
JPSG Parser on Constraint Logic Programming

TUDA, Hirosi *
Department of information science

Faculty of science
University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo, 113 Japan

e-maih a30728%tansei.cc.u-tokyo.junet @relay.cs.net

HASIDA, Kbiti
Institute for New Generation Computer Technology (ICOT)

1-4-28 Mita, Minato-ku Tokyo, 108 Japan
e-mail: hasida@icot.jp@relay.cs.net

SIRAI, Hidetosi
Tamagawa University

6-1-1 Tamagawa gakuen, Machida-shi Tokyo, 194 Japan
e-mail: a88868%tansei.cc.u-tokyo.junet@relay.cs.net

Abstract

This paper presents a constraint logic programming

language cu-Prolog and introduces a simple Japanese

parser based on Japanese Phrase Structure Grammar

(JPSG) as a suitable application of cu-Prolog.

cu-Prolog adopts constraint unification instead of

the normal Prolog unification. In cu-Prolog, con-

straints in terms of user defined predicates can be

directly added to the program clauses. Such a clause

is called Constraint Added Horn Clause (CAHC}.
Unlike conventional CLP systems, cu-Prolog deals

with constraints about symbolic or combinatorial ob-

jects. For natural language processing, such con-

straints are more important than those on numeri-

cal or boolean objects. In comparison with normal

Prolog, cu-Prolog has more descriptive power, and is

more declarative. It enables a natural implementa-

tion of JPSG and other unification based grammar

formalisms.

*From this April, Fujitsu Corporation

1 Introduction

Prolog is frequently used in implementing natural

language parsers or generators based on unification

based grammars. This is because Prolog is also

based on unification, and therefore has a declarative

feature. One important characteristic of unification

based grammar is also a declarative grammar formal-

ization [11].

However, Prolog does not have sufficient power of

expressing constraints because it executes every parts

of its programs as procedures and because every vari-

able of Prolog can be instantiated with any objects.

Hence, the constraints in unification based grammar

are forced to be implemented not declaratively but

procedurally.

We developed a new constraint logic programming

language cu-Prolog which is free from this defect of
traditional Prolog [13]. In cu-Prolog, user defined

constraints can be directly added to a program clause

(constraint added Horn clause), and the constraint

unification [12, 8] 1 is adopted instead of the nor-

1 In these earlier papers, "constraint unification" was called
"conditioned unification."

-95-

mal unification. This paper discusses the outline of

the cu-Prolog system, and presents a Japanese parser

based on :IPSG (Japanese Phrase Structure Gram-
mar) [7] as a suitable application of cu-Prolog.

2 C o n s t r a i n t A d d e d H o r n

C l a u s e (C A H C)

Most of the constraint logic programming language

systems (CAL [2], PrologIII [5], etc.) deal with con-

straints about algebraic equations, i.e., constraints

about numerical domains, such as that of real num-

bers etc.
However, in the problems arising in Artificial In-

telligence, constraints on symbolic or combinatorial

objects are far more important than those on nu-

merical objects, cu-Prolog handles constraints de-

scribed in terms of sequence of atomic formulas of

Prolog. The program clauses of cu-Prolog are fol-

lowing type, which we call Constraint Added Horn

Clauses (CAHCs):

1. H : - B t ,B2 , . . . ,Bn ;C1 ,C2 , . . . ,Cm.

(H is called the head, B1, B2, . . . ,Bn is the

body, C1, C2, . . . , Cm is the constraint. The

body and the constraint can be empty.)

C1,C2, . . . ,Cm comprise a set of constraints on

the variables occurring in the rest of the clause.

C1, C2, . . . , Crn must be, in the current implementa-

tion, modular in the sense that it has the following

canonical form.

[Def.] 1 (modu la r) A sequence of atomic formulas

C1, C2, . . . , Cm is modular when

1. every arguments of Ci is variable, and

~. no variable occurs in two distinct places, and

3. the predicate of Ci is modularly defined (1 < i <

m).

[Def.] 2 (modu la r ly defined) Predicate p is mod-

ularly defined, when in every definition clause of p,

PI : --D.,

D is empty,

o r

1. every argument of D is variable,

~. no variable occurs in two distinct space, and

3. every predicate occurring in D is p or modularly

defined.

For example,

member(X, Y), member(U, V) is modular,

member(X, Y), member(Y, Z) is not modu-

lar, and
append(X, Y, [a, b, e, a~) is not modular.

