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Abstract 

We propose an apparently minor extension to 
Kay's (1985} notation for describing directed 
acyclic graphs (DAGs}. The proposed notation 
permits concise descriptions of phenomena which 
would otherwise be difficult to describe, with- 
out incurring significant extra computational over- 
heads in the process of unification. We illustrate 
the notation with examples from a categorial de- 
scription of a fragment of English, and discuss the 
computational properties of unification of DAGs 
specified in this way. 

argue that our extension makes it possible to de- 
scribe any phenomena which could not have been 
described at all using the existing notations, just 
that the descriptions using the extension are more 
concise. 

2 GRAPH S P E C I F I C A T I O N  

We start by defining a language GSL (graph spec- 
ification language} for describing graphs, and by 
specifying the conditions under which two graphs 
unify. 

1 I N T R O D U C T I O N  

Much recent work on specifying grammars for 
fragments of natural languages, and on producing 
computational systems which make use of these 
grammars, has used partial descriptions of com- 
plex feature structures {Gazdar 1988}. Gram- 
mars are specified in terms of partial descriptions 
of syntactic structures; programs that depend on 
these grammars perform some variant of unifica- 
tion in order to investigate the relationship be- 
tween specific strings of words and the syntac- 
tic structures permitted by the grammarmis some 
sentence grammatical, what actually is its syn- 
tactic structure, how can some partially specified 
structure be realised as a string of words, and 
so on. Nearly all existing unification grammars 
of this kind use either term unification (the kind 
of unification used in resolution theorem provers, 
and hence provided as a primitive in PROLOG) or 
some version of the graph unification proposed by 
Kay {1985) and Shieber (1984). We propose an ex- 
tension to the languages used by Kay and Shieber 
for describing graphs, and to the specification of 
the conditions under which graphs unify. This ex- 
tension enables us to write concise descriptions of 
syntactic phenomena which would be awkward to 
specify using the originM notations. We do not 

2.1 GSL: syntax  

The syntax of GSL has been kept as close as possi- 
ble to that of FUG (Kay 1985) in order to facilitate 
comparisons. It is not, unfortunately, possible to 
keep it close to both FUG and PATR (Shieber 
1984), but it should be possible for readers famil- 
iar with PATR to see roughly what the relation 
between the two is. 

A node descriptor consists of either an atomic 
symbol, e.g. agr, cat, bar, or of two atomic 
symbols separated by a slash, e.g. cat/C, 
head/OBJECT. In the first case the symbol is the 
value of the described node, in the second the sym- 
bol before the slash is the node's value and the 
symbol after it is its name. We will generally use 
lower case words for values and upper case ones 
for names, but the distinction between upper and 
lower case has no significance in GSL. 

A path descriptor consists of a sequence of 
node descriptors separated by equals signs, e.g. 
head---major=cat=prep. The path described by 
such a descriptor consists of the sequence of de- 
scribed nodes. The first node in a path is called 
its initial node and the final node is called its ter- 
minal node. The descriptor of the terminal node in 
a path may be followed by an exclamation mark, 
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as in head=major=cat=prep/, in which case the 
node is said to be mandatory. 

A graph descriptor consists of a set of path de- 
scriptors separated by commas. The graph con- 
sists of the set of described paths. If two node 
descriptors in a graph descriptor specify the same 
name, they refer to the same node. 

A set of paths with identical initial segments 
may be specified by writing the initial segment 
just once and including the divergent tails within 
nested brackets, so that 

A=B--C=(X--Y, W=(V=U, Q=R)) 

is a shorthand form for: 

A=B=C=X=Y, 
A--B=C=W=V=U, 
A = B = C = W = Q = R  

The sub-graph governed by a path is the set of 
all terminal sequences of paths whose initial se- 
quence matches the given path. The last node in 
the given path is called the root of the sub-graph 
governed by the path. Thus in the above example 
the set of paths X=Y, W=V=U, W=Q=R is the 
sub-graph governed by the path A=B=C, and C 
is the root of this sub-graph. 

A macro is simply a symbol which has been 
specified as a shorthand for some other sequence 
of symbols. Macros are expanded by simple tex- 
tual substitution, so that if NP were a macro 
for the sequence of symbols cat=n, bar=two then 
head=(NP) expands to head=(cat=n/, bar=two~). 
The parentheses are important--head=NP ex- 
pands to head--cat=a~, bar=two~, which is very 
different from head=(cat=n!, bar=two/). 

