
Interactive Incremental Chart Parsing

Mats Wirdn
Department of Computer and Information Science

LinkSping University
S-58183 LinkSping, Sweden

mgw@ida.liu.se

A b s t r a c t

This paper presents an algorithm for incremental
chart parsing, outlines how this could be embed-
ded in an interactive parsing system, and discusses
why this might be useful. Incremental parsing here
means that input i8 analysed in a piecemeal fash-
ion, in particular allowing arbitrary changes of previ-
ous input without exhaustive reanalysis. Interactive
parsing means that the analysis process is prompted
immediately at the onset of new input, and possibly
that the system then may interact with the user in
order to resolve problems that occur. The combina-
tion of these techniques could be used as a parsing
kernel for highly interactive and ~reactive" natural-
language processors, such as parsers for dialogue
systems, interactive computer-aided translation sys-
tems, and language-sensitive text editors. An incre-
mental chart parser embodying the ideas put for-
ward in this paper has been implemented, and an
embedding of this in an interactive parsing system
is near completion.

1 Background
and Introduction

1.1 T h e P r o b l e m

Ideally, a parser for an interactive natural-language
system ought to analyse input in real time in such a
way that the system produces an analysis of the in-
put while this is being received. One aspect of this
is that the system should be able to gkeep up ~ with

This research has been supported by the National Swedish
Board for Technical Development. The system is imple-
mented on machines donated by the Xerox Corporation
through their University Grants Program.

I would like to thank several people for fruitful discussions
on the topics of this paper, in particular Lars Ahrenberg (also
for commenting on drafts), Bernt Nilsson, and Peter Fritzson;
furthermore Nile D~Ibiick, Arne JSnsson, Magnus Merkel,
Henry Thompson, and an anonymous referee. In addition, I
would like to thank Ulf Dahl~n, Ass Detterfelt, Mikael Karle-
son, Per Larsee, Jukka Nylund, and Michael Spicar for imple-
menting (the interactive portion of) LIPS.

new input that, piece by piece, is entered from left
to right. Another aspect is that it ought to be able
to keep up also with piecemeal changes of previous
input. For example, in changing one word in the be-
ginning of some utterance(s), one would not want
all the input (either from the beginning or from the
change point) to be completely reanalysed. From
the perspective of efficiency as well as of modelling
intelligent behaviour, the amount of processing re-
quired to analyse an update ought to be somehow
correlated with the difficulty of this update. Thus,
a necessary (but not sufficient) condition for realiz-
ing a real-time parsing system as suggested above is
an interactive and incremental parsing system. The
goal of this paper is to develop a basic machinery
for incremental chart parsing and to outline how this
could be embedded in an interactive parsing system.

1.2 I n c r e m e n t a l P a r s i n g

The word "incremental ~ has been used in two dif-
fering senses in the (parsing) literature. The first
sense stresses that input should be analysed in a
piecemeal fashion, for example Bobrow and Webber
(1980), Mellish (1985), Pulman (1085, 1987), Hirst
(1987), Haddock (1987). According to this view, an
incremental parser constructs the analysis of an ut-
terance bit by bit (typically from left to right), rather
than in one go when it has come to an end.

The other sense of "incremental" stresses the
necessity of e~ciently handling arbitrary changes
within current input. Thus, according to this view,
an incremental parser should be able to efficiently
handle not only piecemeal additions to a sentence,
but, more generally, arbitrary insertions and dele-
tions in it. This view of incremental parsing is typi-
cal of research on interactive programming environ-
ments, e.g. Lindstrom (1970), Earley and Caisergues
(1972), Ghezzi and Mandrioli (1979, 1980), Reps and
Teitelbaum (1987).

As indicated above, we are here interested in the
latter view, which we summarize in the following
working definition.

- 241 -

Incremental parser. A parser capable of handling
changes of previous input while expending an
amount of effort which is proport ional to the
complexity of the changes. 1

It should be pointed out that we are here limit-
ing ourselves to a machinery for incremental parsing
as opposed to incremental interpretation. In other
words, the derivation of an utterance here takes
into account only %ontext-free" (lexical, syntactic,
compositional-semantic) information obtained from
grammar and dictionary. Nevertheless, I believe that
this framework may be of some value also when ap-
proaching the more difficult problem of incremental
interpretation.

