
A M E T A P L A N M O D E L F O R P R O B L E M - S O L V I N G D I S C O U R S E *

Lance A. Ramshaw
BBN Systems and Technologies Corporation

10 Moulton Street
Cambridge, MA 02138 USA

ABSTRACT

The structure of problem-solving discourse
in the expert advising setting can be modeled by
adding a layer of metaplans to a plan-based
model of the task domain. Classes of metaplans
are introduced to model both the agent's gradual
refinement and instantiation of a domain plan for
a task and the space of possible queries about
preconditions or fillers for open variable slots
that can be motivated by the exploration of par-
ticular classes of domain plans. This metaplan
structure can be used to track an agent's
problem-solving progress and to predict at each
point likely follow-on queries based on related
domain plans. The model is implemented in the
Pragma system where it is used to suggest cor-
rections for ill-formed input.

1. I N T R O D U C T I O N

Significant progress has been achieved
recently in natural language (NL) understanding
systems through the use of plan recognition and
"plan tracking" schemes that maintain models of
the agent's domain plans and goals. Such sys-
tems have been used for recognizing discourse
structure, processing anaphora, providing
cooperative responses, and interpreting intersen-
tential ellipsis. However, a model of the dis-
course context must capture more than just the
plan structure of the problem domain. Each dis-
course setting, whether argument, narrative,
cooperative planning, or the like, involves a
level of organization more abstract than that of
domain plans, a level with its own structures and
typical strategies. Enriching the domain plan
model with a model of the agent's plans and
strategies on this more abstract level can add

"This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by ONR under Contract No. N00014-85-
C-0016. The views and conclusions contained in this docu-
ment are those of the author and should not be interpreted
as necessarily representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

significant power to an NL system. This paper
presents an approach to pragmatic modeling in
which metaplans are used to model that level of
discourse structure for problem-solving dis-
course of the sort arising in NL interfaces to
expert systems or databases.

The discourse setting modeled by
metaplans in this work is expert-assisted
problem-solving. Note that the agent's current
task in this context is creating a plan for achiev-
ing the domain goal, rather than executing that
plan. In problem-solving discourse, the agent
poses queries to the expert to gather information
in order to select a plan from among the various
possible plans. Meanwhile, in order to respond
to the queries cooperatively, the expert must
maintain a model of the plan being considered
by the agent. Thus the expert is in the position
of deducing from the queries that are the agent's
observable behavior which possible plans the
agent is currently considering. The metaplans
presented here model both the agent's plan-
building choices refining the plan and instantiat-
ing its variables and also the possible queries
that the agent may use to gain the information
needed to make those choices. This unified
model in a single formalism of the connection
between the agent's plan-building choices and
the queries motivated thereby allows for more
precise and efficient prediction from the queries
observed of the underlying plan-building
choices. The model can be used for plan track-
ing by searching outward each time from the
previous context in a tree of metaplans to ex-
plore the space of possible plan-building moves
and related queries, looking for a predicted
query that matches the agent's next utterance.
Thus the examples will be presented in terms of
the required search paths from the previous con-
text to find a node that matches the context of
the succeeding query.

This metaplan model is discussed in two
parts, with Section 2 covering the plan-building
class of metaplam, which model the agent's ad-
dition of new branches to the domain plan tree
and instantiation of variables, while Section 3

presents examples of plan feasibility and slot
data query metaplans, which model the agent's
strategies for gathering information to use in

- 3 5 -

).

plan-building. Section 4 then compares this
modeling approach to other plan-based styles of
discourse modeling, Section 5 discusses applica-
tions for the approach and the current implemen-
tation, and Section 6 points out other classes of
metaplans that could be used to broaden the
coverage of the model and other areas for further
work.

2. PLAN BUILDING M E T A P L A N S

In this approach, the plan-building
metaplans discussed in this section model those
portions of problem-solving behavior that ex-
plore the different possible refinements of the
plan being considered and the different possible
variable instantiations for it. The domain for all
the examples in this paper is naval operations,
where the agent is assumed to be a naval officer
and the expert a cooperative interface to a fleet
information system. The examples assume a
scenario in which a particular vessel, the Knox,
has been damaged in an accident, thereby lower-
ing its readiness and that of its group. The top-
level goal is thus assumed to be restoring the
readiness of that group from its current poor
rating to good, expressed as (IncreaseGroup-
Readiness Knox-group poor good).

