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A b s t r a c t  

In this paper, we present a logic-based 
computational model for movement theory in 
Government and Binding Theory. For that purpose, 
we have designed a language called DISLOG. 
DISLOG stands for programming in logic with 
discontinuities and permits to express in a simple, 
concise and declarative way relations or constraints 
between non-contiguous elements in a structure. 
DISLOG is also weel adapted to model other types of 
linguistic phenomena like Quantifier Raising 
involving long-distance relations or constraints. 

1 .  I n t r o d u c t i o n  

Many areas of natural language syntax and 
semantics are a fruitful source of inspiration for 
computer languages and systems designers. The 
complexity of natural language and the high level of 
abstraction of most linguistic and semantic theories 
have motivated the emergence of highly abstract and 
transparent programming languages. One of the most 
striking examples is undoubtedly Prolog, initially 
designed for natural language parsing, via 
Metamorphosis Grammars (Colmerauer 1978). 

For a few years, the Logic Programming paradigm 
has been augmented with a number of technical and 
formal devices designed to extend its expressive 
power. New logic programming languages have 
emerged, several of them motivated by natural 
language processing problems. Among them let us 
mention: CIL (Mukai 1985), designed to express in a 
direct way concepts of Situation Semantics, MOLOG 
(Farinas et al. 1985), an extension to Prolog designed 
to specify in a very simple and declarative way the 
semantics of modal operators and ~,-Prolog (Nadathur 
and Miller 1988), designed to deal with X-expressions 
and X-reduction. 

Recently, the Logic Programming paradigm has 
been augmented with the concept of constrained logic 
programming (CLP). The basic research done within 
this area amounts to specifying tools for a more 
refined control on the type of values or terms a 

variable in a program can stand for. Answers to 
goals can be intensional: they are sets of equations 
(constraints) rather than mere values. Furthermore, the 
idea at the operational level, incorrect assignments are 
filtered out as soon as they are encountered when 
building a proof, making thus proof procedures more 
efficient. 

In this document, we deal with a new, original, 
type of CLP mechanism: constraints on proof trees. 
This type of constraint has emerged from, in 
particular, the definition of a computational model for 
the quantifier raising operation and for movement 
theory in Government and Binding theory (noted 
hereafter as GB). We model those phenomena in terms 
of constraints between non-contiguous elements in a 
structure. For example, we want to express 
constraints between a moved constituent and its 
co-indexed trace. Constraints are expressed in terms of 
relations between subtrees in a syntactic tree or in 
terms of relations between parenthetized constituents 
in the now more commonly adopted annotated surface 
forms of sentences. 

We have designed Dislog, programming in logic 
with discontinuities, which permits to express 
relations between non-contiguous elements in a 
structure in a simple, declarative and concise way. 
Dislog is an extension to Prolog; its procedural and 
declarative semantics are given in (Saint-Dizier 
1988b), computer applications like compiler writing 
and planning are given in (Saint-Dizier 1988a), its use 
in natural language parsing for free-phrase order 
languages is given in (Saint-Dizier 1987). In the 
present document we will focus on modelling 
movement theory in GB (Chomsky 1982, 1986) and 
Quantifier Raising (May 1986), which have been in 
the past two years our main guidelines to specify 
Dislog. We do not have in mind to build a complete 
model of GB theory, but we feel that the transfer of 
some of its main principles and results to the field of 
natural language processing is worth investigating and 
is very promising for reasons we will develop 
hereafter. We are also convinced that GB principles 
should be paired with other approaches of AI to deal, 
for example, with the lexicon, lexical semantics, 
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feature representation and control systems and, finally, 
logical form construction. 

2. M o v e m e n t  T h e o r y  in G B  

In this section, we briefly summarize the main 
aspects of movement theory (Chomsky 1982, 1986) 
and give several examples. GB theory is a complete 
revision of  the baroque set of rules and 
transformations of the standard theory, achieving a 
much greater expressive power and explanatory 
adequacy. GB theory is composed of a very small base 
component (which follows X-bar syntax), a single 
movement rule and a small set of principles whose 
role is to control the power of the movement rule. GB 
exhibits a greater clarity, ease of understanding and 
linguistic coverage (in spite of some points which 
remain obscure). The recent formalization of GB 
theory has several attractive properties for the design 
of a computational model of natural language 
processing, among which: 

-concision and economy of means, 
- high degree of parametrization, 
-modularity (e.g. independence of filtering 

principles), 
- declarativity (e.g. no order in the application 

of rules), 
-absence of intermediate structures (e.g. 

no deep slructure). 