The major differences between GSL and the 
languages used by Kay and Shieber axe that 
GSL distinguishes between optional and manda- 
tory nodes, and that names (which function as 
the constraints for turning trees into graphs) can 
be attached to non-terminal nodes. GSL also dif- 
fers from FUG in that it does not provide a facil- 
ity for disjunctive graphs--disjunction is catered 
for by requiring the grammar and lexicon to con- 
tain explicit alternatives, rather than by permit- 
ting graphs themselves to contain options. Most 
of the other differences are cosmetic--the GSL 
path agr=num=sinq/ is equivalent to the PATR 
path [aqr: Inure: siag]] and the FUG descriptor 
agr=num=sing. The GSL path aqr=num=sing 
is roughly equivalent to the PATR path [agr: 
[hum: [sittg: <Alpha>]]] and the FUG descrip- 
tor agr=num=sing=ANY. The fact that the sec- 

ond set of paths axe only =roughly ~ equivalent is 
a consequence of the new definition of unification 
given in the next section. 

2.2 C S L :  u n i f i c a t i o n  

The major operation that we are going to perform 
on graphs specified in GSL is unification. We de- 
fine this, as usual, in terms of the common ex- 
tension of sets of graphs. We start by defining the 
common extension of a pair of graphs. Two graphs 
G1 and G2 unify to produce a common eztettsion 
E under the following conditions: 

(i) Suppose V is the value of initial nodes in 
each of G1 and G2. Then the sub-graphs of G1 
and G2 which axe governed by the path consisting 
of just the node V must have a common extension, 
say Ev. If they do have such a common exten- 
sion, then the common extension E of G1 and G2 
themselves must include all the paths obtained by 
adding V to the front of members of Ev. If they 
do not then G1 and G2 do not unify, and hence 
have no common extension. 

Furthermore, if any initial node in either graph 
with V as its value has a name, that name must be 
associated with a sub-graph which has a common 
extension with each of G1 and G2. All the paths 
which appear in any of these extensions must also 
be included in E. Again if the sub-graph associ- 
ated with any such name fails to have a common 
extension with either G1 or G2 then G1 and G2 
themselves do not unify. 

(ii) Suppose V appears as the value of one or 
more initial nodes in G1 but of none in G2. Then 
if V is a mandatory terminal node of any path 
in G1 of which it is the initial node then G1 and 
G2 do not have a common extension (since V is 
mandatory in G1, but does not appear as an initial 
node of any path in G2). Otherwise the common 
extension of G1 and G2, if it exists, must include 
all the paths in G1 for which V is an initial node. 
The same condition applies if V is the value of one 
or more initial nodes in G2 but of none in G1. 

(iii) The common extension of G1 and G2 con- 
tains no paths not explicitly required by conditions 
(i} and (ii}. 

The common extension of a set of graphs {G1, 
G2, ..., Gn} where n > 2 is simply the common 
extension of G 1 with the common extension of the 
set {G2, ..., Gn}. 

This definition of the common extension of 
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a set of graphs is rather non-constructive, and 
is neutral with respect to compatational mecha- 
nisms. We need to show that we can in fact com- 
pute common extensions, and to consider the com- 
plexity of the algorithm for doing so, but before 
that we ought to try to show that we can use GSL 
to give concise descriptions of syntactic rules. If 
we can't do that, there is no point in worrying 
about the efficiency of algorithms for comparing 
graphs described in GSL at all. 

3 S Y N T A C T I C  D E S C R I P -  

T I O N S  U S I N G  G S L  

We will illustrate the use of GSL with elements 
of a categorial grammar for a fragment of En- 
glish. GSL is not specifically designed for catego- 
rim grammar, but the complexity of the category 
structures of any non-trivial categorial grammar 
means that such grammars provide a good testbed 
for notations for describing categories. Although 
categorial grammars have recently received con- 
siderable attention (Pareschi & Steedman (1987), 
Klein & van Benthem (1987), Oehrle, Bach & 
Wheeler (1987)), computational treatments have 
been hindered by the need to develop and ma- 
nipulate large category descriptions. The expres- 
sive power of GSL is therefore well illustrated by 
the ease with which we can develop the category 
descriptions required for a non-trivial categorial 
grammar. 