The domain plans in Pragma are organized
in a classification hierarchy based on their ef-
fects and preconditions, so that a node in that
hierarchy like the top-level instance of Increase-
GroupReadiness in the examples actually stands
for the class of plans that would achieve that
result in a certain class of situations. The plan
class nodes in this hierarchy can thus be used to
represent partially specified plans, the set of
plans that an agent might be considering that
achieves a particular goal using a particular
strategy. The subplans (really plan subclasses)
of IncreaseGroupReadiness shown in Figure 1
give an idea of the different strategies that the
agent may consider for achieving this goal.
(Variables are shown with a prefixed question
mark.)

(IncreaseGroupReadiness
Knox-group poor good) (1)

(RepairShip Knox) (2)
(ReinforceGroup Knox-group ?new-ship) (3)
(ReplaceShip Knox ?new-ship) (4)

Figure 1: Subplans of IncreaseGroupReadiness

The plan classification depends on the cir-
cumstances, so that RepairShip only functions as
a subplan of IncreaseGroupReadiness when its
object ship is specified as the Knox, the

damaged one, but some of the plans also intro-
duce new variables like ?new-ship, introduced
by the ReplaceShip plan, that can take on any
value permitted by the plan's preconditions.
Each of these plans also has its own subactions
describing how it can be achieved, so that
ReplaceShip, for example, involves sailing the
?new-ship to the location of the damaged ship,
having it take over the duties of the damaged
ship, and then sailing or towing the damaged one
to a repair facility. Those subactions, in turn,
specify goals for which there can be multiple
subplans. The metaplan structures modeling the
problem-solving discourse are built on top of
this tree of domain plans and actions.

Plan Refining Metaplans

The build-plan metaplan is used to capture
the agent's goal of constructing a plan to achieve
a particular goal, with the build-subplan and
build-subaction metaplans modeling the
problem-solving steps that the agent uses to ex-
plore and refine the class of domain plans for
that goal. An instance of build-subplan, say,
reflects the agent's choice of one of the possible
subplan refinements of the current domain plan
as the candidate plan to be further explored. For
example, the initial context assuming an
lncreaseGroupReadiness plan due to damage to
the Knox would be represented in our model by
the build-plan node on line (1) of Figure 2.

(build-plan
(IncreaseGroupReadiness

Knox-group poor good)) (1)
(build.subplan

(lncreaseGroupReadiness ...)
(ReplaceShip ...)) (2)

(build-plan
(ReplaceShip Knox ?new-ship)) (3)

(build-subaction
(ReplaceShip ...) (Sail ...)) (4)

(build-plan
(Sail ?new-ship ?loc Knox-loc)) (5)

Figure 2: Build-Plan, Build-Subplan,
and Build-Subaction

If we suppose that the agent first considers
replacing Knox with some other frigate, that
would be modeled as a build.subplan child (2)
of the build.plan for the IncreaseGroup-
Readiness plan (1), that would in turn generate a
new build-plan for ReplaceShip (3). If the agent
continues by considering how to get the new
ship to that location, that would be represented
as a build-subaction child (4) of the buiM-plan
for ReplaceShip that expands the Sail action.

- 3 6 -

Variable Cons t ra in ing Metaplans

In addition to the plan-refining choice of
subplans and exploration of subactions, the other
plan-building task is the instantiation of the free
variables found in the plans. Such variables may
either be directly instantiated to a specified
value, as modeled by the instantiate-var
metaplan, or more gradually constrained to sub-
sets of the possible values, as modeled by
add-constraint.

The instantiate-var metaplan reflects the
agent's choice of a particular entity to instantiate
an open variable in the current plan. For ex-
ample, the ReplaceShip plan in Figure 2 (3) in-
troduces a free variable for the ?new-ship. If the
agent were to choose the Roark as a replacement
vessel, that would be modeled by an
instantiate-var metaplan attached to the
buiM-plan node that first introduced the vari-
able, as shown in Figure 3.

(build-plan (ReplaceShip Knox ?new-ship)) (1)
(instantiate-var ?new-ship Roark) (2)

(buiM-plan (ReplaceShip Knox Roark)) (3)

Figure 3: Instantiate-Var

The agent may also constrain the possible
values for a free variable without instantiating it
by using a predicate to filter the set of possible
fillers. For example, the agent might decide to
consider as replacement vessels only those that
are within 500 miles of the damaged one. The
predicate from the add-constraint node in line
(2) of Figure4 is inherited by the lower
buiM-plan node (3), which thus represents the
agent's consideration of the smaller class of
plans where the value of ?new-ship satisfies the
added constraint.

