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1 A B S T R A C T  

Feature Unification can be integrated with Lam- 
bek Theorem Proving in a simple and straightfor- 
ward way. Two principles determine all distribu- 
tion of features in LTP. It is not necessary to stip- 
ulate other principles or include category-valued 
features where other theories do. The structure of 
categories is discussed with respect to the notion 
of category structure of Gazdar et al. (1988). 

2 I N T R O D U C T I O N  

A tendency in current linguistic theory is to shift 
the 'explanatory burden' from the syntactic com- 
ponent to the lexicon. Within Categorial Gram- 
mar (CG), this so-cailed lexicalist principle is im- 
plemented in a radical fashion: syntactic infor- 
mation is projected entirely from category struc- 
ture assigned to lexical items (Moortgat, 1988). 
A small set of rules like (1) constitutes the gram- 
mar. The rules reduce sequences of categories to 
one category. 

(1) X:a X\Y:b =>  Y:b(a) 

CG implements the Compositionality Principle 
by stipulating a correspondence between syntac- 
tic operations and semantic operations (Van Ben- 
them 1986). 
An approach to the analysis of natural language 
in CG is to view the categorial reduction system, 
the set of reduction rules, as a calculus, where 
parsing of a syntagm is an attempt to prove that 

* Part  of the research described in this paper was carried 
out within the 'Categorial Parser Project '  at ITI-TNO. I 
wish to thank the people whom I had the pleasure to c o o p -  
erate with within this project: Brigit van Berkel, Michael 
Moortgat and Adriaan van Paassen. Gosse Bourns, Harry 
Bunt, Bart Geurts, Elias Thijsse, Ton van der Wouden, 
and three anonymous ACL reviewers made stlmu18ting 
comments on earlier versions of this paper. Michael 
Moortgat generously supplied a copy of the interpreter 
described in his 1988 dissertst ion 

it follows as a theorem from a set of axioms and 
inference rules. Especially by the work of Van 
Benthem (1986) and Moortgat (1988) this view, 
which we will name with Moortgat (1987a) Lam- 
bek Theorem Proving (LTP; Lambek, 1958), has 
become popular among a number of linguists. 
The descriptive power of LTP can be extended if 
unification (Shieber, 1986) is added. Several the- 
ories have been developed that combine catego- 
rial formalisms and unification based formalisms. 
Within Unification Categorial Grammar (UCG, 
Calder et al., 1988, Zeevat et al., 1986) unification 
"is the only operation over grammatical objects" 
(Calder et al. 1988, p. 83), and this includes 
syntactic and semantic operations. Within Cat- 
egorial Unification Grammar (Uszkoreit, 1986; 
Bouma, 1988a), reduction rules are the main op- 
eration over grammatical objects, but semantic 
operations are reformulated within the unification 
formalism, as properties oflexemes (Bouma et al., 
1988). These formalisms thus lexicalize semantic 
operations. 
The addition of unification to the LTP formalism 
described in this paper maintains the rules of the 
syntactic and semantic calculus as primary opera- 
tions, and adds unification to deal with syntactic 
features only. We will refer to this addition as 
Feature Unification (FU), and we will call the re- 
suiting theory LTP-FU. 
In this paper firstly the building blocks of the 
theory, categories and inference rules, will be de- 
scribed. Then two principles will be introduced 
that determine the distribution of features, not 
only for the rules of the calculus, but also for 
reduction rules that can be derived within the 
calculus. From the discussion of an example it 
is concluded that it is not necessary to stipulate 
other principles or include category-valued fea- 
tures where other theories do. 
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3 C A T E G O R I E S  

In LTP categories and a set of inference rules 
constitute the calculus. The addition of FU ne- 
cessitates the extension of these with respect to 
LTP without FU. Categories are for a start  de- 
fined in the framework introduced by Gazdar et 
al. (1988). Gazdar et al. define category struc- 
ture on a metatheoretical level as a pair < ~., 6">. 
E is a quadruple<F,  A, % p> where F is a fi- 
nite set of features; A is a set of atoms; r is a 
function that  divides the set of features into two 
sets, those that  take atomic values (Type 0 fea- 
tures), and those that  take categories as values 
(Type 1). p is a function that  assigns a range of 
atomic values to each Type 0 feature. C is a set 
of constraints expressed in a language Lc. The 
reader is referred to Gazdar et al. (1988) for a 
precise definition of this language: we will merely 
use it here. For LTP-FU, the category structure 
in (2) and the constraints in (3) apply. 

