 1). m . w(m)), where a~(m) is an inverse Acker-
mann/unction (which grows more slowly than than
any primitive recursive function - for all practical pur-
poses w(n) <_ 5). 121

This may be compared to tile worst-case complex-
ity of the usual algorithm for unifying ordinary feature
structures, which is O(m.w(m)) . The increase in com-
plexity over this simpler case is due to two factors.

(cl) We must read the entire input; since iiterals may
be repeated, it is possible that L > m; hence tile L
term.

(c2) Each time that we deduce that two nodes must
be coalesced , we must perform a unification. This
can occur at most P times - the number of times
that a rule can assert a distinct coalescing of nodes .

- 3 7 -

4.8 F u r t h e r r e m a r k s on the a lgo r i t hm Note in
particular that there are no restrictions on where path
equivalences (e.g., (or ~. ~)) may occur in Horn feature
clauses. In particular, unlike (Kasper, 1988), we do
allow negated path equivalences, llowever, if we dis-
allow path equivalences as consequents of rules, then
the complexity of our algorithm becomes essentially
that of the traditional unification algorithm (see (c2)
above). It is primarily deducing path equivalences on
the fly which results in the additional computational
burden.

5. C O N C L U S I O N S , F U R T H E R D I I t E C -
T I O N S ~ A N D P R O J E C T S T A T U S

5.1 Conclus ions and f u r t h e r d i rec t ions We
have identified lloXF's as an attractive compromise
between ordinary feature structures (in which there is
no way to express constraints on growth) and full logi-
cal feature theories (for which the unification problem
is NP-complete). We view lloXF's not as the "best"
apl~roach, but rather as a tool to be used to buihl
better overall unification-based grammar formalisms.
The obvious next step is to develop an integrated
framework in which IloXF's are employed to handle
negation and the disjunction arising from implication,
while other techniques handle more general disjunc-
tion and term subsumption (Smolka, 1988). Such an
optimized approach could lead to much faster overall
handling of negation and disjunction, but further work
is clearly needed to bear this out.

5.2 S t a t u s o f the p r o j e c t While the algorithm
has been spelled out in considerable detail, we have
just begun to build an actual implementation of the
IIoXF unifier in the programming language Scheme.
We expect to complete the implementation by the
summer of 1991.

R e f e r e n c e s

A/t-Kaci, lla.qsan (1984), A lattice-theoretic ap-
llroach to coniputation based oil a calculus of partially-
ordered type structures, PhD thesis, University of
Pennsylvania, Philadelphia.

Ceri, Stefano; Gottlob, Georg; and Tanca, Letizia
(1989), "What you always wanted to know about Dat-
slog (and never dared to ask)," 1EEE Trans. Knotvl-
edge Data Engrg., 1,146-166.

Colban, Erik A. (1988), Simplified unification based
grammar formalisms, COSMOS Report No. 05, Uni-
versity of Osio, Department of Mathematics.

Colban, Erik A. (1990), Unification algorithms, COS-
MOS Report No. 16, University of Oslo, Department
of Mathematics.

Damas, Luis and Varile, Giovanni B. (1989), "CLG:
a grammar formalism based on constraint resolution,"
in: Martins, Jo5.o P. and Morgado, Ernesto M., eds. ,
EPIA 89: dth Portugcse Conference on Artificial In-
telligence, Lis&m, Portugal, September 1989, Proceed.
ings, 175-186, Springer-Verlag.

Dawar, A. and Vijay-Shanker, K. (1990), "An in-
terpretation of negation in feature structure descrip-
tions," Computational Linguistics, 16, 11-21.

Dowling, William F. and Gallicr, Jean |I. (1984),
"Linear-time algorithms for testing the satisfiability of
propositional ttorn clauses," J. Logic Programming, 3,
267-284.

Eisele, Andreas and DSrre, Jochen (1988), "Unifica-
tion of disjunctive feature descriptions," in: Proceed-
ings o] the £6th Annual Meeting o] the ACL.

Fenstad, Jess Erik; Langholm, Tore; and Vestre,
Espcn (1989), Representations and interpretations,
COSMOS Report No. 09, University of Oslo, Depart-
ment of Mathematics, To appear in Proceedings of the
Workshop on Computational Linguistics and Formal
Semantics, Lugano, August.September 1988.

Kasper, Robert T. (1988), "Conditional descriptions
in functional unification grammar," in: Proceedings
o/ the £6th Annual Meeting of the ACL, Buffalo, 233-
240.

Kasper, Robert T. (1989), "A unification method for
disjunctive feature descriptions," in: Proceedings o.f
the ~Sth Annual Meeting o] the ACL, 235-242.

Kasper, Robert T. and Rounds, William C. (1990),
"Tile logic of unification in grammar," Linguistics and
Phil., 13, 35-58.

Langholm, Tore (1989), How to say no with feature
structures, COSMOS Report No. 13, University of
Oslo, Department of Mathematics.

Makowsky, Johann A. (1987), "Why Ilorn formu-
las matter in computer science: initial structures and
generic examples," J. Comput. System Sci., 34, 266-
292.

Mushier, M. Drew and Rounds, William C. (1987),
"A logic for partially specified data structures," in:
Con/erence Record ol the 14th Annual ACM POPL
Symposium, 155-167.

Rounds, William C. and Kasper, Robert (1986), "A
complete logical calculus for record structures repre-
senting linguistic information," in: Proceedings of the
First IEEE Symposium on Logic in Computer Science,
38-43.

Shieber, Stuart M. (1986), An Introduction to
Unification.Based Approaches to Grammar, Univer-
sity of Chicago Press.

Smolka, Gert (1988), A feature logic with sub-
sorts, LILOG-Report 33, IBM Deutschland GmbH,
Stuttgart.

Sterling, Leon and Shapiro, Ehud (1986), The Art o]
Prolog, MIT Press.

Wedekind, Jfirgen (1990), A survey of linguistically
motivated extensions to unification-based formalisms,
Deliverable R3,1.A, DYANA.

- 3 8 -