1 . 3 I n t e r a c t i v e P a r s i n g

We adopt the following working definition.

Interactive parser. (Synonym: on-line parser.) A
parser which monitors a text-input process,
starting to parse immediately at the onset of
new input, thereby achieving enhanced effi-
ciency as well as a potential for dynamic im-
provement of its performance, for example by
promptly reporting errors, asking for clarifica-
tions, etc. 2

Within the area of programming environments,
(generators for) language-based editors have been
developed tha t make use of interactive (and incre-
mental} parsing and compilation to perform pro-
gram analysis, to repor t errors, and to generate code
while the program is being edited, for example Men-
tor, Gandalf , and the Synthesizer Generator (Reps
and Teitelbanm 1987).

Within natural- language processing, Tomita (1985)
and Yonezawa and Ohsawa (1988) have reported
parsers which operate on-line, but, incidentally, not
incrementally in the sense adopted here. 3

IThis definition is formed partly in analogy with a defini-
tion of "incremental compilation" by Earley and Caizergues
(1972:1040). We use "complexity" instead of "size" because
different updates of the same size may cause differing process-
ing efforts depending on the degree of grammatical complexity
(ambiguity, context-sensitiveness) constraining the updates in
question.

21ncidentally, interactive parsing could be seen as one ex-
ample of a general trend towards imrnatiate computation (Reps
and Teitelbaum 1987:31), also manifest in applications such
as WYSIWYG word processing and spreadsheet programs,
and sparked off by the availability of personal workstations
with dedicated processors.

SThe user may delete input from right to left, causing the
systems to Uunparsen this input. This means that if the user
wants to update some small fragment in the beginning of a
sentence, the system has to reparse exhaustively from this
update and on. (Of course, in reality the user has to first
backspace and then retype everything from the change.)

1.4 Ou t l i ne of P a p e r

Section 2 presents an algorithm for incremental chart
parsing. Section 3 discusses some additional aspects
and alternative strategies. Section 4 gives a brief
outline of the combined interactive and incremental
parsing system, and section 5 summarizes the con-
clusions.

2 Incremental Chart Parsing

2.1 C h a r t P a r s i n g

The incremental parser has been grounded in a
chart-parsing framework (Kay 1980, Thompson
1981, Thompson and Ritchie 1984) for the follow-
ing reasons:

• chart parsing is an efficient, open-ended, well
understood, and frequently adopted technique
in natural- language processing;

• chart parsing gives us a previously unexplored
possibility of embedding incremental i ty at a low
cost.

2.2 Edge D e p e n d e n c i e s

The idea of incremental chart parsing, as put for-
ward here, is based on the following observation:
The chart, while const i tut ing a record of part ial
analyses (chart edges), may easily be provided with
information also about the dependencies between
those analyses. This is just what we need in in-
cremental parsing since we want to propagate the
effects of a change precisely to those par ts of the
previous analysis that , directly or indirectly, depend
on the upda ted information.

In what ways could chart edges be said to depend
on each other? Put simply, an edge depends upon
another edge if it is formed using the la t ter edge.
Thus, an edge formed through a prediction step de-
pends on the (one) edge tha t triggered it. 4 Likewise,
an edge formed through a combination 5 depends on
the active-inactive edge pair tha t generated it. A
scanned edge, on the other hand, does not depend
upon any other edge, as scanning can be seen as a
kind of initialization of the chart, e

In order to account for edge dependencies we asso-
ciate with each edge the set of its immediate source

4In the case of an initial top-down prediction, the source
would be non-existent.

SThe ~raldeter operation in Earley (1970); the ~ndarnentad
rule in Thompson (1981:2).

sit might be argued that a dependency should be estab-
lished also in the case of an edge being proposed but rejected
(owing to a redundancy test) because it already exists. How-
ever, as long as updates affect all preterminal edges extending
from a vertex, this appears not to be crucial.

- 242 -

edges (~back pointers"). This information could be
used to derive the corresponding sets of dependent
edges (gforward pointers ") that we are interested in.
For example, when a word in the previous input has
been deleted, we want to remove all edges which
depend on the preterminal (lexical) edge(s) corre-
sponding to this word, as well as those preterminal
edges themselves.