We start with the basic categorial rules: 

{major/X, minor/Y, subcat/SUB, slash/SLASH) 

(HEAD=(major/X, minor/Y, subcat/SUB, 
slash/SLASH), 

RSLASH=(major/X1, minor/Y1, subcat/SUB1, 
slash/SLASH), 

slash=null!), 
{major/X1, minor/Y1, subcat/SUB1, 
slash/SLASH} 

(major/X, minor/Y, subcat/SUB, slash/SLASH) 

(major/X1, minor/Y1, subcat/SVB1, 
slash=nullI) 
(HEAD=(major/X, minor/Y, subcat/SUB, 

slash/SLASH), 
LSLASH--(major/X1, minor/Y1, subcat/SUB1, 

slash/SLASH), 
slash/SLASH) 

The first of these is an extended version of the 
normal categorial rule for combining something 
which requires an argument to its right with an 
argument of the appropriate type, namely: 

A ~ A/B B 

We have been forced to complicate this rule, 
as have others trying to produce categorial gram- 
mars for non-trivial fragments, in order to take 
into account intrinsic syntactic functions such as 
case and number agreement, and to deal with the 
fine details of sub-categorisation rules. In our ex- 
tended version of the basic rule, the A of the basic 
version is replaced by (major/X, minor/Y, sub- 
cat/SUB, slash/SLASH) and the B of the basic 
version by (major/X1, minor/Y1, subcat/SUB1, 
slash/SLASH). The major features of a category 
are simply its main category (noun, verb, preposi- 
tion, conj) and its bar level (zero, one, two). The 
minor features are the intrinsic syntactic features 
such as agr and auz. subcat specifies what argu- 
ments (lslash and rslash) are required and what 
the head (head) of the local tree described by the 
rule is like. slash, as usual in unification gram- 
mars, carries information about unbounded de- 
pendencies. The category A/B of the basic rule 
is replaced by: 

(HEAD=(major/X, minor/Y,subcat/SUB, 
slash/SLASH), 

RSLASH=(major/X1, minor/Y1, subcat/SUBl, 
slash/SLASH), 

slash=null!) 

This describes a structure which will join with 
a (major/X, minor/Y, subcat/SUB, dash/SLASH) 
to its right to make a (major/Xl, minor/Yl, sub- 
cat/SUBl, slash/SLASH). 

We have made very little use of the extra facil- 
ities provided by GSL in specifying this rule, be- 
yond the convenience of the abbreviations HEAD 
for subcat=head and RSLASH for subcat=rslaah. 
Apart from that, we have used names for speci- 
fying constraints, but that could easily have been 
done in any of the standard formalisms; and we 
have used the exclamation mark to constrain the 
value of slash on the first element of the right hand 
side to be null. The second of the basic rules is 
sufficiently similar that it requires no further dis- 
cussion. 

To show how the extra power of GSL can help 
us construct concise descriptions, we will consider 
two specific examples. The first is the definition 
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of the lexical entry for an auxiliary. This requires 
the, fr,ll,,wing three macro definitions: 

VP ~* (V, I, minor/X=vform=agr/AGR, 
RSLASH=nulI1, 
HEAD=(S, minor/X), 
LSLASH=minor=agr/AGR) 

VERB ~* (V, O, minor/X, LSLASH=null!, 
HEAD=(VP, minor/X)) 

AUX ~ (VERB, minor=anx=yes!, 
RSLASH=(VP, LSLASH/SUBJ), 
HEAD=LSLASH/SUBJ) 

The definition of A UX says that it is a special 
type of VERB, namely one that will combine with 
a VP to its right. The head of the A UX inherits 
any constraints on the subject of its own rslash. 
The definition of VERB says that it is something 
which does not require anything to its left, and 
that it will participate in local trees dominated by 
objects of type VP, with the constraint that the 
VERB has the same minor features as the VP. 
The definition of VP is fairly similar, but it does 
make use of the facility for placing names in non- 
terminal positions to enforce two constraints--one 
between the entire set of minor features of the VP 
and the minor features of its head, and another 
between the agr features of the VP and the agr 
features of its subject. 

Although this set of abbreviations appears only 
to call upon the facility for including names for 
non-terminal nodes once, we can see that if we 
were to expand the macros inside the definition 
of A UX there would be two other places where 
this was done (the definition below still has some 
macros unexpanded to help keep it readable): 

AUX "~ (V, O, 
minor/X=aux=yesT, 
LSLASH=null!, 
H=(V, I, 

minor/X=vform=agr/AGR, 
RSLASH=nuU~, 

H=(S,minor/X), 
LSLASH/SUB J=minor=agr/AGR), 
RSLASH=(VP, LSLASH/SUBJ)) 

It is worth noting that nowhere in either the 
expanded definition or in the three abbreviations 
is the major category of the subject specified. This 
information may be inherited from the main verb 
of the VP argument of the auxiliary, but otherwise 
its major category is unconstrained, in order to 

permit sentences like Eating people i8 going out of 
fa.qhion and For me to eat you u, oulJ be the h*icht 
of impropriety. It is assumed that the [exical en- 
tries for verbs will sub-categorise for NP, VP or 
S subjects as required, just as they sub-categorise 
for complements. 