GB theory postulates four levels: d-structure 
(sometimes not taken into account, like in our 
approach), s-structure (surface form of structural 
description), phonetic form (PF) and logical  
form (LF). The latter two levels are derived 
independently from s-structure. We will be mainly 
interested here in the s-structure level. Movement 
theory being also applicable, with different parameter 
values, to LF, we will also show how our approach is 
well-adapted to characterize LF level from s-structure 
level. 

2.1  Move-cx  a n d  c o n s t r a i n t s  

In GB, grammaticality of a sentence is based on 
the existence of a well-formed annotated surface form 
of that sentence. Thus, no real movements of 
constituents occur and additional computational and 
representational problems are avoided. Up to now very 
few and only partial works have been undertaken to 
model principles of GB theory. Among them, let us 
mention (Berwick and Weinberg 1986), (Stabler 1987) 
and (Brown et al. 1987). There is however an 
increasing interest for this approach. 

GB theory postulates a single movement 
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rule, more-a ,  controlled by principles and filters. 
This very general rule states: 

M o v e  any  cons t i tuent  a to any  pos i t ion .  

The most immediate constraints are that tx is 
moved to the left to an empty position (a subject 
position which is not 0-marked) or is adjoined to a 
COMP or INFL node (new positions are created from 
nothing, but this not in contradiction with the 
projection principle). Constraints and filters control 
movement but they also force movement. For 
example, when a verb is used in the passive voice, it 
can no longer assign case to its object. The object NP 
must thus move to a place where it is assigned case. 
The (external) subject 0-role being also suppressed, 
the object NP naturally moves to the subject 
position, where it is assigned case, while keeping its 
previous 0-role. 

Another immediate constraint is the 0-criterion: 
each argument has one and only one 0-role and each 
0-role is assigned to one and only one argument. Such 
roles are lexically induced by means of the projection 
principle (and by lexical insertion), confering thus an 
increasing role to lexical subeategorization. Finally, 
government gives a precise definition of what a 
constituent can govern and thus how the projection 
principled is handled. 

M o v e - i x  is too abstract to be directly 
implementable. It needs to be at least partially 
instantiated, in a way which preserves its generality 
and its explanatory power. In addition, while the 
theory is attaining higher and higher levels of 
adequacy, the interest for analysing the specifics of 
particular constructions is decreasing. As a 
consequence, we have to make explicit elements left 
in the shade or just neglected. Finally, the feature 
system implicit in GB theory has also to be 
integrated. 

2 .2  E x a m p l e s  o f  m o v e m e n t s  

All the examples given below are expressed within 
the framework of head-initial languages like French 
and English. Let us first consider the relat ive  
clause construction. In a relative clause, an N is 
pronominalized and moved to the left and adjoined to a 
COMP node. A trace of N is left behind and 
co-indexed with the pronominalized N: 

(1) [COMP N(+Pro)i ........ [N2 trace i ] ...... ] 

as in: 
[COMP thati John met IN2 t race  i ] yesterday ] 
Where i is the co-indexation link. 



The case of the passive construction is a 
little more complicated and needs to be explained. An 
object NP is moved to a subject position because the 
passivisation of the verb no longer allows the verb to 
assign case to its object NP and a 0-role to its subject 
NP (in an indirect manner): 

at d-structure we have, for example: 
[ [NP ] [INFL gives [ N2 a book ] ] ] 

and at s-structure we have: 
[ [NP a booki ] [INFL is given [N2 tracei ] ]. 

At d-structure, the subject NP is here not 
mentioned. In a passive construction, the subject is 
not moved to a PP position (by N2). 0-roles are 
redistributed when the verb is passivized (this 
illustrates once again the prominent role played by the 
lexical description and the projection principle) and a 
by-complement with the previous 0-role of the 
subject NP is created. 