Formally, let P be a binary dependency relation
such that e P e ~ if and only if e t is a dependant of
e, i.e., e' has been formed (directly) using e. If D*
is the reflexive transitive closure of P, all edges e"
should be removed for which e D* e" holds, i.e., all
edges which directly or indirectly depend on e, as
well as e itself. In addition, we are going to make
use of the transitive closure of D, D +.

The resulting style of incremental parsing resem-
bles t ru th (or reason) maintenance, in particular
ATMS (de Kleer 1986). A chart edge here corre-
sponds to an ATMS node, a preterminal edge corre-
sponds to an assurnption node, the immediate source
information of an edge corresponds to a justifica-
tion, the dependency relation D* provides informa-
tion corresponding to ATMS labels, etc.

2 . 3 T e c h n i c a l Preliminaries

2.3.1 T h e C h a r t

The chart is a directed graph. The nodes, or ver-
tices, vl, . . . , Vn+l correspond to the positions sur-
rounding the words of an n-word sentence t01 .. • ton.
A pair of vertices vl,vy may be connected by arcs,
or edges, bearing information about (partially) anal-
ysed constituents between v~ and vy. We will take
an edge to be a tuple

(s, t, X0 --* a.#, D, E)

starting from vertex v~ and ending at vertex vt with
dotted rule X0--* a . ~ / a dag D (cf. section 2.3.3),
and the set of immediately dependent edges, E. s

In order to lay the ground for easy splitting and
joining of chart fragments, we will take a vertex to
consist of three parts, (L, Aioop, R), left, middle, and
right. L and R will have internal structure, so that
the full vertex structure will come out like

The left part , (Ain, Ii~), consists of the incoming
active and inactive edges which will remain with
the left portion of the chart when it is split due

VA dotted rule Xo --* a.~ corresponds to an (active) X0
edge containing an analysis of constituent(s) a, requiring con-
stituent(s) ~ in order to yield an inactive edge.

Sin other words, the set E of an edge e consists of all edges
el for which e P el holds.

to some internal sentence-editing operation. Cor-
respondingly, the right part, (Aost, Io,t), consists of
the outgoing active and inactive edges which will
remain with the right portion of the chart. The
middle part, Aioop, consists of the active looping
edges which, depending on the rule-invocation strat-
egy, should remain either with the left or the right
portion of the chart (cf. section 3.1).

We will make use of dots for qualifying within el-
ements of tuples. For example, e.s will stand for the
starting vertex of edge e. Likewise, vi.L will stand
for the set of edges belonging to the left half of vertex
number i, and vi.Ai~ will denote the set of its active
incoming edges. In addition, we will use vi.Po~t as
a shorthand for the set of inactive outgoing edges at
vi which are also preterminal (lexical).

2.3.2 E d i t i n g O p e r a t i o n s

In general, parsing could be seen as a mapping from
a sentence to a structure representing the analysis
of the sentence - - in this case a chart. Incremental
parsing requires a more complex mapping

F (. , ~, r, Co) ~ cl

from an edit operation ~7, a pair of cursor positions ~;,
a sequence of words r (empty in the case of deletion),
and an initial chart Co to a new chart cl (and using
a grammar and dictionary as usual).

We are going to assume three kinds of editing op-
eration, insert, delete, and replace. Furthermore, we
assume that every operation applies to a continuous
sequence of words to t . . , tot, each of which maps to
one or several preterminal edges extending from ver-
tices vt, • . . , vr, respectively. °

Thus, ~ may here take the values insert, delete,
or replace; ~ is a pair of positions l, r such that the
sequence of positions l, . . . , r map directly to ver-
tices vi, . . . , W, and r is the corresponding sequence
of words w t . . . tot.

In addition, we will make use of the constant 6 =
r - l + 1, denoting the number of words affected by
the editing operation.

2 . 8 . 3 G r a m m a t i c a l F o r m a l i s m

In the algorithm below, as well as in the actual im-
plementation, we have adopted a unification-based
grammatical formalism with a context-free base,
PATR (Shieber et al. 1983, Shieber 1986), because
this seems to be the best candidate for a lingua
/ranca in current natural-language processing. How-
ever, this formalism here shows up only within the
edges, where we have an extra dag element (D), and
when referring to rules, each of which consists of a

°Character editing is processed by the scanner; cf. section
3.3.