The second example of the use of GSL features 
comes from a group of rules which describe alter- 
native sub-categorisation frames--rules which say, 
for instance, that a typical ditransitive verb has 
a case frame requiring two NP's rather than an 
NP and a PP. The rule below generates the %ux- 
inverted" case frame for A UX's: 

(V, O, minor=vform/VFORM=agr/AGR, 
RSLASH=(NP, minor= (SUB J, agr/AGR), 

slash=null!), 
HEAD= (major=cat=partial!, RSLASH/A2, 
HEAD=(S, minor=(vform/VFORM, 

mood =interrogative!)))) 

(AUX, 
minor= (vform/VFORM=finite=tensed!), 

RSLASH/A2) 

This rule again specifies names for non-terminal 
nodes, with VFORM twice being used as a name 
for a non-terminal node. The effect of this 
is to constrain the relevant item to be tensed 
and to share the same value for agr as its 
"inverted" subject. The rule also contains a 
number of mandatory features. The path mi- 

nor=~form=finite=tensed!, for instance, restricts 
the rule to cases of tensed auxiliaries. 

We cannot use examples to "prove" that GSL 
makes it possible to write more concise specifica- 
tions than we could write in FUG or PATR. This 
is particularly clear when the examples are culled 
from a grammar whose overall structure imposes 
constraints which can only be motivated by con- 
sidering the grammar as a whole (which we do not 
have space for), rather than by looking at the ex- 
amples in isolation. The best we can hope for is 
that the examples do seem to describe the con- 
structions they are aimed at fairly concisely; and 
perhaps that it is not all that obvious how you 
would describe them in PATR or FUG. 
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4 C O M P U T A T I O N A L  C O M -  
P L E X I T Y  

We end by briefly considering the complexity of 
the task of seeing whether two graphs with named 
non-terminal nodes have a common extension. It 
is well-known that  disjunctive unification is NP- 
complete (Kasper 1987). What  is the status of 
unification of structures with constraints on sub- 
graphs? 

The definition of unification given in Section 2 
looks very non-deterministic--full  of phrases like 
~Suppose V is the value of initial nodes in each of 
G1 and G2 ~ and ~Suppose V appears as the value 
of one or more initial nodes in G1 but  of none 
in G2". We can make it much more constrained 
by imposing a normal form on graphs. The first 
thing we need for this is an arbitrary ordering on 
features, which we can easily find since features 
are just alphanumeric strings, and these can be 
ordered lexicographically. If we were working with 
trees rather  than DAGS, and we had such an or- 
dering, we could impose a normal form by ordering 
the sub-trees of a node by the lexicographic order- 
ing of their own root nodes, so that  the normal 
form of the tree 

(A (X (Z Y)) (P (S R))) 

would be: 

(A (P (R S)) (X (Y Z))) 

Unification of trees in this kind of normal form 
is of complexity o(M × N), where M is the maxi- 
mum branching factor for the tree and N is the 
maximum depth. It is clear that  we can im- 
pose a very similar normal form on DAGs with- 
out constraints on non-terminal nodes. For DAGs 
which do have constraints on non-terminal nodes, 
we have to split the representation of the graph 
into two pieces. We represent the basic structure 
of the graph in terms of sets of nodes and their 
successors; but  where a node has a name, we in- 
clude the name rather  than the node itself. For 
each such named node, we store the sub-graph 
rooted at the node separately as the value of the 
name (this sub-graph itself, of course, may contain 
named nodes, in which case we just do the same 
again). We now effectively have a set of DAGs 
each of which has no constraints on internal nodes. 
We can therefore put  each of these into normal 
form as before. The theoretical time for unifica- 
tion is again o(M × N), though N is now the length 
of the longest path through the graph you would 

get if you replaced names by the sub-graphs they 
name. The practical time is such as to make it 
perfectly sensible to use it as the basis of a com- 
putational  system. Quoting times for analysing 
specific texts is a fairly meaningless way of com- 
paring parsers, let alone unification algorithms, 
since there are so many unspecified parameters - -  
size of the grammar, degree of ambiguity in the 
lexicon, speed of the basic machine, ... All I can 
say is that  left-corner chart parsing with categorial 
rules specified via GSL descriptions of categories 
is markedly quicker than naive top-down left-right 
parsing of grammars of comparable coverage writ- 
ten as DCGs. 
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