(build-plan
(ReplaceShip Knox ?new-ship)) (1)

(add-constraint
?new -ship
(< (distance Knox ?new-ship) 500)) (2)

(build-plan
(ReplaceShip Knox ?new-ship)) (3)

Figure 4: Add-Constraint

The metaplan context tree thus inherits its
basic structure from the domain plans as
reflected in the build-plan, build-subplan, and
build-subaction nodes, and as further specified
by the instantiation of domain plan variables
recorded in instantiate-var and add-constraint
nodes. Because the domain plans occur as ar-
guments to the plan-building metaplans, the

metaplan tree turns out to include all the infor-
mation that would be available from a normal
domain plan context tree, so that no separate
domain tree structure is needed.

3. Q U E R Y M E T A P L A N S

Although the plan-building metaplans that
model the exploration of possible plans and the
gradual refinement of an intended plan represent
the agent's underlying intent, such moves are
seldom observed directly in the expert advising
setting. The agent's main observable actions are
queries of various sorts, requests for information
to guide the plan-building choices. While these
queries do not directly add structure to the
domain plan being considered, they do provide
the expert with indirect evidence as to the plan-
building choices the agent is considering. A key
advantage of the metaplan approach is the preci-
sion with which it models the space of possible
queries motivated by a given plan-building con-
text, which in turn makes it easier to predict un-
derlying plan-building structure based on the ob-
served queries. The query metaplans include
both plan feasibility queries about plan precon-
ditions and slot data queries that ask about the
possible fillers for free variables.

Plan Feasibility Quer ies

The simplest feasibility query metaplan is
ask-pred-value, which models at any build-plan
node a query for a relevant value from one of the
preconditions of that domain plan. For example,
recalling the original IncreaseGroupReadiness
context in which the Knox had been damaged, if
the agent's first query in that context is "Where
is Knox?", the expert',~ task becomes to extend
the context model in a way that explains the oc-
currence of that query. While that search would
need to explore various paths, one match can be
found by applying the sequence of metaplans
shown in Figure 5.

(build.plan
(IncreaseGroupReadiness

Knox-group poor good)) (1)
(build.subplan

(IncreaseGroupReadiness ...)
(ReplaceShip ...)) (2)

(build-plan
(ReplaceShip Knox ?new-ship)) (3)

(ask-pred-value
(ReplaceShip Knox ?new-ship)
(location-of Knox Knox-loc)) (4)

Figure 5: Ask.Pred-Value

- 3 7 -

The build-subplan (2) and build-plan (3) nodes,
as before, model the agent's choice to consider
replacing the damaged ship. Because the
ReplaceShip domain plan includes among its
preconditions (not shown here) a predicate for
the location of the damaged ship as the destina-
tion for the replacement, the ask-pred-value
metaplan (4) can then match this query, explain-
ing the agent's question as occasioned by ex-
ploration of the ReplaceShip plan. Clearly, there
may in general be many metaplan derivations
that can justify a given query. In this example,
the RepairShip plan might also refer to the loca-
tion of the damaged ship as the destination for
transporting spare parts, so that this query might
also arise from consideration of that plan. Use
of such a model thus requires heuristic methods
for maintaining and ranking alternative paths,
but those are not described here.

The other type of plan feasibility query is
check-pred-value, where the agent asks a yes/no
query about the value of a precondition. As an
example of that in a context that also happens to
require a deeper search than the previous ex-
ample, suppose the agent followed the previous
query with "Is Roark in the Suez?". Figure 6
shows one branch the search would follow,
building down from the build-plan for Replace-
Ship in Figure 5 (3).

(build-plan
(ReplaceShip Knox ?new-ship)) (1)

(instantiate-var
(ReplaceShip Knox ?new-ship)
?new-ship Roark) (2)

(build-plan
(ReplaceShip Knox Roark)) (3)

(buiM-subaction
(ReplaceShip ...) (Sail ...)) (4)

(buiM-plan
(Sail Roark Roark-loc Knox-loc)) (5)

(check-pred-value
(Sail Roark Roark-loc Knox-lot)
(location-of Roark Roark-loc)) (6)

F i g u r e 6 : Instantiate-Var and Build-Subaction

Here the search has to go through instantiate-var
and build-subaction steps. The ReplaceShip
plan has a subaction (Sail ?ship ?old-loc ?new-
loc) with a precondition (location-of ?ship ?old-
loc) that can match the condition tested in the
query. However, if the existing build-plan node
(1) were directly expanded by build-subaction to
a build-plan for Sail, the ?new-ship variable
would not be bound, so that that path would not
fully explain the given query. The expert in-
stead must deduce that the agent is considering

the Roark as an instantiation for ReplaceShip's
?new-ship, with an instantiate-var plan (2)
modeling that tentative instantiation and produc-
ing a build-plan for ReplaceShip (3) where the
?new-ship variable is properly instantiated so
that its Sail sub-action (5) predicts the actual
query correctly.

