
EXTENDED GRAPH UNIFICATION

Allan Ramsay
School of Cognitive Sciences

University of Sussex, Falmer BN1 9QN

Abstract

We propose an apparently minor extension to
Kay's (1985} notation for describing directed
acyclic graphs (DAGs}. The proposed notation
permits concise descriptions of phenomena which
would otherwise be difficult to describe, with-
out incurring significant extra computational over-
heads in the process of unification. We illustrate
the notation with examples from a categorial de-
scription of a fragment of English, and discuss the
computational properties of unification of DAGs
specified in this way.

argue that our extension makes it possible to de-
scribe any phenomena which could not have been
described at all using the existing notations, just
that the descriptions using the extension are more
concise.

2 GRAPH S P E C I F I C A T I O N

We start by defining a language GSL (graph spec-
ification language} for describing graphs, and by
specifying the conditions under which two graphs
unify.

1 I N T R O D U C T I O N

Much recent work on specifying grammars for
fragments of natural languages, and on producing
computational systems which make use of these
grammars, has used partial descriptions of com-
plex feature structures {Gazdar 1988}. Gram-
mars are specified in terms of partial descriptions
of syntactic structures; programs that depend on
these grammars perform some variant of unifica-
tion in order to investigate the relationship be-
tween specific strings of words and the syntac-
tic structures permitted by the grammarmis some
sentence grammatical, what actually is its syn-
tactic structure, how can some partially specified
structure be realised as a string of words, and
so on. Nearly all existing unification grammars
of this kind use either term unification (the kind
of unification used in resolution theorem provers,
and hence provided as a primitive in PROLOG) or
some version of the graph unification proposed by
Kay {1985) and Shieber (1984). We propose an ex-
tension to the languages used by Kay and Shieber
for describing graphs, and to the specification of
the conditions under which graphs unify. This ex-
tension enables us to write concise descriptions of
syntactic phenomena which would be awkward to
specify using the originM notations. We do not

2.1 GSL: syntax

The syntax of GSL has been kept as close as possi-
ble to that of FUG (Kay 1985) in order to facilitate
comparisons. It is not, unfortunately, possible to
keep it close to both FUG and PATR (Shieber
1984), but it should be possible for readers famil-
iar with PATR to see roughly what the relation
between the two is.

A node descriptor consists of either an atomic
symbol, e.g. agr, cat, bar, or of two atomic
symbols separated by a slash, e.g. cat/C,
head/OBJECT. In the first case the symbol is the
value of the described node, in the second the sym-
bol before the slash is the node's value and the
symbol after it is its name. We will generally use
lower case words for values and upper case ones
for names, but the distinction between upper and
lower case has no significance in GSL.

A path descriptor consists of a sequence of
node descriptors separated by equals signs, e.g.
head---major=cat=prep. The path described by
such a descriptor consists of the sequence of de-
scribed nodes. The first node in a path is called
its initial node and the final node is called its ter-
minal node. The descriptor of the terminal node in
a path may be followed by an exclamation mark,

- 212 -

as in head=major=cat=prep/, in which case the
node is said to be mandatory.

A graph descriptor consists of a set of path de-
scriptors separated by commas. The graph con-
sists of the set of described paths. If two node
descriptors in a graph descriptor specify the same
name, they refer to the same node.

A set of paths with identical initial segments
may be specified by writing the initial segment
just once and including the divergent tails within
nested brackets, so that

A=B--C=(X--Y, W=(V=U, Q=R))

is a shorthand form for:

A=B=C=X=Y,
A--B=C=W=V=U,
A = B = C = W = Q = R

The sub-graph governed by a path is the set of
all terminal sequences of paths whose initial se-
quence matches the given path. The last node in
the given path is called the root of the sub-graph
governed by the path. Thus in the above example
the set of paths X=Y, W=V=U, W=Q=R is the
sub-graph governed by the path A=B=C, and C
is the root of this sub-graph.

A macro is simply a symbol which has been
specified as a shorthand for some other sequence
of symbols. Macros are expanded by simple tex-
tual substitution, so that if NP were a macro
for the sequence of symbols cat=n, bar=two then
head=(NP) expands to head=(cat=n/, bar=two~).
The parentheses are important--head=NP ex-
pands to head--cat=a~, bar=two~, which is very
different from head=(cat=n!, bar=two/).