(2) 

F : { DOMAIN, RANGE, FIRST, LAST, CON- 
NECTIVE, LABEL} (3 FEAT_NAMES 
FEAT_NAMES = {PERSON, .... , TENSE} 
A : BASCAT U CONNECTIVES U 
FEAT_VALUES 
BASCAT : { N, V,...} 
CONNECTIVES : { / , \ , . }  
FEAT_VALUES : {1,2,3, ..... } 
r = { <DOMAIN, I>, <RANGE, 1>, <FIRST, 
I>, <LAST, I>, <CONNECTIVE,0>,...} 
p = { <CONNECTIVE, CONNECTIVES>, 
<LABEL, BASCAT>, <PERSON, {1,2,3,}>,...} 

(3) 

(a) [3(CONNECTIVE ~-, -1 LABEL) 
(b) n(DOMAIN ~ RANGE) 
(c) O(DOMAIN ~ CONNECTIVE:(  / V \ )  ) 
(d) rT(FIRST *-* CONNECTIVE:*)  
(e) n ( F I R S T  ~ LAST) 
(f) n (RANGE:f - - -  f/~ FEAT_NAMES) 

The fact that  ~category' is a central notion 
in CG justifies the division between features 
that express syntactic combinatorial possibili- 
ties ({DOMAIN,..., LABEL}) and other features 
(FEAT_NAMES) in (2) 1 
In what follows we will use 'feature structure'  to 
denote a set of feature-value combinations with 

*This view can for instance be found in the following 
citation from Calder et al. (1986): "(..) these [categories] 
can carry additionol feature specifications" (Calder et al., 
1986, p. 7; my emphasis). 

features from FEAT_NAMES. We will use 'cate- 
gory' in the sense common in categorial linguis- 
tics. For a category with feature structure, we 
will use the term 'category specification'. 
Constraint (3)(a) ensures that  a category is ei- 
ther complex or basic. Functor categories, those 
with the connective \ or / are specified by (3)(b), 
(3)(c); other complex categories are specified by 
(3)(d) and (e); (3)(f) describes the distribution 
of features from FEAT.NAMES. Here we follow 
Bouma (1988a) in the addition of features to com- 
plex categories. Firstly features are added to 
the argument (DOMAIN) in a complex category. 
This is "to express all kinds of subcategoriza- 
tion properties which an argument has to meet 
as it functions as the complement of the functor" 
(Bouma, 1988a, p. 27). Secondly, the category as 
a whole, rather than the RANGE carries features. 
"This has the advantage that  complex categories 
can be directly characterized as finite, verbal etc." 
(Bouma, 1988a, p. 27; of. Bach, 1983). 

4 I N F E R E N C E - R U L E S  

A sequent in the calculus is denoted with P : >  T, 
where P, called the antecedent, and T, the sucee- 
dent, are finite sequences of category specifica- 
tions: P : K1 ... K, ,  and T : L. In LTP P 
and T are required to be non-empty; notice that  
the suceedent contains one and only one category 
specification. The axioms and inference rules of 
the calculus define the theorems of the categorial 
calculus. Recursive application of the inference 
rules on a sequent may result in the derivation of 
a sequent as a theorem of the calculus. 
In what follows, X, Y and Z are categories; 
A,B,C,D and E are feature structures; K,L,M,N 
are category specifications; P, T, Q, U, V are 
sequences of category specifications, where P, T 
and Q are non-empty. We use the notation cate- 
gory;feature structure:seraa~tics. 

Axioms are sequents of the form X;A:a = >  X;A:a. 
Note that  identical letters for categories and se- 
mantic formulas denote identical categories and 
identical semantic formulas; identical letters for 
feature structures mean unified feature struc- 
tures; and identical letters for category specifi- 
cations mean category specifications with iden- 
tical categories and unified features structures. 
From the form of the axiom it may follow that 
feature structures in antecedent and succedent 
should unify. This principle is the Axiom Fea- 
ture Convention (AFC). 
In (4) the inference rules of LTP-FU are pre- 
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sented 2. [\ _ el denotes a rule that  eliminates 
a \-connective. i denotes introduction. The 'ac- 
tive type '  in a sequent is the category from which 
the connective is removed. 