Seen from the declarative semantics, the program

clause of cu-Prolog is equivalent to the following pro-

gram clause of Prolog:

1. H : - B1 ,B2 , . . . ,B~ ,C1,C2, . . . ,Cm.

3 c u - P r o l o g

3 .1 C o n s t r a i n t U n i f i c a t i o n

cu-Prolog employs Constraint Unification [12, 8]

which is the usual Prolog unification plus constraint

transformation (normalization).
Using constraint unification, the inference rule of

cu-Prolog is as follows:

Q, R; C. , Q' : - S ; D.,

0 = mgu(Q, Q'), B = my(co , DO)
$0, R6; B

(Q is an atomic formula. R, C, S, D,
and B are sequences of atomic formulas.

mgu(Q,Q I) is a most general unifier be-

tween Q and Q'.)

my(C1,...,Cm) is a modular constraint which is

equivalent to C1,.. •, Cm. If C1, . . . , Cm is inconsis-
tent, my(C1, . . . , Cm) is not defined. In this case, the

above inference rule is inapplicable.

- 96 -

For example,

mr(member(X, [a, b, d), member(X, [b, c, d]))

returns a new constraint cO(X), where the definition
of cO is

cO(b).
c0(c).

and

mr(member(X, [a, b, 4) , member(X, [k, l, m]))

is not undefined.

This transformation is done by repeating un-

fold/fold transformations as described later.

3 .2 C o m p a r i s o n w i t h c o n v e n t i o n a l a p -

p r o a c h e s

In normal Prolog, constraints are inserted in a goal

and processed as procedures. It is not desirable for a

declarative programming language, and the execution

can be ineffective when constraints are inserted in a

insufficient place.

As constraints are rewritten at every unification,

cu-Prolog has more powerful descriptive ability than

the bind-hook technique. For example, freeze in Pro-

log II[4] can impose constraints on one variable, so

that when the variable is instantiated, the constraints

are executed as a procedure. Freeze has, however,

two disadvantages. First, freeze cannot impose a con-

straint on plural variables at one time. For example,

it cannot express the following CAHC.

f(X), g(Y, Z); append(X, Y, Z).

Second, since the contradiction between constraints is

not detected until the variable is instantiated, there

is a possibility of executing useless computation in

constraints deadlocking. For example, X and Y are

unifiable even after executing

and

f reeze (X , member(X, [a, hi))

freeze(Y, member(Y, [u, v]))

In cu-Prolog,

and

f(x) ; member(X, [a, hi). 2

I(Y); member(Y, [u, ,]).

are not unifiable.

3 .3 C o n s t r a i n t T r a n s f o r m a t i o n

This subsection explains the mechanism of constraint

transformation in cu-Prolog.

Let 7" be definition clauses of modularly defined

constraints, ~ be a set of constraints {C1,. . . , Cn}
that contains variables zl, . . . ,zm, and p be a new

m-ary predicate.

Let D be definition clauses of new predicates, and

~o = TU~)

is initially

{p(xl , . . . , xm): - C 1 , . . . , C,.}

and other new predicates are included through the

constraint normalization.

Then, mf(~) returns p(zl,. . . , zm), if there exists

a sequence of program clauses

:P0, Pl,... ,~',

and :Pn is modularly defined, where Pi+1 is derived

from Pi (0 < i < n) by one of the following three

types of transformations.

1. unfold transformation
Select one clause C from Pi and one atomic for-

mulaA from the body of C. Let C1, . . . , Cn be all

the clauses whose heads unify with A, and C~ be

the result of applying Cj to A of C (j = 1,..., n).
7~+x is obtained by replacing C in :Pi with

q , . . . , c - .

:~rnember(X,[a,b D is not modular, but is equivalent to
pI(X), where

pl(~).
p2(b).

- 97 -

2. fold transformation
Let C(A : -K&L.) be a clause in Pi, and D(B :
- K ' .) be a clause in :D, and 0 be mgu(K, K')

that meets the following conditions.

(a) No variables occur in both K and L, and

(b) C is not contained in 7).

Then, 7~i+t is obtained by replacing C in :Pi with

AO :-BO&L.

. integration
Let C (H : -B&R.) be a clause in :Pi, where B

is not modular and contains variables z l , . . . , zm

and there are no common variables between B

and R. Let p be a new m-ary predicate and the

following clause E:

p (z l , . . . , z ~) : - B .

be the definition ofp. Then, :Pi+l is obtained by

replacing C in :Pi with

H : - p (X l , z m) ~ R .

and adding E. E is also added to :D.