- 2 4 3 -

pair IX0 ~ ~, D) of a production and a dag. In
the dag representation of the rule, we will store the
context-free base under cat features as usual. We
assume that the grammar is cycle-free.

2.4 A n A l g o r i t h m
for I n c r e m e n t a l C h a r t P a r s i n g

2.4.1 I n t r o d u c t i o n

This section states an algorithm for incremental
chart parsing, divided into update routines, subrou-
tines, and an underlying chart parser. It handles
update of the chart according to one edit operation;
hence, it should be repeated for each such opera-
tion. The underlying chart parser specified in the
end of section 2.4.2 makes use of a bot tom-up rule-
invocation strategy. Top-clown rule invocation will
be discussed in section 3.1.

2.4.2 I n c r e m e n t a l C h a r t - P a r s i n g A l g o r i t h m

I n p u t : An edit operation ~7, a pair of vertex num-
bers l, r, a sequence of words tot . .- t0r, and a chart
co. We assume that chart co consists of vertices
ul, . . . , v~a,t, where last ~_ 1. We furthermore as-
sume the constant 6 = r - l + 1 to be available.

O u t p u t : A chart cl.

M e t h o d : On the basis of the input, select and exe-
cute the appropriate update routine below.

U p d a t e R o u t i n e s

I n s e r t l : Insertion at right end of Co

fo r i :-- l, . . . , r d o Scan(w~);
last := last + 8;
R u n C h a r t .

This case occurs when 6 words w t " " tv~ have
been inserted at the right end of previous input
(i.e., l = last). This is the special case corre-
sponding to ordinary left-to-right chart parsing,
causing the original chart co to be extended 6
steps to the right.

Dele te l : Deletion at right end of co

f o r i :-- l, . . . , r d o
Ve: e E vi.Po~t R e m o v e E d g e s I n D * (e);

last := l a s t - 6.

This case occurs when 5 words w~... t0r have
been deleted up to and including the right end
of previous input (i.e., r = last - 1). It is han-
dled by removing the preterminal edges corre-
sponding to the deleted words along with all
their dependent edges.

De le t e2 : Deletion before right end of co

for i : - l, . . . , r do
Ve: e E ~.Po~t R e m o v e E d g e s I n D * (e) ;

M o v e V e r t e x / R i g h t H a l f (r + 1, l, - 5) ;
f o r i : - - l + l t o l a s t - 6 d o

M o v e V e r t e x (i + 5, i, - 5) ;
last := l a s t - 5;
R u n C h a r t .

This case occurs when 6 words w t " . wr have
been deleted in an interval within or at the left
end of previous input (i.e., r < last - 1). It
is handled by removing the preterminal edges
corresponding to the deleted words along with
all their dependent edges, and then collapsing
the chart, moving all edges from vertex vr+l
and on 6 steps to the left.

I n s e r t 2 : Insertion before right end of co

R e m o v e C r o s s i n g E d g e s (l);
fo r i := last d o w n t o l + 1 d o

M o v e V e r t e x (i , i + 5, 5);
M o v e V e r t e x / R i g h t H a l f (l , r + 1, 6);
fo r i := l, . . . , r d o Scan(t0t) ;
last := last -{- 5;
R u n C h a r t .

This case occurs when 6 words w t - ' . wr have
been inserted at a position within or at the left
end of previous input (i.e., I < last). It is han-
dled by first removing all edges that %ross ~ ver-
tex v~ (the vertex at which the new insertion is
about to start). Secondly, the chart is split at
vertex vl by moving all edges extending from
this vertex or some vertex to the right of it 5
steps to the right. Finally, the new input is
scanned and the resulting edges inserted into
the chart.

Replace: Replacement within co

for i :-- I, ..., r do
Ve: c e v~.Po~t RemoveEdgeslnD* (e);

fo r i :---- 1, . . . , r d o Scan(wi) ;
R u n C h a r t .

This case occurs when 8 words wt - . . Wr have
been replaced by 6 other words at the corre-
sponding positions within previous input (i.e.,
1 ~_ I and r ~_ last; typically I -- r). It is handled
by first removing the preterminal edges corre-
sponding to the replaced words along with all
their dependent edges, and then scan the new
words and insert the resulting edges into the
chart.