(4) 

[ / - e l  U , ( X / Y ; t ) ; B : b , T , V  => Z 

if T => Y;A:a 
and U , X ; B : b ( a ) , V  => Z 

[ \ - e l  U , T , ( Y ; t \ X ) ; B : b , V  => Z 

i f  T => Y;A:a 
and U , X ; B : b ( a ) , V  => Z 

[ * - e l  U, K:a*L:b ,V => M 

i f  U , K : a , L : b , V  => M 

[ / - i ]  T => ( X / Y ; A ) ; B : ' v . b  

i f  T ,Y;A:v  => X;B:b 

[ \ - i ]  T => ( Y ; t \ X ) ; B ; ' v . b  

i f  Y ; A : v ,  T => X;B:b 

[ * - i ]  P : a , Q : b  => K*L:c*d 

i f  P : a  => K:¢ 
and Q:b => L:d  

Certain feature structures are required to unify 
in inference rules. We formulate the so-called Ac- 
tive Functor Feature Convention (AFFC) to con- 
trol the distribution of features. This convention 
is comparable to Head Feature Convention (Gas- 
dar et al., 1985) and Functor Feature Convention 
(Bouma, 1988a). The AFFC states tha t  the fea- 
ture structure of an active functor type must  be 
unified with the feature structure on the RANGE 
of the functor in the subsequent. 

5 A N  E X A M P L E  

This paragraph  limits itself to some observations 
concerning reflexives because this sheds light on 
a remaining question: are there principles other 
than  AFFC and AFC necessary to account for 
' F O O T '  phenomena? 
There are two properties of  reflexive pronouns 
tha t  have to be accounted for in the theory. 

~To envisage the rules without FU, just leave out all 
feature structures 

Firstly, the reflexive pronoun has to agree in num- 
ber, person, and gender with some antecedent in 
the sentence (Chierchia, 1988), most ly  the sub- 
ject. Secondly, the reflexive pronoun is not nec- 
essarily the head of a consti tuent (Gazdar  et al., 
1985). 
The HFC in GPSG (Gazdar  et al., 1985) cannot 
instant iate  the antecedent information of a reflex- 
ive pronoun on a mothernode in cases where the 
reflexive is not the head of a constituent.  There- 
fore in GPSG the so-called F O O T  Feature Princi- 
ple (FFP)  is formulated. Together with the Con- 
trol Agreement Principle (CAP) and the HFC, 
the FFP ensures tha t  agreement between the de- 
manded antecedent and the reflexive pronoun is 
obtained. Inclusion of a principle similar to FFP, 
and the use of  category-valued features could be a 
solution for CUG. However, a solution that  makes 
use of  means supplied by categorial theory would 
keep us from 's t ipulat ing axioms and principled',  
and as we will see, has as a consequence that  we 
can avoid the use of category-valued features. 
For an account of reflexives in LTP-FU we will 
make use of reduction laws, other than the in- 
ference rules in (4). These reduction laws (like 
1) normally have to be st ipulated within cate- 
gorial theory, but  in LTP they can be derived 
as theorems within the calculus presented in (4) 
(Moortgat ,  1987b). Feature distribution for these 
laws in LTP-FU can also be derived within the 
calculus with the application of AFFC and AFC 
and thus feature unification within these reduc- 
tion laws also falls out as ' theorem'  of the calcu- 
lus: it is not necessary to include other principles 
than AFFC and AFC. In (5) a derivation for the 
reduction law composition is given (cf. Moortgat ,  
1987, p. 6). 

(5) 
[coMP3 
(X/Y;A)  ;D (Y/Z;B)  ; t  => (X/Z;B);D 

[ / - i ]  
i ~  (X /Y;A) ;D  ( Y / Z ; B ) ; A  Z;B => X;D 

[ / - e ]  

i f  Z;B => Z;B 
and (X/Y;A);D Y;& => X;D 

[ / - e ]  

i f  Y;A =>Y;A 
and X;D =>X;D 

(6) 
[CUT] 

U T V => L 

i f  T => K:a  
and U K:a  V=> L 
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(a )  

Jan houdt van z i c h z e l f .  
John loves  of h i mse l f .  