The third transformation can be seen as a special

case of fold transformation. Hence, these three trans-

formations preserve the semantics of programs be-

cause unfold/fold transformation has been proved as

valid [6]. '

The following example shows a transformation of

member(A, Z), append(X, Y, Z).

Here, T is { T1,T2,T3,T4 }, where

T1 = member(X,[X[Y]).

T2 = member(X,[Y[Z]):-member(X,Z).

T3 = append([],X,X).

T4 = append([AIX],Y,[AIZ]):-append(X,Y,Z).

and E is {member(A, Z), append(X, Y, Z)}. The new

predicate pl is defined as

DI: p1(A,X,Y,Z):-member(A,Z),append(X,Y,Z).

and

P0 = { T I , T 2 , Z 3 , T 4 , D 1 } , ~ = {D1}

Unfolding the first formula of Dl's body, we get

T5 = pI(A,X,Y, [AIZ]) :-append(X,Y, [AIZ]).

T6 = pI(A,X,Y, [BJZ]) :-member,(A,Z),

append (X, Y, [B J Z/).

So

~Pl -- {T1,T2,T3,T4,TS,T6}

By integration,

T6' = pI(A,X,Y,[AJZ3):-p2(X,Y,A,Z).

T6' = pI(A.X,Y,[BIZ3):-p3(A,Z,X,Y,B).

D2 = p2(X,Y,A,Z):-append(X,Y, [AIZ]).

D3 = p3(A,Z,X,Y,B):-

member (A, Z), append (X, Y, [B [Z/).

and

~)2 -- {TI, T2, T3, T4, TS', T6', D2, D3}

~) = {D1,D2,D3}

By unfolding D2,

T7 = p2([],[AIZ],A,Z).

T8 = p2([BIX] ,Y,A,Z) :-append(X,Y,Z).

These clauses comprise the modular definition of p2.

Thus

"P3 = {T1, T2, T3, T4, T5', T6', TT, T8, D3}.

Unfold the second definition of D3, and we have

T9 = p3(A,Z, [] , [B[Z] ,B) :-member(k,Z).
TIO = p3(A,Z, [BIX],Y,B):-

member (A, Z) ,append(X,Y,Z).

~9 4 = {T1, T2, T3, T4, T5 I, T6', TT, T8, Tg, TIO}.

Folding TIO by D1 will generate

TIO' = p3(A,Z,EBIX3,Y,B):-pI(A,X,Y,Z).

Accordingly

"P5 = {T1, T2, T3, T4, TS', T6', T7, T8, T9, TIO'}.

- 9 S -

As a result,

member(A, Z), append(X, Y, Z)

has been transformed to pl(A,X,Y,Z) preserving

equivalefice, and the following new clauses have been

defined.

{T4, T5 I, T6 I, T7, T8, T9, TlOI}.

3 . 4 I m p l e m e n t a t i o n

The source code of cu-Prolog is, at present (Vet 2.0),

composed o f 4,500 lines of language C on UNIX sys-

tem. Its precise computation speed is under evalua-

tion, but is sufficient for practical use.

Implementation of the effective constraint trans-

formation shown in above subsection requires some

heuristics in the application of three transformation.
Especially, in unfold transformation, one atomic for-

mula A is selected in the following heuristic rules

1. The atomic formula of the finite predicate.

2. The atomic formula that has constants or [] in

its arguments.

3. The atomic formula that has lists in its argu-
ment.

4. The atomic formula that has plural dependen-
cies.

Here,

[Def.] 3 (finite p red ica te) A predicate p is finite,

when the body of every definition clause of p is

.

Figure

nil, or

expressed by finite predicates

1 demonstrates constraint transformation.

4 A J P S G p a r s e r

As an application of cu-Prolog, a natural language

parser based on unification based grammar has been

considered first of all. Since constraints can be added

directly to the program clause representing a lexi-
cal entry or a phrase structure rule, the grammar is
implemented more naturally and declaratively than

with ordinary Prolog. Here we describe a simple

Japanese parser of JPSG in cu-Prolog. CAHC plays

an important role in two respects.

First, CAHC is used in the lexicon of homonyms

or polysemic words. For example, a Japanese noun
"hasi" is 3-way ambiguous, it means a bridge, chop-

sticks, or an edge. This polysemic word can be sub-

sumed in the following single lexical entry.

lezieon([hasilX], X, [... semS EM]);

hasi_sem(S E M).

where hasi_sem is defined as follows.

hasi.sem(bridge).
hasi.sem(ehopst icks).
hasi.sem(edge).