The major differences between GSL and the
languages used by Kay and Shieber axe that
GSL distinguishes between optional and manda-
tory nodes, and that names (which function as
the constraints for turning trees into graphs) can
be attached to non-terminal nodes. GSL also dif-
fers from FUG in that it does not provide a facil-
ity for disjunctive graphs--disjunction is catered
for by requiring the grammar and lexicon to con-
tain explicit alternatives, rather than by permit-
ting graphs themselves to contain options. Most
of the other differences are cosmetic--the GSL
path agr=num=sinq/ is equivalent to the PATR
path [aqr: Inure: siag]] and the FUG descriptor
agr=num=sing. The GSL path aqr=num=sing
is roughly equivalent to the PATR path [agr:
[hum: [sittg: <Alpha>]]] and the FUG descrip-
tor agr=num=sing=ANY. The fact that the sec-

ond set of paths axe only =roughly ~ equivalent is
a consequence of the new definition of unification
given in the next section.

2.2 C S L : u n i f i c a t i o n

The major operation that we are going to perform
on graphs specified in GSL is unification. We de-
fine this, as usual, in terms of the common ex-
tension of sets of graphs. We start by defining the
common extension of a pair of graphs. Two graphs
G1 and G2 unify to produce a common eztettsion
E under the following conditions:

(i) Suppose V is the value of initial nodes in
each of G1 and G2. Then the sub-graphs of G1
and G2 which axe governed by the path consisting
of just the node V must have a common extension,
say Ev. If they do have such a common exten-
sion, then the common extension E of G1 and G2
themselves must include all the paths obtained by
adding V to the front of members of Ev. If they
do not then G1 and G2 do not unify, and hence
have no common extension.

Furthermore, if any initial node in either graph
with V as its value has a name, that name must be
associated with a sub-graph which has a common
extension with each of G1 and G2. All the paths
which appear in any of these extensions must also
be included in E. Again if the sub-graph associ-
ated with any such name fails to have a common
extension with either G1 or G2 then G1 and G2
themselves do not unify.

(ii) Suppose V appears as the value of one or
more initial nodes in G1 but of none in G2. Then
if V is a mandatory terminal node of any path
in G1 of which it is the initial node then G1 and
G2 do not have a common extension (since V is
mandatory in G1, but does not appear as an initial
node of any path in G2). Otherwise the common
extension of G1 and G2, if it exists, must include
all the paths in G1 for which V is an initial node.
The same condition applies if V is the value of one
or more initial nodes in G2 but of none in G1.

(iii) The common extension of G1 and G2 con-
tains no paths not explicitly required by conditions
(i} and (ii}.

The common extension of a set of graphs {G1,
G2, ..., Gn} where n > 2 is simply the common
extension of G 1 with the common extension of the
set {G2, ..., Gn}.

This definition of the common extension of

- 213 -

a set of graphs is rather non-constructive, and
is neutral with respect to compatational mecha-
nisms. We need to show that we can in fact com-
pute common extensions, and to consider the com-
plexity of the algorithm for doing so, but before
that we ought to try to show that we can use GSL
to give concise descriptions of syntactic rules. If
we can't do that, there is no point in worrying
about the efficiency of algorithms for comparing
graphs described in GSL at all.

3 S Y N T A C T I C D E S C R I P -

T I O N S U S I N G G S L

We will illustrate the use of GSL with elements
of a categorial grammar for a fragment of En-
glish. GSL is not specifically designed for catego-
rim grammar, but the complexity of the category
structures of any non-trivial categorial grammar
means that such grammars provide a good testbed
for notations for describing categories. Although
categorial grammars have recently received con-
siderable attention (Pareschi & Steedman (1987),
Klein & van Benthem (1987), Oehrle, Bach &
Wheeler (1987)), computational treatments have
been hindered by the need to develop and ma-
nipulate large category descriptions. The expres-
sive power of GSL is therefore well illustrated by
the ease with which we can develop the category
descriptions required for a non-trivial categorial
grammar.

We start with the basic categorial rules:

{major/X, minor/Y, subcat/SUB, slash/SLASH)

(HEAD=(major/X, minor/Y, subcat/SUB,
slash/SLASH),

RSLASH=(major/X1, minor/Y1, subcat/SUB1,
slash/SLASH),

slash=null!),
{major/X1, minor/Y1, subcat/SUB1,
slash/SLASH}

(major/X, minor/Y, subcat/SUB, slash/SLASH)

(major/X1, minor/Y1, subcat/SVB1,
slash=nullI)
(HEAD=(major/X, minor/Y, subcat/SUB,

slash/SLASH),
LSLASH--(major/X1, minor/Y1, subcat/SUB1,

slash/SLASH),
slash/SLASH)

The first of these is an extended version of the
normal categorial rule for combining something
which requires an argument to its right with an
argument of the appropriate type, namely:

A ~ A/B B

We have been forced to complicate this rule,
as have others trying to produce categorial gram-
mars for non-trivial fragments, in order to take
into account intrinsic syntactic functions such as
case and number agreement, and to deal with the
fine details of sub-categorisation rules. In our ex-
tended version of the basic rule, the A of the basic
version is replaced by (major/X, minor/Y, sub-
cat/SUB, slash/SLASH) and the B of the basic
version by (major/X1, minor/Y1, subcat/SUB1,
slash/SLASH). The major features of a category
are simply its main category (noun, verb, preposi-
tion, conj) and its bar level (zero, one, two). The
minor features are the intrinsic syntactic features
such as agr and auz. subcat specifies what argu-
ments (lslash and rslash) are required and what
the head (head) of the local tree described by the
rule is like. slash, as usual in unification gram-
mars, carries information about unbounded de-
pendencies. The category A/B of the basic rule
is replaced by:

(HEAD=(major/X, minor/Y,subcat/SUB,
slash/SLASH),

RSLASH=(major/X1, minor/Y1, subcat/SUBl,
slash/SLASH),

slash=null!)

This describes a structure which will join with
a (major/X, minor/Y, subcat/SUB, dash/SLASH)
to its right to make a (major/Xl, minor/Yl, sub-
cat/SUBl, slash/SLASH).

We have made very little use of the extra facil-
ities provided by GSL in specifying this rule, be-
yond the convenience of the abbreviations HEAD
for subcat=head and RSLASH for subcat=rslaah.
Apart from that, we have used names for speci-
fying constraints, but that could easily have been
done in any of the standard formalisms; and we
have used the exclamation mark to constrain the
value of slash on the first element of the right hand
side to be null. The second of the basic rules is
sufficiently similar that it requires no further dis-
cussion.

To show how the extra power of GSL can help
us construct concise descriptions, we will consider
two specific examples. The first is the definition

- 214 -

of the lexical entry for an auxiliary. This requires
the, fr,ll,,wing three macro definitions:

VP ~* (V, I, minor/X=vform=agr/AGR,
RSLASH=nulI1,
HEAD=(S, minor/X),
LSLASH=minor=agr/AGR)

VERB ~* (V, O, minor/X, LSLASH=null!,
HEAD=(VP, minor/X))

AUX ~ (VERB, minor=anx=yes!,
RSLASH=(VP, LSLASH/SUBJ),
HEAD=LSLASH/SUBJ)

The definition of A UX says that it is a special
type of VERB, namely one that will combine with
a VP to its right. The head of the A UX inherits
any constraints on the subject of its own rslash.
The definition of VERB says that it is something
which does not require anything to its left, and
that it will participate in local trees dominated by
objects of type VP, with the constraint that the
VERB has the same minor features as the VP.
The definition of VP is fairly similar, but it does
make use of the facility for placing names in non-
terminal positions to enforce two constraints--one
between the entire set of minor features of the VP
and the minor features of its head, and another
between the agr features of the VP and the agr
features of its subject.

Although this set of abbreviations appears only
to call upon the facility for including names for
non-terminal nodes once, we can see that if we
were to expand the macros inside the definition
of A UX there would be two other places where
this was done (the definition below still has some
macros unexpanded to help keep it readable):

AUX "~ (V, O,
minor/X=aux=yesT,
LSLASH=null!,
H=(V, I,

minor/X=vform=agr/AGR,
RSLASH=nuU~,

H=(S,minor/X),
LSLASH/SUB J=minor=agr/AGR),
RSLASH=(VP, LSLASH/SUBJ))

It is worth noting that nowhere in either the
expanded definition or in the three abbreviations
is the major category of the subject specified. This
information may be inherited from the main verb
of the VP argument of the auxiliary, but otherwise
its major category is unconstrained, in order to

permit sentences like Eating people i8 going out of
fa.qhion and For me to eat you u, oulJ be the h*icht
of impropriety. It is assumed that the [exical en-
tries for verbs will sub-categorise for NP, VP or
S subjects as required, just as they sub-categorise
for complements.

The second example of the use of GSL features
comes from a group of rules which describe alter-
native sub-categorisation frames--rules which say,
for instance, that a typical ditransitive verb has
a case frame requiring two NP's rather than an
NP and a PP. The rule below generates the %ux-
inverted" case frame for A UX's:

(V, O, minor=vform/VFORM=agr/AGR,
RSLASH=(NP, minor= (SUB J, agr/AGR),

slash=null!),
HEAD= (major=cat=partial!, RSLASH/A2,
HEAD=(S, minor=(vform/VFORM,

mood =interrogative!))))