(b) 

z i c h z e l f :  ( ( (np ;SS \ s ) /np ;C) ;A  \ (np ;3S \ s ) ) ;A  

( c )  

houdt van 
( (np ;3S \ s ) /pp ;A) ;B  (pp/np;C);D 

( (np ;3S \ s ) /np ;C) ;B  
[ c o . P ]  

(d) 

Jan houdt van zichzelf 

np;3S ( (np ;3S \ s ) /pp ;A) ;B  (pp/np;C);D ( ( ( n p ; S S \ s ) / n p ; C ) ; A \ ( n p ; 3 S \ s ) ) ; A  => s;E 
[CUT] 

np;SS ((np;3S\s) /np;C);B ( ( ( n p ; 3 S \ s ) / n p ; C ) ; t \ ( n p ; 3 S \ s ) ) ; t  => s;E 
_ [ \ - e ]  

i f  ( (np ;3S \ s ) /np ;C) ;B  => ( ( n p ; S S \ s ) / n p ; C ) ; t  
and np (np;SS\s) ;A => s;E 

[ \-e] 
i f  np;3S => np;3S 
and s => s;E 

(e) 

"x'yHOUDT(x)(y) "z.VAN(z) 
[coMP] 

"z'yHOUDT(VAN(z))(y) 

( f )  

Jan houdt van zichzel~ 

JAN "x'yHOUDT(x)(y) "z.VAN(z) * h ' ~ h ( f ) ( f )  

JAB "z'yHOUDT(VAN(z))(y) " h ' l h ( f ) ( f )  

"f.HOUDT(VAN(f))(f) 
. . . . .  [ \ - e l  

HOUDT(VAN(JAN))(JAN) 

[ \ - e l  

[cuT] 
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The cut rule (6) is not an inference rule, but 
a structural rule that  is used to include proofs 
from a 'data  base' into other proofs, for in- 
stance to include the results of the application 
of composition to part of a sequent. The cut 
rule is added to the inference rules of the cal- 
culus s. In (7(d)) the cut rule is used once to 
include a partial proof derived with the compo- 
sition rule. The lexical category we assume the 
reflexive to have (see 7(b)) takes a verb with two 
arguments as its argument, and results in a verb 
with one argument. The verb requires, in the 
example, its subject to carry two feature-value 
pairs: [num#sing,pers#3]. (In (7(d)), all feature 
structures containing these features are abbrevi- 
ated with the notation 3S.) These features are 
instantiated for the subject of the resulting one- 
argument verb. (7) gives a derivation where the 
reflexive is embedded in a prepositional phrase. 
In the example only relevant feature structures 
have been given actual feature-value pairs. (7(b)) 
presents the category of the reflexive. (c) presents 
one reduction using the composition rule and (d) 
presents the reduction of the whole sequent. The 
derivation of the semantic structure is presented 
seperately (e-f) from the syntactic derivation to 
improve readability. 
The refiexive's semantics imposes equality upon 
the arguments of the verb (Szabolcsi, 1987; but 
see also Chierchia (1988) and Popowich (1987) 
for other proposals). Note that  in all cases, the 
reflexive should combine with the verb before the 
subject comes into play: the refiexive's seman- 
tics can only deal with A-bound variables as ar- 
guments. 

6 I M P L E M E N T A T I O N  

In this section a Prolog implementation of LTP- 
FU is described. The implementation makes use 
of the interpreter described in Moortgat (1988). 
Categoriai calculi, described in the proper format, 
can be offered to this interpreter. The interpreter 
then uses the axioms, inference rules and reduc- 
tion rules as data  and applies them to an input 
sequent recursively, in order to see whether the 
input sequent is a theorem in the calculus. In 
order to ' implement'  a calculus, firstly it has to 
be described in a proper format. --~ and ~-- are 
defined as Prolog operators and denote respec- 
tively derivability in the calculus and inference 
during theorem proving. So, for instance with 
respect to the axiom, we may say that  we have 
shown that  X;A reduces to X;B if feat_des_unify 

aFor consequences of the addition of this rule, s e e  

Moortgat (1988) 

between A and B holds and true holds. The list 
notation is equal to the usual Prolog list nota- 
tion, and is used to find the proper number of 
arguments while unifying an actual sequent with 
a rule. For instance [T[R] cannot be instantiated 
as an empty list, whereas U can be instantiated 
as one. The LTP-FU calculus is presented in (8) 
(semantics is left out for readability). 

(8) 

I'ax'iom] I'X;A] => ['X;B'] <- 
( f e a t _ d e s _ u n i f y ( A , B ) )  k 
t r u e .  

[ / - o l  (u, [ (x/Y;A) ;e l ,  [TIR] ,V) => [Z]<- 
[TIR] => [Y;A] k 
(U, EX;e] ,V) = >  [Z].  

[ \ - e l  ( U , [ T l e ] , [ ( Y ; A \ X ) ; B ] , V )  => [Z ]< -  
[T[R] => [Y;A] k 
(U, [X;B] ,V) => [z ] .  