Another example is the subject-to-subject raising 
operation, where: 

It  seems that Jane is on time 
becomes: 
Jane seems to be on time. 

Jane moves to a position without 0-role (it is not 
0-marked by seem ). When the clause is on time is in 
the infinitive form then the subject NP position is no 
longer case-marked, forcing Jane to move: 

[INFL Janei seem [COMP lracei [VP to be on 
time ] ] ] 

Finally, let us consider the wh-construal 
construction occuring at logical form (I.F) (May 86). 
The representation of: 

Who saw what ? 
is at s-structure: 
[COMP2 [COMP whoi ] [INFL tracei saw' [N 

what ] ] ] 
and becomes at IF :  
[COMP2 [COMP whatj ] [COMP whoi ] ] [INFL 

tracei saw tracej ] ]. 

Both what and who are adjoined to a COMP node. 

This latter type of movement is also restricted by 
a small number of general principles based on the 
type of landing site a raised quantifier may occupy and 
on the nature of the nodes a quantifier can cross over 
when raised. The first type of constraint will be 
directly expressed in rules by means of features; the 
latter will be dealt with in section 5 devoted to 

Bounding theory, where a model of the subjacency 
constraint is presented. 

2.3 T o w a r d s  a c o m p u t a t i o n a l  
express ion  of  m o v e m e n t s  

Movements have to be expressed in a simple 
computational way. Let us consider the relative clause 
construction (wh-movement in general), all the other 
examples can be expressed in the same way. 

Relative clause construction can be expressed in a 
declarative Way by stating, very informally, that: 
within the domain of  a COMP, an N(+Pro) is 
adjoined to that COMP and somewhere else in that 
domain an N2 is derived into a trace co-indexed with 
that N(+Pro). The notion of domain associated to a 
node like COMP refers to Bounding theory and will 
be detailed in section 5, the constraint on the 
co-existence in that domain of an N(+Pro) adjoined to 
a COMP and, somewhere else, of an N2 derived into a 
trace can directly be expressed by constraints on 
syntactic trees, and, thus, by constraints on proof 
trees in an operational framework. This is precisely 
the main motivation of DISLOG that we now briefly 
introduce. 

3. An I n t r o d u c t i o n  to D I S L O G ,  
P r o g r a m m i n g  in  L o g i c  w i t h  
D i s c o n t i n u i t i e s .  

Dislog is an extension to Prolog. It is a language 
composed of Prolog standard clauses and of Dislog 
clauses. The computational aspects are similar to that 
of  Prolog. Foundations of DISLOG are given in 
(Saint-Dizier 1988b). We now introduce and briefly 
illustrate the main concepts of Dislog. 

3.1. Di s iog  c lauses  

A Dislog clause is a t-mite, unordered set of Prolog 
clauses fi of the form: 

{ f l  , f2  . . . . . . . . .  fn  }. 
The informal meaning of a Dislog clause is: ira 

clause f i  in a Dislog clause is used in a given proof 

tree, then all the other ~ of that Dislog clause must 

be used to build that proof  tree, with the same 
substitutions applied to identical variables. For 
example, the Dislog clause (with empty bodies here, 
for the sake of clarity): 

{ arc(a/a), arc(e~9 3. 
means that, in a graph, the use of arc(a,b) to 

construct a proof is conditional to the use of arc(e~. 
If one is looking for paths in a graph, this means that 
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all path going through arc(a,b) will also have to go 
through arc(el). 

A Dislog clause with a single element is 
equivalent to a Prolog clause (also called definite 
program clause). 

A Dislog program is composed of a set of Dislog 
clauses. The definition of a predicate p in a Dislog 
program is the set of all Dislog clauses which contain 
at least one definite clause with head predicate symbol 
p. Here is an example of a possible definition for p: 

{ p(1), h :- t(X) }. 
{ (p(X) :- tfX), p(X-1) ) ,  d(3) }. 
{ p(5) }. 

A full example is given in section 3.3. 