Slot Data Quer ies

While the feasibility queries ask about the
values of plan preconditions, the slot data
queries gather data about the possible values of a
free plan variable. The most frequent of the slot
data query metaplans is ask-fillers, which asks
for a list of the items that are of the correct type
and that satisfy some subset of the precondition
requirements that apply to the filler of the free
variable. For example, an ask-fillers node at-
tached beneath the build-plan for ReplaceShip in
Figure 6 (1) could model queries like "List the
frigates." or "List the C1 frigates.", since the
?new-ship variable is required by the precon-
ditions of ReplaceShip to be a frigate in the top
readiness condition.

An ask-fillers query can also be applied to
a context already restricted by an add-constraint
metaplan to match a query that imposes a
restriction not found in the plan preconditions.
Thus the ask-fillers node in line (4) of Figure 7
would match the query "List the C1 frigates that
are less than 500 miles from the Knox." since it
is applied to a build.plan node that already in-
herits that added distance constraint.

(build-plan
(ReplaceShip Knox ?new-ship)) (1)

(add-constraint
?new-ship
(< (distance Knox ?new-ship) 500)) (2)

(build-plan
(ReplaceShip Knox ?new-ship)) (3)

(ask-fillers
?new-ship
(ReplaceShip Knox ?new-ship)) (4)

Figure 7: Ask-Fillers

Note that it is the query that indicates to the
expert that the agent has decided to restrict con-
sideration of possible fillers for the ?new-ship
slot to those that are closest and thus can most
quickly and cheaply replace the Knox, while the
restriction in turn serves to make the query more
efficient, since it reduces the number of items
that must be included, leaving only those most
likely to be useful.

There are three other slot data metaplans

- 3 8 -

that are closely related to ask.fillers in that they
request information about the set of possible
fillers but that do not request that the set be
listed in full. The ask-cardinality metaplan re-
quests only the size of such a set, as in the query
"How many frigates are CI?". Such queries can
be easier and quicker to answer than the parallel
ask-fillers query while still supplying enough in-
formation to indicate which planning path is
worth pursuing. The check-cardinality metaplan
covers yes/no queries about the set size, and ask-
existence covers the bare question whether the
given set is empty or not, as in the query "Are
there any C1 frigates within 500 miles of
Knox?".

In addition to the slot data metaplans that
directly represent requests for information,
modeling slot data queries requires metaplans
that modify the information to be returned from
such a query in form or amount. There are three
such query modifying metaplans, limit-
cardinality, sort.set-by-scalar, and ask-attribute-
value. The limit-cardinality modifier models a
restriction by the agent on the number of values
to be returned by an ask-fillers query, as in the
queries "List 3 of the frigates." or "Name a C1
frigate within 500 miles of Knox.". The
sort.set.by-scalar metaplan covers cases where
the agent requests that the results be sorted
based on some scalar function, either one known
to be relevant from the plan preconditions or one
the agent otherwise believes to be so. The func-
tion of ask-attribute-value is to request the dis-
play of additional information along with the
values returned, for example, "List the frigates
and how far they are from the Knox.".

These modification metaplans can be com-
bined to model more complex queries. For ex-
ample, sort-set-by-scalar and ask-attribute-value
are combined in the query "List the C1 frigates
in order of decreasing speed showing speed and
distance from the Knox.". In the metaplan tree,
branches with multiple modifying metaplans
show their combined effects in the queries they
will match. For example, Figure 8 shows the
branch that matches the query "What are the 3
fastest frigates?". The sort-set-by.scalar
metaplan in line (2) requests the sorting of the
possible fillers of the ?new-ship slot on the basis
of descending speed, and the limit-cardinality
metaplan in that context then restricts the answer
to the first 3 values on that sorted list.