[*-el  (u, [K*L],V) => [M] <- 
(U, [K,L] ,V) => [M]. 

I ' / - i ]  [TIR] => I'(X/Y;A);B] <- 
[ T I M , [ Y ; A ]  => [X ;B ] .  

[ \ - : i . ]  I'TIR] => [ (Y ;A \X)  ;B] <- 
Y;A, [Tilt] => [X;B'I. 

C . - i l  (CPIR],CQIR1) => CK*L] <- 
[PIR] => fK] ,~ 
CQIRI"] => CL]. 

Note that  feature unification is added explicitely: 
identity statements are interpreted "as instruc- 
tions to replace the substructures with their uni- 
fications" (Shieber, 1986, p. 23). Prolog, how- 
ever, does not allow this so-called destructive uni- 
fication and therefore unification is reformulated. 
The necessity for destructive unification becomes 
clear from (9), where it is necessary to let features 
percolate to the "mother node" of a constituent. 
Note that  in (9) reentrance for the modifier her 
and the specifier kleine is necessary (cf. Bouma, 
1988a) to let the feature-value pair sex#fern per- 
colate to the np. Reentrance is denoted with a 
number followed by a hook. It is represented 
uJithin lexical items; it is therefore not necessary 
to stipulate principles to account for percolation 
through reentrance. 
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(9) 

her kleine meisj e 
the little girl 

(np/n;l>C) ;I>D (n/n;9->A) ;2>B n; [sex#fem] 

Within the ITI-TNO parser project (see foot- 
note on first page), an attempt is made to de- 
velop a parser based on the mechanisms described 
here, using standard software development meth- 
ods and techniques. During the so-called infor- 
mation analysis and the design stage (Van Berkel 
et al., 1988), several prototypes ofa Lambek The- 
orem Prover have been developed (Van Paassen, 
1988). Implementation in C is currently under- 
taken, including semantic representation. Addi- 
tion of Feature unification to this parser is sched- 
uled for 1989. Lexical software for this purpose 
(in C) is available (Van der Linden, 1988b). 

7 C O N C L U D I N G  

R E M A R K S  

Feature unification can be added to LTP in a 
simple and straightforward way. Because reduc- 
tion laws that fall out (including feature unifi- 
cation) as theorems in LTP-FU can account for 
FOOT phenomena, it is not necessary to 'stipu- 
late' category-valued FOOT features and mecha- 
nisms to account for their percolation. Not only 
reflexives, but also unbounded dependencies can 
be described without the use of category-valued 
features. Bouma (1987) shows that the addition 
of Type 0 features GAP with BASCAT as its 
value and ISL with ~+,-} as its value are the fea- 
tures used in an account of unbounded dependen- 
cies 4. 
LTP-FU can do without category-valued features 
in FEAT_NAMES, and this obviously reduces 
complexity of the unification process. We can add 
to this that it is possible to develop efficient algo- 
rithms and computerprograms for LTP (Moort- 
gat, 1987a; Van der Wouden and Heylen, 1988; 
Van Paassen, 1988; Bouma, 1989). Therefore 
LTP-FU is attractive for computational linguis- 
tics. 
A problem remains with respect to the seman- 
tics of reflexives we assume here. A reflexive as 
zichzelf in (7) can only take a verb as an argu- 
ment, and not for instance a combination of a 
subject and a verb (S/NP): the reflexive only op- 
erates on a functor with two different A-bound ar- 
guments. This implies that it is hard for this kind 

iVan der Linden (1988a) discusses S-V agreement. 

of category to participate in a Left-to-Right anal- 
ysis (Ades and Steedman, 1982). A solution could 
be to describe reflexives syntactically as functors 
of type (X/NP)\X, that impose reentrance (and 
not equality) upon the NP argument and some 
other NP. This implies however that we should 
not only construct a semantic representation, but 
also a representation of the syntactic derivation, 
in order to be able to refer to NP's that have al- 
ready served as arguments to some functor. Fu- 
ture research will be carried out with respect to 
this constructive categorial grammar. 
A final remark concerns the notion of category 
structure taken from Gazdar et al. (1988) and ap- 
plied here. For an account of modifiers and speci- 
fiers, it is necessary to include reentrant features. 
Therefore the definition of category structure in 
LTP-FU, but also that in CUG and UCG where 
reentrance is used as well, necessitates extended 
versions of the notion Gazdar et al. supply. 
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