3 .2  C o n s t r a i n i n g  D i s i o g  c l a u s e s  

We now propose some simple restrictions of the 
above general form for Dislog clauses. A first type of 
restriction is to impose restrictions on the order of use 
of Prolog clauses in a Dislog clause. We say that an 
instance of a clause ri precedes an instance of a clause 

rj in a proof tree if either ri appears in that proof tree 

to the left of rj or if ri dominates rj. Notice that this 
notion of precedence is independent of the strategy 
used to build the proof tree. In the following diagram, 
the clause: a :- al  precedes the clause b :- bl.  : 

/ \ 
a b 

al bl 

or: 

I 
a l  

I 
! 
I 

bl 

To model this notion of precedence, we add to 
Dislog clauses the traditional linear precedence 
restriction notation, with the meaning given above: 

a < b means that the clause with head a 
precedes the clause with head b (clause numbers can 
also be used). When the clause order in a Dislog 
clause is complete, we use the more convenient 
notation: 

fl /12 / . . . . . . . . . . . .  / fn. 
which means that fl precedes 12 which precedes 13 

etc... The relation I is viewed as an accessibility 
relation. 

Another improvement to Dislog clauses is the 
adjunction of modalities. We want to allow Prolog 
clauses in a Dislog clause to be used several times. 
This permits to deal, for example, with parasitic gaps 
and with pronominal references. We use the modality 
m applied on a rule to express that this clause can be 
used any number of times in a Dislog clause. For 
example, in: 

t :l.:e, mO ) :. 
the clause f3 can be used any number of times, 

provided that f l  anti t2 are used. Substitutions for 
identical variables remain the same as before. 

Another notational improvement is the use of the 
semi-colon ';' with a similar meaning as in Prolog to 
factor out rules having similar parts: 

C. 

{a,b} .  and {a ,c}  
can be factored out as: 
{ a , ( b ; c ) } .  
which means that a must be used with either b or 

3.3  P r o g r a m m i n g  in  D i s l o g  

Here is a short and simple example where Dislog 
rams out to be very well-adapted. 

In a conventional programming language, there are 
several one-to-one or one-to-many relations between 
non-contiguous instructions. For instance, there is a 
relation between a procedure and its corresponding 
calls and another relation between a label declaration 
and its corresponding branching instructions. Dislog 
rule format is very well adapted to express those 
relations, permitting variables to be shared between 
several definite clause in a Dislog clause. These 
variables can percolate, for example, addresses of entry 
points. 

We now consider the compiler given in (Sterling 
and Shapiro 86) which transforms a program written 
in a simplified version of Pascal into a set of  basic 
instructions (built in the argument)'. This small 
compiler can be augmented with two Dislog rules: 

{procedure declaration, procedure call(s) }. 
{ label statement, branching instruction(s) to 

label}. 

In order for a procedure call to be allowed to 
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appear before the declaration of the corresponding 
procedure we do not state any linear precedence 
restriction. Furthemore, procedure call and branching 
instruction description rules are in a many-to-one 
relation with respectively the procedure declaration and 
the label declaration. A procedure call may indeed 
appear several times in the body of a program (this is 
precisely the role of a procedure in fact). Thus, we 
have to use the modality m as follows: 

{procedure declaration, re(procedure call) }. 
{ label statement, re(branching instruction to 

label)}. 

In a parse tree corresponding to the syntactic 
analysis of a Pascal program, we could have, for 
example the following tree: 

proc caU(Address) 

proc_declaration(Address,Code) • 

proc call(Address) • 

p r o c _ c ~ ,  

The main calls and the Dislog rules are the 
following: 

parse(Structure) --> [program], 
identifier(X), [';'], 
statement(Structure). 

statement((S;Sa)--> [begin], 
statement(S), 
rest_statement(Sa). 

statement(assign(X,V)) --> 
identifier(X), [':='], 
expression(V). 

/* procedure declaration and call */ 
{ (statement(proc_decl(N,S))--> 

[procedure], 
identifier(N), 
statement(S), 
[end] ) ,  
m(statement(proc_call(N,S)) --> 

identifier(N) ) }. 
/* label declaration and branching */ 
{ (statement(label(N))--> 

identifier(N), 
[':'] ) , 

m(statement(goto(N)) --> 

identifier(N)) }. 