The value of the semantic feature is a vari-

able (SEM), and the constraint on SEM is

hasi_sem(SEM). Note that predicate hasi_sem is

modularly defined. According to CAHC, such ambi-
guity may be considered at one time, instead of being
divided in separate lexical entries. Japanese has such

an ambiguity is also shown in conjugation, post po-

sitions, etc. They can be treated in this manner.
Second, a phrase structure rule is written naturally

in a CAHC. In JPSG [7], FFP(FOOT Feature Prin-

ciple) is:

The value of a FOOT feature of the mother

unifies with the union of those of her daugh-

ters.

This principle is embedded in a phrase structure

rule as follows:

psr([slashM S], [slashLDb~, [slashRDS]);

union(L D S, RD S, MS).

However, this cannot be described in this manner in

traditional Prolog.

- 99 -

.member(I,[IIY]).

.member(I,[YlZ]):-member(I,Z).

. append([] , I , I) .

.append([lll],Y,[AIZ]):-append(X,Y,Z).

.@ member(I,[ga,eo,nt]),member(X,[no,eo,nt]).

s o l u t i o n = cO(I)
c l (.o) .
c l (n i) .
cO(lO):-cl(IO).

.@ member(A,l),append(I,Y,l).

s o l u t i o n = cT(&, Z, I , Y)
¢8(12, I2, IO, Yl, Y3):-append(IO, YI, Y3).
c8(I2, Y3, IO, Y1, Z4):-c7(I2, Z4, XO, YI).
cT(AO, Xl, D, II):-member(AO, I1).
cT(Ao, [A%lz4], [A%lx2], Y3):-cB(AO, A1, I2, Y3, Z4).

The first four lines are definitions of member and append. The lines that begin with "(~" are user's input atomic formulas
(constraints). The system returns the constraint (cO(X)) that is equivalent to the input constraint, and its definitions.

Figure 1: Demonstration of the constraint transformation routine

Figure 2 shows a simple demonstration of our

JPSG parser, and Figure 3 shows an example of

treating ambiguity as constraint. The current parser
treats a few feature and has little lexicon. However,

the expansion is easy. It parses about ten to twenty

words sentences within a second on VAX8600. Since

JPSG is a declarative grammar formalism and cu-

Prolog describes JPSG also declaratively, the parser

needs parsing algorithms independently. In the cur-

rent implementation, we adopt the left corner parsing

algorithm [1]. Furthermore, we would even be able
to abandon parsing algorithm altogether [10].

5 Final R e m a r k s

ular. So the most difficult problem one must tackle

concerns itself with heuristics about how to control

computation.

Acknowledgmen t s

This study owes much to our colleagues in the

JPSG Working group at ICOT. The implementation

of cu-Prolog is supported by ICOT and the Ministry

of International Trade and Industry in Japan.

R e f e r e n c e s

[i]

The further study of cu-Prolog has many prospects. [2]
For example, to expand descriptive ability of con-

straints, the negative operator or the universal quan-

tifier can be added. The constraint-based, alias par-

tial, aspects of Situation Semantics[3] are naturally [3]

implemented in terms of an extended version of cu-

Prolog [9]. For practical applications in Artificial In- [4]
telligence in general and natural language process-
ing in particular, one needs a mechanism for carrying

out computation partially, instead of totally as de-

scribed above, where constraint transformation halts

only when the constraint in question is entirely mod-

A. V. Aho and J. D. Ullman. The Theory of
Parsing, Translation, and Compiling, Volume i:
Parsing. Prentice-Hall, 1972.

A. AIBA. Seiyaku Ronri Programming (Con-
straint Logic Programming). bit, 20(1):89-97,

1988. (in Japanese).

J. Barwise and J. Perry. Situation and Attitudes.
MIT Press, Cambridge, Mass, 1983.

A. Colmerauer. Prolog H Reference Manual
and Theoretical Model. Technical Report, ER-

ACRANS 363, Groupe d'-Intelligenee Artifielle,

Universite Aix-Marseille II, October 1982.

[5] A. Colmerauer. Prolog III. BYTE, August 1987.