(AUX,
minor= (vform/VFORM=finite=tensed!),

RSLASH/A2)

This rule again specifies names for non-terminal
nodes, with VFORM twice being used as a name
for a non-terminal node. The effect of this
is to constrain the relevant item to be tensed
and to share the same value for agr as its
"inverted" subject. The rule also contains a
number of mandatory features. The path mi-

nor=~form=finite=tensed!, for instance, restricts
the rule to cases of tensed auxiliaries.

We cannot use examples to "prove" that GSL
makes it possible to write more concise specifica-
tions than we could write in FUG or PATR. This
is particularly clear when the examples are culled
from a grammar whose overall structure imposes
constraints which can only be motivated by con-
sidering the grammar as a whole (which we do not
have space for), rather than by looking at the ex-
amples in isolation. The best we can hope for is
that the examples do seem to describe the con-
structions they are aimed at fairly concisely; and
perhaps that it is not all that obvious how you
would describe them in PATR or FUG.

~ _ ~ - 2 1 5 -

4 C O M P U T A T I O N A L C O M -
P L E X I T Y

We end by briefly considering the complexity of
the task of seeing whether two graphs with named
non-terminal nodes have a common extension. It
is well-known that disjunctive unification is NP-
complete (Kasper 1987). What is the status of
unification of structures with constraints on sub-
graphs?

The definition of unification given in Section 2
looks very non-deterministic--full of phrases like
~Suppose V is the value of initial nodes in each of
G1 and G2 ~ and ~Suppose V appears as the value
of one or more initial nodes in G1 but of none
in G2". We can make it much more constrained
by imposing a normal form on graphs. The first
thing we need for this is an arbitrary ordering on
features, which we can easily find since features
are just alphanumeric strings, and these can be
ordered lexicographically. If we were working with
trees rather than DAGS, and we had such an or-
dering, we could impose a normal form by ordering
the sub-trees of a node by the lexicographic order-
ing of their own root nodes, so that the normal
form of the tree

(A (X (Z Y)) (P (S R)))

would be:

(A (P (R S)) (X (Y Z)))

Unification of trees in this kind of normal form
is of complexity o(M × N), where M is the maxi-
mum branching factor for the tree and N is the
maximum depth. It is clear that we can im-
pose a very similar normal form on DAGs with-
out constraints on non-terminal nodes. For DAGs
which do have constraints on non-terminal nodes,
we have to split the representation of the graph
into two pieces. We represent the basic structure
of the graph in terms of sets of nodes and their
successors; but where a node has a name, we in-
clude the name rather than the node itself. For
each such named node, we store the sub-graph
rooted at the node separately as the value of the
name (this sub-graph itself, of course, may contain
named nodes, in which case we just do the same
again). We now effectively have a set of DAGs
each of which has no constraints on internal nodes.
We can therefore put each of these into normal
form as before. The theoretical time for unifica-
tion is again o(M × N), though N is now the length
of the longest path through the graph you would

get if you replaced names by the sub-graphs they
name. The practical time is such as to make it
perfectly sensible to use it as the basis of a com-
putational system. Quoting times for analysing
specific texts is a fairly meaningless way of com-
paring parsers, let alone unification algorithms,
since there are so many unspecified parameters - -
size of the grammar, degree of ambiguity in the
lexicon, speed of the basic machine, ... All I can
say is that left-corner chart parsing with categorial
rules specified via GSL descriptions of categories
is markedly quicker than naive top-down left-right
parsing of grammars of comparable coverage writ-
ten as DCGs.

R e f e r e n c e s

Gasdar G. (1987) The new grammar formalisms--
a tutorial survey]JGAI-87

Kasper R. (1987) A unification method for dis-
junctive feature descriptions ACL Proceed-
lags, PSth Annual Meetin9 235-242

Kay M. (1985) Parsing in functional unifica-
tion grammar in Natural Language Parsing
eds. D.R. Dowty, L. Kart tunen & A.M.
Zwicky, Cambridge University Press, Cam-
bridge, 251-278

Klein E. & van Benthem J. (eds) Categories,
Polymorphism, and Unification (1987) Cen-
tre for Cognitive Science, University of Ed-
inburgh and Institute for Language, Logic,
and Information, University of Amsterdam
Edinburgh and Amsterdam

Oehrle D., Bach E. & Wheeler D. (1987) Cate-
gorial grammars and natural language struc-
tures Reidel, Dordrecht
Pareschi R. & Steedman M.J. (1987) A lazy
way to chart-parse with categorial grammars
ACL Proceedings, 25th Annual Meetin9 81-
88

Shieber S.M. (1984) The design of a com-
puter language for linguistic information
COLING-84 362-366

- 2 1 6 -