We have carried out an efficient and complete 
implementation for Dislog rules which are compiled 
into Prolog clauses. 

4. Expres s ing  m o v e m e n t  rules  in 
D i s l o g  

A way of thinking to move-or (as in Sells 85) is 
that it expresses the 'movement' part of a relation 
between two structures. We quote the term movement 
because, in our approach, we no longer deal with 
d-structure and no longer have, thus, movements but 
rather long-distance relations or constraints. 

We think that, in fact, move-vt is itself the 
relation (or prototype of relation) and that the 
constraints (case assignment, 0-marking, bounding 
theory, etc...) are just specific arguments or 
constraints on that relation: everything is possible 
(relation) and constraints filter out incorrect 
configurations. From this point of view, Dislog is a 
simple and direct computational model for move-or. 

4.1  E x p r e s s i n g  m o v e m e n t  in 
D i s l o g  

The relativisation rule given above is expressed in 
a straightforward way by a Dislog clause. That Dislog 
clause is composed of two Prolog(-like) clauses. The 
first clause deals with the adjunction of the N(+Pro) 
to the COMP and the second clause deals with the 
derivation of the N2 into a trace. A shared variable I 
permits to establish the co-indexation link. The 
Dislog clause is the following, in which we adopt the 
X-bar syntax terminology: 

xp(comp,O,_,_, ) --> xp(n,O,pro(Case)J,_) , 
xp(comp,O,_,_, ). I 

xp(n2,CaseJ,_) -- > trace(l). 

An xp is a predicate which represents any 
category. The category is specified in the first 
argument, the bar level in the second, syntactic 
features in the third one (oversimplified here), the 
fourth argument is the co-indexation link and the last 
one, not dealt with here, contains the logical form 
associated with the rule. Notice that using identical 
variables (namely here I and Case) in two different 
clauses in a Dislog clauses permits to transfer feature 
values in a very simple and transparent way. 

The passive construction is expressed in a similar 
way. Notice that we are only interested in the 
s-structure description since we produce annotated 
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surface forms (from which we then derive a semantic 
representation). The passive construction rule in 
Dislog is: 

xp(infl,1 . . . .  ,_) --> xp(n,O,_J,_), xp(infl,1 . . . .  ,_) 
I xp(n,2,_,l,_)--> trace(l). 

Case and 0-role are lexically induced. Following a 
specification format like in (Sells 85), we have, for 
example, for the verb to eat, the following lexical 
entry: 

eat, V, (subject:NP, agenO, (object:NP, patienO, 
assigns no case to object. 

which becomes with the passive inflection: 
eaten, V, (object: NP, patient), assigns no case. 
(the by-complement is also lexically induced by a 

lexical transformation of the same kind with: 
iobject:NP, agent, case: ablative) 

Let us now consider the subject-to-subject raising 
operation. At d-structure, the derivation of an N2 into 
the dummy pronoun it is replaced by the derivation of 
that N2 into an overt noun phrase. This is formulated 
as follows in Dislog: 

xp(  inf l ,2 , C as e . . . .  ) --> 
xp(infl,1,_,_,_) t 

xp(n~,,Case,l,_)--> trace(l). 

xp(n ,2 ,Case ,1 ,  ), 

The movement construction rules given above 
have many similarities. They can be informally put 
together to form a single, partially instaneiated 
movement rule, roughly as follows: 

( ( x p ( i n f l , 1 ,  , , ) --> x p ( n , O , _ , l , _ ) ,  
xp(infl,1 . . . .  ,_) ) ; 

( xp ( in f l , 2 ,Case  . . . .  ) --> xp (n ,2 ,Case , l , _ ) ,  
xp(infl,1,_,_,_) ) ; etc .... / 

xp(n2,(Case;pro(Case))£__) --> trace(l) ). 