- 1 0 0 -

_ : -p ([ken, ga ,naomi, wo, a l , euru]) .

v [Form_764, AJ |{Adj_768}, SC{SubCat.772}] : SEN_776--- [s u f f _ p]
I
[- - v [vs2 , SC{Sc_752}] : [l o v e , Sb j .120 , Obj_1241 - - - [subca t _p]

I l--pFga] :ken---[adjao.nt_p]

I [--n[n] :ken--- [ken]
I I
I I _ _ p [g a , A J A { n [n] }] :ken---[ga]
I
l __v [vs2 , SC{p [ga] , $c_752}] : [l ove , Sbj_120,0bj_124] - - - [subca t_p]

I
[- -p[wo] : n a o m i - - - [a d j a c e n t . p]
I I
[l - - n [hi : n a o m i - - - [naomi]
I I
[I__p[wo, AJA{n[n]}] :naomi - - - [wo]
I
[__V[VS2, $C{p[wo], p[gal, Sc_752}] : [lovo,Sbj_120,Obj_124]---[ni]

[__v[For=_764, AJA{v[vs2,SC{Sc_752}]}, AJII{Adj_768},
SC{SubCat _772}1 : SEN.776--- [suru]

ca t c a t (v , Form_764, [] , Adj .768 , SubCat_772, SEH_776)
cond [c2(Sc_752, 0bj_124, Sb j .120 , Form_764, SubCat_772, Adj_768, SEM_776)]
True.

. : - c 2 (. , _ , _ , F, SC, AD3 ,SEM).
F = s y u s i SC = [] ADJ ffi [] SEN = [l ove , ken , naomi]

The first line is a user's input. "Ken-ga Naomi-wo ai-suru" means "Ken loves Naomi."
Then, the parser returns the parse tree and the category and constraint (c2()) of the top node. User solves the constraint
to get the actual value of the variables.

Figure 2: D e m o n s t r a t i o n o f our 3 P S G parser

_ : -p ([a i , s u r u , h i t o]) .

n In] : Semant i c s . 8 2 4 - - - [ad junc t_p]
I
[--v[Form_796, AJ|{n[h]}, $C{_820}]:Semmtics_824---[su~.pl
I I
I I - - v i v a 2 , SC{Sc.376}1 : [love ,Sbj_ lE2 ,0b j . lS6] - - - [a i]
I I
I I_.v[For=_796, AJA{v[vs2,$C{$¢_376}]}, AJl{n[n]}, $(:{_820}1 :Semmtics.824---[surul
I
[__n In] : inst (ObJ .932, [people, 0bj_932]) - - - [h i t o]

cat cat(n, n, [] , [] , [] , Semantics.824)
cond [c6($c_376, 0bj.156, $bj_152, Foz~.796, _820, 0bj.932, Semantics_824)1
Title.

. : -c6(. , ,me=).
Se~ inst(ObJO.136, [and, [people,ObJO_136], [love,SbJ1.140,ObjO_136]])
Sam : I n s t (Sb j0 .136 , [and, Lpeople,SbJO_136], [l o v a , S b j O . t 3 6 , 0 b j 1 . 1 4 0]])

This is a parse tree of "ai-suru hito" that has two meaning: "people whom someone loves" or "people who loves someone".
These ambiguity is shown in two solution of the constraint.

Figure 3: E x a m p l e o f a m b i g u i t y

1 0 1 -

[6] K. FURUKAWA and F. MIZOGUTI, editors.
Program Henkan (Program Transformation).
Tisiki Johoshori Series No.7, Kyoritu, Tokyo,
1987. (in Japanese).

[7] T. GUNJI. Japanese Phrase Structure Gram-
mar. Reidel, Dordrecht, 1986.

[8] K. HASIDA. Conditioned Unification for Natu-
ral Language Processing. In Proceedings of the
11th COLING, pages 85-87, 1986.

[9] K. HASIDA. A Constraint-Based View of Lan-
guage. In Proceedings of Workshop on Situation
Theory and its AppliCation, 1989. (to appear).

[10] K. HASIDA and S. ISIZAKI. Dependency Prop-
agation: A Unified Theory of Sentence Cmpri-
hension and Generation. In Proceedings of IJ-
CAI, 1987.

[11] S. M. Shieber. An Introduction to Unification-
Based Approach to Grammar. CSLI Lecture
Notes Series No.4, Stanford:CSLI, 1986.

[12] H. SIRAI and K. HASIDA. Zyookentuki Tanitu-
ka (Conditioned Unification). Computer Soft-
ware, 3(4):28-38, 1986. (in Japanese).

[13] H. TUDA. A JPSG Parser in Constraint Logic
Programming. Master's thesis, Department of
Information Science, University of Tokyo, 1989.
(to appear).

- 1 0 2 -