Alternatively, we could of course realize replace
through delete and insert, but having a dedi-
cated replace operation is more efficient.

- 2 4 4 -

S u b r o u t i n e s

R e m o v e E d g e s I n D * (e):

Vd: e D* d remove d.

This routine removes all edges that are in the re-
flexive transitive dependency closure of a given
edge e. 1°

MoveVertex(from, to, ~):

t;to : = V/rom;

Ve: e E Vto.Atooo U Vto.R
e.s := e.s + 6;
e.t := e.t + 6.

This routine moves the contents of a vertex from
v#om to vto and assigns new connectivity infor-
mation to the affected (outgoing) edges.

Move Ver tex /R igh tHalf(frora, to, 6):

V~o.R := vlrora.R;
Vto.Atoop : = UHom.Atoop;
v/rom.R := ~;
vSrom.Atoop : = ~;

Ve: e E uto.Aiooo U Vto.R
e.s : = e.e + 6;
e.t := e.t + 6.

This routine moves the contents of the right half
(including active looping edges) of a vertex from
vy,o,n to vto and assigns new connectivity infor-
mation to the affected (outgoing) edges.

R e m o v e C r o s s i n g E d g e s (e):

VeV/Vg:
.f ~ vi- l.Po,t
g E vt.Po~t

s {/D+d n {gD+d
remove e.

The purpose of this routine, which is called from
Inse r t2 , is to remove all edges that %ross" ver-
tex vt where the new insertion is about to start.
This can be done in different ways. The solu-
tion above makes use of dependency informa-
tion, removing every edge which is a dependant
of both some preterminal edge incident to the
change vertex and some preterminal edge ex-
tending from it. t l Alternatively, one could sim-
ply remove every edge e whose left connection
e.s < l and whose right connection e.t > l.

l°It may sometimes be the case tha t not all edges in the
dependency closure need to be removed because, in the course
of updating, some edge receives the same value as previously.
This happens for example if a word is replaced by itself, or,
given a grammar with atomic categories, if (say) a noun is
replaced by another noun. One could reformulate the routines
in such a way tha t they check for thiJ before removing an edge.

11For simplicity, we p resuppo~ tha t preterminal edges only
extend between adjacent vertices.

C h a r t P a r s e r

Scan(~):
If wl = a, then, for all lexical entries of the
form (Xo--,a,D), add the edge (i , i+ 1, X0--,
a., D, ¢).

Informally, this means adding an inactive,
preterminal edge for each word sense of the
word.

RunChart:

For each vertex v~, do the following two steps
until no more edges can be added to the chart.

1. Predict/BottomUp: For each edge e
starting at vi of the form (i, j, X0 --~ a., D,
E) and each rule of the form (Y0 ~ Yx/~,
D') such that D'((Y1 cat)) = D((Xo cat)),
add an edge of the form (i, i, Yo --* .]/1/3,
D', {e)) if this edge is not subsumed 1~ by
another edge.
Informally, this means predicting an edge
according to each rule whose first right-
hand-side category matches the category
of the inactive edge under consideration.

2. C o m b i n e : For each edge e of the form
(i, 3", Xo --* a.X,n~, D, E) and each edge e s
of the form (3", k, Yo --* ~/., D', El), add the
edge (i, k, Xo ---, aX, n.~, D U [Xm: D'(Yo)],
{e, e'}) if the unification succeeds and this
edge is not subsumed by another edge.

Informally, this means forming a new edge
whenever the category of the first needed
constituent of an active edge matches the
category of an inactive edge, 13 and the dag
of the inactive edge can be unified in with
the dag of the needed constituent.

3 D i s c u s s i o n

3 . 1 T o p - D o w n P a r s i n g

The algorithm given in section 2.4.2 could be mod-
ified to top-down parsing by changing the predic-
tor (see e.g. Wirdn 1988) and by having Move-
V e r t e x / R i g h t H a l f not move active looping edges
(vt.AIooo) since, in top-clown, these "belong" to the
left portion of the chart where the predictions of
them were generated.

In general, the algorithm works better bottom-up
than top-down because bottom-up predictions are

12One edge subsumes another edge if and only if the first
three elements of the edges are identical and the fourth ele-
ment of the first edge subsumes tha t of the second edge. For
a definition of subsumption, see Shieber (1986:14).

lSNote tha t this condition is tested by the unification which
specifically ensures tha t D((Xm cat}) = E((Yo eat}).