4.2 O t h e r  uses  o f  D i s l o g  for  
natura l  l anguage  process ing  

Dislog has many other uses in natural language 
processing. At the semantic level, it can be used in a 
convenient way as a computational model to deal with 
quantifier raising, with negation and modality operator 
raising operations or to model some meaning 
postulates in Montague semantics. Dislog can also 
provide a simple model for temporal relations 
involving the notion of (partial) precedence of actions 
or events. 

Semantic interpretation or formula optimisation 
often involves putting together or rewriting elements 
which are not necessarily contiguous in a formula. 
Dislog rules can then be used as rewriting rules. 

In order to properly anchor the N2, we have to 
repeat in the Dislog rule a rule from the base 
component (rule with infl). Once again, this is 
lexically induced from the description of the verb to 
s eem:  when the N2 is raised, the proposition 
following the completive verb has no subject, it is 
tenseless, i.e. in the infinitive form. Finally, notice 
the case variable, designed to maintain the case chain. 

The wh-construal construction at LF is dealt with 
in exactly the same manner, an N2(+pro) is adjoined 
to a COMP node: 

xp(comp,2,_ ,_ ,_)  --> xp(n ,2 ,pro(Case) , l ,_) ,  
xp(comp,2,_ . . . .  ) I 

xp(n2,Cased,_)--> trace(l). 

Case permits the distinction between different 
pronouns. Notice that this rule is exactly similar to 
the relative construction rule. 

Dislog rules describing movements can be used in 
any order and are independent of the parsing strategy. 
They are simple, but their interactions can become 
quite complex. However, the high level of 
declarativity of Dislog permits us to control 
movements in a sound way. 

Finally, at the level of syntax, we have shown in 
(Saint-Dizier 87) that Dislog can be efficiently used to 
deal with free phrase order or free word order 
languages, producing as a result a normalized 
syntactic tree. Dislog can also be used to skip parts of 
sentences which cannot be parsed. 

4.3 F o r m a l  g r a m m a t i c a l  aspects  o f  
Dis log  rules  

A Dislog rule can be interpreted by a t e r m  
attribute grammar. A term attribute grammar has 
arguments which are terms. It is a context-free 
grammar that has been augmented with conditions (on 
arguments) enabling non-context-free aspects of a 
language to be specified. A Dislog rule can be 
translated as follows into a term attribute grammar. 
Consider the rule: 

a - - > b  / c - ->d .  
a possible (and simple) interpretation is: 
a(X,Y) --> b(X,X1), add(Xl,[c-->dl,Y). 
b(X,Y) --> withdraw([c-->d1,X,Y1), d(Y1,Y). 
When a-->b is executed, the rule c-->d is stored in 

an argument (X and Y represent input and output 
arguments for storing these rules to be executed, like 
strings of words are stored in DCGs). c-->d can only 
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be executed if it is present in the list. At the end of 
the parsing process, the list of rules to be executed 
must be empty (except for rules marked with modality 
m). Notice also that shared variables in a Dislog rule 
are unified and further percolated when rules are stored 
by the procedure add. 

however more general and more powerful because it 
deals with unordered sets of rules rather than with a 
single, rigid rewriting rule, it also permits to 
introduce modalities and no extrasymbols (to 
represents skips or to avoid loops) need to be 
introduced (see Saint-Dizier 88b). 

Dislog rules can be used to express 
context-sensitive languages. For example, consider 
the language L= {anbmcndm, n, m positive integers), 
it is recognized by the following grammar: 

S--> A ,B ,  C,D.  
A--> [a],A / C--> [c],C. 
B--> [b],B I D--> [d],D. 
A --> [a]. B --> [b]. 
C--> lc]. D --> [dl. 
If a, b, c and d are mixed, with the only condition 

that the number of a's is equal to the number of o's 
and the number of b's is equal to the number of d's, 
we have: 

{ (S --> [a], S), (S --> [c], S) 1. 
{ (S --> [b], S), (S --> [d], S) }. 
S --> [a] / [b] / [el / [d]. 
Bounding nodes and modalities can also be added 

to deal with more complex languages. 