As shown in these examples, the slot data
query metaplans provide a model for some of
the rich space of possible queries that the agent
can use to get suggestions of possible fillers.
Along with the plan feasibility metaplans, they

model the structure of possible queries in their
relationship to the agent's plan-refining and
variable-instantiating moves. This tight model-
ing of that connection makes it possible to
predict what queries might follow from a par-
ticular plan-building path and therefore also to
track more accurately, given the queries, which
plan-building p~ths the agent is actually con-
sidering.

(build-plan
(ReplaceShip Knox ?new-ship)) (1)

(sort-set.by-scalar
?new-ship
(speed-of ?new-ship ?speed)
descending) (2)

(limit-cardinality ?new-ship 3) (3)
(ask-fillers

?new-ship
(ReplaceShip Knox ?new-ship)) (4)

Figure 8: Sort-Set-by-Scalar
and Limit-Cardinality

4. C O M P A R I S O N W I T H O T H E R
P L A N - B A S E D D I S C O U R S E M O D E L S

The use of plans to model the domain task
level organization of discourse goes back to
Grosz's (1977) use of a hierarchy of focus
spaces derived from a task model to understand
anaphora. Robinson (1980a, 1980b) sub-
sequently used task model trees of goals and ac-
tions to interpret vague verb phrases. Some of
the basic heuristics for plan recognition and plan
tracking were formalized by Allen and Perrault
(1980), who used their plan model of the agent's
goals to provide information beyond the direct
answer to the agent's query. Carberry (1983,
1984, 1985a, 1985b) has extended that into a
plan-tracking model for use in interpreting prag-
matic ill-formedness and intersentential ellipsis.
The approach presented here builds on those
uses of plans for task modeling, but adds a layer
modeling problem-solving structure. One result
is that the connection between queries and plans
that is implemented in those approaches either
directly in the system code or in sets of inference
rules is implemented here by the query
metaplans. Recently, Kautz (1985) has outlined
a logical theory for plan tracking that makes use
of a classification of plans based on their in-
cluded actions. His work suggested the structure
of plan classes based on effects and precon-
ditions that is used here to represent the agent's
partially specified plan during the problem-
solving dialogue.

~ - 3 9 -

Domain plan models have also been used
as elements within more complete discourse
models. Carberry's model includes, along with
the plan tree, a stack that records the d~_scourse
context and that she uses for predicting the dis-
course goals like accept-question or express-
surprise that are appropriate in a given discourse
state. Sidner (1983, 1985) has developed a
theory of "plan parsing" for distinguishing
which of the plans that the speaker has in mind
are plans that the speaker also intends the hearer
to recognize in order to produce the intended
response. Grosz and Sidner (1985) together
have recently outlined a three-part model for dis-
course context; in their terms, plan models cap-
ture part of the intentional structure of the dis-
course. The metaplan model presented here tries
to capture more of that intentional structure than
strictly domain plan models, rather than to be a
complete model of discourse context.

The addition of metaplans to plan-based
models owes much to the work of Wilensky
(1983), who proposed a model in which
metaplans, with other plans as arguments, were
used to capture higher levels of organization in
behavior like combining two different plans
where some steps overlap. Wilensky's
metaplans could be nested arbitrarily deeply,
providing both a rich and extensive modeling
tool. Litman (1985) applied metaplanning to
model discourse structures like interruptions and
clarification subdialogues using a stack of
metaplan contexts. The approach taken here is
similar to Litman's in using a metaplan com-
ponent to enhance a plan-hased discourse model,
but the metaplans here are used for a different
purpose, to model the particular strategies that
shape problem-solving discourse. Instead of a
small number of metaplans used to represent
changes in focus among domain plans, we have
a larger set modeling the problem-solving and
query strategies by which the agent builds a
domain plan.

Because this model uses its metaplans to
capture different aspects of discourse structure
than those modeled by Litman's, it also predicts
other aspects of agent problem-solving behavior.
Because it predicts which queries can be
generated by considering particular plans, it can
deduce the most closely related domain plan that
could motivate a particular query. For instance,
when the agent asked about frigates within 500
miles of Knox, the constraint on distance from
Knox suggested that the agent was considering
the ReplaceShip plan; a similar constraint on
distance from port would suggest a RepairShip
plan, looking for a ship to transport replacement