- 245 -

made "locally ~ at the starting vertex of the trigger-
ing (inactive) edge in question. Therefore, a changed
preterminal edge will typically have its dependants
locally, and, as a consequence, the whole update
can be kept local. In top-down parsing, on the
other hand, predictions are Uforward-directed', be-
ing made at the ending vertex of the triggering (ac-
tive) edge. As a result of this, an update will, in
particular, cause all predicted and combined edges
after the change to be removed. The reason for this
is that we have forward-directed predictions having
generated active and inactive edges, the former of
which in turn have generated forward-directed pre-
dictions, and so on through the chart.

On the one hand, one might accept this, argu-
ing that this is simply the way top-down works: It
generates forward-directed hypotheses based on the
preceding context, and if we change the preceding
context, the forward hypotheses should change as
well. Also, it is still slightly more well-behaved than
exhaustive reanalysis from the change.

On the other hand, the point of incremental pars-
ing is to keep updates local, and if we want to take
this seriously, it seems like a waste to destroy possi-
bly usable structure to the right of the change. For
example, in changing the sentence "Sarah gave Kim
a green apple s to "Sarah gave a green apple to Kim s,
there is no need for the phrase "a green apple s to be
reanalysed.

One approach to this problem would be for the
edge-removal process to introduce a "cut s whenever
a top-down prediction having some dependant edge
is encountered, mark it as "uncertain ~, and repeat-
edly, at some later points in time, try to find a new
source for it. Eventually, if such a source cannot be
found, the edge (along with dependants) should be
Ugarbage-collected ~ because there is no way for the
normal update machinery to remove an edge with-
out a source (except for preterminal edges).

In sum, it would be desirable if we were able to
retain the open-endedness of chart parsing also with
respect to rule invocation while still providing for
efficient incremental update. However, the precise
strategy for best achieving this remains to be worked
out (also in the light of a fully testable interactive
system}.

3 .2 A l t e r n a t i v e W a y s
o f D e t e r m i n i n g A f f e c t e d E d g e s

3.2.1 Maintain Sources Only

Henry Thompson (personal communication 1988)
has pointed out that, instead of computing sets of
dependants from source edges, it might suffice to
simply record the latter, provided that the frequency
of updates is small and the total number of edges is

not too large. The idea is to sweep the whole edge
space each time there is an update, repeatedly delet-
ing anything with a non-existent source edge, and it-
erating until one gets through a whole pass with no
new deletions.

3.2.2 M a i n t a i n Ne i the r Sources
Nor Dependencies

If we confine ourselves to bottom-up parsing, and if
we accept that an update will unconditionally cause
all edges in the dependency closure to be removed
(not allowing the kind of refinements discussed in
footnote 10, it is in fact not necessary to record
sources or dependencies at all. The reason for this is
that, in effect, removing all dependants of all preter-
minal edges extending between vertices v|, . . . , Vr+l
in the bottom-up case amounts to removing all edges
that extend somewhere within this interval (except
for bottom-up predictions at vertex W+l which are
triggered by edges outside of the interval). Given a
suitable matrix representation for the chart (where
edges are simultaneously indexed with respect to
starting and ending vertices}, this may provide for a
very efficient solution.

3.2.3 M a i n t a i n Dependencies
be tween Fea tures

There is a trade-off between updating as local a unit
as possible and the complexity of the algorithm for
doing so. Given a complex-feature-based formalism
like PATR, one extreme would be to maintain de-
pendencies between feature instances of the chart
instead of between chart edges. In principle, this
is the approach of the Synthesizer Generator (Reps
and Teitelbaum 1987), which adopts attribute gram-
mar for the language specification and maintains de-
pendencies between the attribute instances of the
derivation tree.

3.3 L e x i c a l Component

An approach to the lexical component which seems
particularly suitable with respect to this type of
parser, and which is adopted in the actual implemen-
tation, is the letter-tree format. 14 This approach
takes advantage of the fact that words normally are
entered from left to right, and supports the idea of a
dynamic pointer which follows branches of the tree
as a word is entered, immediately calling for reaction
when an illegal string is detected. In particular, this
allows you to distinguish an incomplete word from a
(definitely) illegal word. Another advantage of this

14 Tr/e according to the terminology of Aho, Hopcroft, and
Ullman (1987:163).

- 246 -

approach is that one may easily add two-level mor-
phology (Koskenniemi 1983) as an additional filter.