4.4 Related  works  

Dislog originates a new type of logic-based 
grammar that we call Contextual Discontinuous 
Grammars .  The closest formalisms to Dislog are 
Extraposition Grammars (Pereira 1981) and Gapping 
Grammars (DaM and Abramson 1984). As opposed to 
Gapping Grammars, Dislog permits to deal with trees 
rather than with graphs. Gapping Grammars are of 
type-0 and are much more difficult to write and to 
control the power of. Compared to Extraposition 
Grammars, Dislog no longer operates movements of 
strings and it is also more general since a Dislog 
clause can contain any number of Prolog clauses 
which can be used in any orderand at any place within 
a domain. Extraposition grammars also involve 
graphs (although much simpler than for Gapping 
Grammars) instead of trees, which are closer to the 
linguistic reality. The implementation of Dislog is 
about as efficient as the very insightful 
implementation provided by F. Pereira. 

5. B o u n d i n g  Theory  in Dis log  

Bounding theory is a general phenomena common 
to several linguistic theories and expressed in very 
similar ways. Roughly speaking, Bounding theory 
states constraints on the way to move constituents, 
or, in non-transformational terms on the way to 
establish relations between non-contiguous elements 
in a sentence. The main type of constraint is 
expressed in terms of domains over the boundaries of 
which relations cannot be established. For example, if 
A is a bounding node (or a subtree which is a 
sequence of bounding nodes), then the domain of A is 
the domain it is the root of and no constituent X 
inside that domain can have relations with a 
constituent outside it (at least not directly): 

A 

B 

or, if A represents a sequence B ... C of bounding 
nodes: 

\ 

D 

e m p t y ~  

In Dislog, if an instance of a Dislog clause is 
activated within the domain of a bounding node, then, 
the whole Dislog clause has to be used within that 
domain. For a given application, bounding nodes are 
specified as a small database of Prolog facts and are 
interpreted by the Dislog system. 

More recently (Dahl, forthcoming), Static 
Discontinuity Grammars have been introduced, 
motivated by the need to model GB theory for 
sentence generation. They permit to overcome some 
drawbacks of Gapping Grammars by prohibiting 
movements of constituents in rules. They have also 
borrowed several aspects to Dislog (like bounding 
nodes and its procedural interpretation). Dislog is 

In the case of Quantifier Raising, we have several 
types of bounding nodes: the nodes of syntax, nodes 
corresponding to conjunctions, modals, some 
temporal expressions, etc... Those nodes are declared 
as bounding nodes and are then processed by Dislog in 
a way transparent to the grammar writer. 

6. An i m p l e m e n t a t i o n  of  Dis log for 
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n a t u r a l  l a n g u a g e  p r o c e s s i n g  

We have carried out an specific implementation of 
Dislog for natural language parsing described in 
(St-Dizier, Toussaint, Delaunay and SebiUot 1989). 
The very regular format of the grammar rules (X-bar 
syntax) permits us to define a specific implementation 
which, in spite of the high degree of parametrization 
of the linguistic system, is very efficient. 

We use a bottom-up parsing strategy similar to 
that given in (Pereira and Shieber 1987), with some 
adaptations due to the very regular rule format of 
X-bar syntax rules, and a one-step look-ahead 
mechanism which very efficiently anticipates the 
rejection of many unappropriate rules. The sentences 
we have worked on involve several complex 
constructions; they are parsed in 0.2 to 2 seconds 
CPU time in Quintus Prolog on a SUN 3.6 
workstation. 

7. P e r s p e c t i v e s  

In this paper, we have presented a simple, 
declarative computational model for movement theory 
in Government and Binding. For that purpose, we 
have introduced Dislog, a logic programming 
language built on top of Prolog, designed to express 
in a simple, transparent and concise way relations or 
constraints between non-contiguous constituents in a 
structure. Although Dislog is still in an early stage of 
development, it seems a promising language for 
natural language processing and also to represent and 
to program several kinds of problems where the idea 
of non-contiguity is involved. The efficient 
implementation we have carried out permits to use 
Dislog on a large scale. We have designed a prototype 
parser which includes our model of movement rules, 
the GB base component, a quite extensive lexicon and 
semantic compositional rules to build logical 
formulas. We also use the same model for natural 
language generation. 
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