A radical approach, not pursued here, would be to
employ the same type of incremental chart-parsing
machinery at the lexical level as we do at the sen-
tence level.

3 . 4 D e p e n d e n c i e s a c r o s s S e n t e n c e s

Incremental parsing would be even more beneficial if
it were extended to handle dependencies across mul-
tiple sentences, for example with respect to noun-
phrases. Considering a language-sensitive text edi-
tor, the purpose of which would be to keep track of
an input text, to detect (and maybe correct) certain
linguistic errors, a change in one sentence often re-
quires changes also in the surrounding text as in the
following examples:

The house is full of mould. It has been
judged insanitary by the public health com-
mittee. They say it has to be torn down.

The salmon jumped. It likes to play.

In the first example, changing the number of
~house ~ forces several grammatical changes in the
subsequent sentences, requiring reanalysis. In the
second example, changing "it (likes) ~ to ~they (like) ~
constrains the noun-phrase of the previous sentence
to be interpreted as plural, which could be reflected
for example by putting the edges of the singular anal-
ysis to sleep.

Cross-sentence dependencies require a level of in-
cremental interpretation and a database with non-
monotonic reasoning capabilities. For a recent ap-
proach in this direction, see Zernik and Brown
(1988).

Text editor
I Lexicon Scanner

Incremental
I Grammar chart parser Chart I

Figure I. Main components of the LIPS system

It is planned to maintain a dynamic agenda of up-
date tasks (either at the level of update functions
or, preferably, at the level of individual edges), re-
moving tasks which are no longer needed because
the user has made them obsolete (for example by
immediately deleting an inserted text).

In the long run, an interactive parsing system
probably has to have some built-in notion of time, for
example through time-stamped editing operations
and (adjustable) strategies for timing of update op-
erations.

5 Conclusion

This paper has demonstrated how a chart parser by
simple means could be augmented to perform in-
cremental parsing, and has suggested how this sys-
tem in turn could be embedded in an interactive
parsing system. Incrementality and interactivity are
two independent properties, but, in practice, an in-
cremental system that is not interactive would be
pointless, and an interactive system that is not in-
cremental would at least be less efficient than it
could be. Although exhaustive recomputation can
be fast enough for small problems, incrementality is
ultimately needed in order to cope with longer and
more complex texts. In addition, incremental pars-
ing brings to the system a certain ~naturainess ~
analyses are put together piece by piece, and there
is a built-in correlation between the amount of pro-
ceasing required for a task and its difficulty.

"Easy things should be easy.. . ~ (Alan Kay).

4 Interactive Parsing

This section outlines how the incremental parser is
embedded in an interactive parsing system, called
LIPS. 15

Figure 1 shows the main components of the sys-
tem. The user types a sentence into the editor (a
Xerox TEDIT text editor). The words are analysed
on-line by the scanner and handed over to the parser
proper which keeps the chart consistent with the in-
put sentence. Unknown words are marked as illegal
in the edit window. The system displays the chart
incrementally, drawing and erasing individual edges
in tandem with the parsing process.

lSLink~iping Interactive Parsing System.

References

Aho, Alfred V., John E. Hopcroft, and Jeffrey D.
Ullman (1987). Data Structures and Algorithms.
Addison-Wesley, Reading, Massachusetts.

Bobrow, Robert J. and Bonnie Lynn Webber (1980).
Knowledge Representation for Syntactic/Semantic
Processing. Proc. First Annual National Conference
on Artificial Intelligence, Stanford, California: 316-
323.

de Kleer, Johan (1986). An Assumption-based TMS.
Artificial Intelligence 28(2):127-162.

Earley, Jay (1970).
Parsing Algorithm.
13(2).94-102.

An Efficient Context-Free
Communications of the ACM

~ - , , - 2 4 7 -

Earley, Jay and Paul Caizergues (1972). A Method
for Incrementally Compiling Languages with Nested
Statement Structure. Communications of the ACM
15(12):1040-1044.

Ghezzi, Carlo and Dino Mandrioli (1979). Incremen-
tal Parsing. ACM Transactions on Programming
Languages and Systems 1(1):58-70.

Ghezzi, Carlo and Dino Mandrioli (1980). Aug-
menting Parsers to Support Incrementality. Jour-
nal of the Association for Computing Machinery
27(3):564-579.

Haddock, Nicholas J. (1987). Incremental Interpre-
tation and Combinatory Categorial Grammar. Proc.
Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy: 661-663.

Hirst, Graeme (1987). Semantic Interpretation and
the Resolution of Ambiguity. Cambridge University
Press, Cambridge, England.

Kay, Martin (1980). Algorithm Schemata and Data
Structures in Syntactic Processing. Report CSL-80-
12, Xerox PARC, Palo Alto, California. Also in:
Sture Alldn, ed. (1982), Tezt Processing. Proceed-
ings of Nobel Symposium 51. Almqvist & Wiksell
International, Stockholm, Sweden: 327-358.

Koskenniemi, Kimmo (1983). Two-Level Morphol-
ogy: A General Computational Model for Word-
Form Recognition and Production. Publication No.
11, Department of General Linguistics, University of
Helsinki, Helsinki, Finland.

Lindstrom, G. (1970). The Design of Parsers for
Incremental Language Processors. Proc. Pad ACM
Symposium on Theory of Computing, Northampton,
Massachusetts: 81-91.

Melllsh, Christopher S. (1985). Computer Interpre-
tation of Natural Language Descriptions. Ellis Hor-
wood, Chichester, England.

Pulman, Steven G. (1985). A Parser That Doesn't.
Proc. Second Conference of the European Chapter
of the Association for Computational Linguistics,
Geneva, Switzerland: 128-135.

Pulman, Steven G. (1987). The Syntax-Semantics
Interface. In: Pete Whitelock, Mary McGee Wood,
Harold Somers, Rod Johnson, and Paul Bennett, ed.,
Linguistic Theory and Computer Applications. Aca-
demic Press, London, England: 189-224.

Reps, Thomas and Tim Teitelbanm (1987). Lan-
guage Processing in Program Editors. Computer
20(11):29-40.

Shleber, Stuart M. (1986). An Introduction to

Unification-Based Approaches to Grammar. CSLI
Lecture Notes No. 4. University of Chicago Press,
Chicago, Illinois.

Shieber, Stuart M., Hans Uszkorelt, Fernando C. N.
Pereira, Jane J. Robinson, and Mabry Tyson (1983).
The Formalism and Implementation of PATR-II. In:
Barbara Grosz and Mark Stickel, eds., Research on
Interactive Acquisition and Use of Knowledge. SRI
Final Report 1894, SRI International, Menlo Park,
California.

Thompson, Henry (1981). Chart Parsing and Rule
Schemata in GPSG. Research Paper No. 165, De-
partment of Artificial Intelligence, University of Ed-
inburgh, Edinburgh, Scotland. Also in: Proc. 19th
Annual Meeting of the Association for Computa-
tional Linguistics, Stanford, California: 167-172.

Thompson, Henry and Grasme Ritchie (1984). Im-
plementing Natural Language Parsers. In: Tim
O'Shea and Marc Eisenstadt, Artificial Intelligence:
Tools, Techniques, and Applications. Harper & Row,
New York, New York: 245-300.

Tomita, Masaru (1985). An Efficient Context-Free
Parsing Algorithm for Natural Languages. Proc.
Ninth International Joint Conference on Artificial
Intelligence, Los Angeles, California: 756--764.

Yonezawa, Akinori and Ichiro Ohsawa (1988).
Object-Oriented Parallel Parsing for Context-Free
Grammars. Proc. ll~th International Conference
on Computational Linguistics, Budapest, Hungary:
773-778.

Wires, Mats (1988). A Control-Strategy-Indepen-
dent Parser for PATR. Proc. First Scandinavian
Conference on Artificial Intelligence, Troms¢, Nor-
way: 161-172. Also research report LiTH-IDA-R-
88-10, Department of Computer and Information
Science, Link~ping University, Link6ping, Sweden.

Zernlk, Uri and Allen Brown (1988). Default Rea-
soning in Natural Language Processing. Proc. ll~th
International Conference on Computational Linguis-
tics, Budapest, Hungary: 801-805.

- 2 4 8 -