parts to the damaged one. Another advantage of
modeling this level of structure is that the
metaplan nodes capture the stack of contexts on
which follow-on queries might be based. In this
example, follow-on queries might add a new
constraint like "with fuel at 80% of capacity" as
a child of the existing add-constraint node, add
an alternative constraint like "within 1000 miles
of Knox" as a sibling, query some other predi-
cate within ReplaceShip, or attach even further
up the tree. As pointed out below in Section 6,
the metaplan structures presented here can also
be extended to model alternate problem-solving
strategies like compare-plan vs. build-plan, thus
improving their predictive power through sen-
sitivity to different typical patterns of agent
movement within the metaplan tree. The clear
representation of the problem-solving structure
offered in this model also provides the right
hooks for attaching heuristic weights to guide
the plan tracking system to the most likely plan
context match for each new input. Within
problem-solving settings, a model that captures
this level of discourse structure therefore
strengthens an NL system's abilities to track the
agent's plans and predict likely queries.

5. A P P L I C A T I O N S AND
I M P L E M E N T A T I O N

This improved ability of the metaplan
model to track the agent's problem-solving
process and predict likely next moves could be
applied in many of the same contexts in which
domain plan models have been employed, in-
cluding anaphora and ellipsis processing and
generating cooperative responses. For example,
consider the following dialogue where the
cruiser Biddle has had an equipment failure:

Agent: Which other cruisers are
in the Indian Ocean? (1)

Expert: <Lists 6 cruisers> (2)
Agent: Any within 200 miles of Biddle? (3)

Expert: Home and Belknap. (4)
Agent: Any of them at Diego Garcia? (5)

Expert: Yes, Dale, and there is a supply
flight going out to Biddle tonight. (6)

The agent first asks about other cruisers that
may have the relevant spare parts. The expert
can deduce from the query in line (3) that the
agent is considering SupplySparePartByShip.
The "them" in the next query in line (5) could
refer either to all six cruisers or to just the two
listed in (4). Because the model does not predict
the Diego Garcia query as relevant to the current
plan context, it is recognized after search in the

- 4 0 -

metaplan tree as due instead to a SupplyPartBy-
Plane plan, with the change in plan context im-
plying the correct resolution of the anaphora and
also suggesting the addition of the helpful infor-
mation in (6). The metaplan model of the prag-
matic context thus enables the NL processing to
be more robust and cooperative.

The Pragma system in which this metaplan
model is being developed and tested makes use
of the pragmatic model's predictions for sug-
gesting corrections to ill-formed input. Given a
suitable library of domain plans and an initial
context, Pragma can expand its metaplan tree
under heuristic control identifying nodes that
match each new query in a coherent problem-
solving dialogue and thereby building up a
model of the agent's problem-solving behavior.
A domain plan library for a subset of naval fleet
operations plans and sets of examples in that
domain have been built and tested. The result-
ing model has been used experimentally for
dealing with input that is ill-formed due to a
single localized error. Such queries can be
represented as underspecified logical forms con-
taining "wildcard" terms whose meaning is un-
known due to the ill-formedness. By searching
the metaplan tree for queries coherently related
to the previous context, suggested fillers can be
found for the unknown wildcards. For the
roughly 20 examples worked with so far,
Pragma returns between 1 and 3 suggested cor-
rections for the ill-formed element in each sen-
tence, found by searching for matching queries
in its metaplan context model.

6. E X T E N S I O N S TO T H E M O D E L AND
AREAS FOR F U R T H E R W O R K

This effort to capture further levels of
structure in order to better model and predict the
agent's behavior needs to be extended both to
achieve further coverage of the expert advising
domain and to develop models on the same level
for other discourse settings. The current model
also includes simplifying assumptions about
agent knowledge and cooperativity that should
be relaxed.

Within the expert advising domain, further
classes of metaplans are required to cover in-
forming and evaluative behavior. While the ex-
pert can usually deduce the agent's plan-
building progress from the queries, there are
cases where that is not true. For example, an
agent who was told that the nearest C1 frigate
was the Wilson might respond "I don't want to
use it.", a problem-solving move whose goal is
to help the expert track the agent's planning cor-

rectly, predicting queries about other ships rather
than further exploration of that branch. Inform-
ing metaplans would model such actions whose
purpose is to inform the expert about the agent's
goals or constraints in order to facilitate the
expert's plan tracking. Evaluative metaplans
would capture queries whose purpose was not
just establishing plan feasibility but comparing
the cost of different feasible plans. Such queries
can involve factors like fuel consumption rates
that are not strictly plan preconditions. The typi-
cal patterns of movement in the metaplan tree
are also different for evaluation, where the agent
may compare two differently-instantiated
build-plan nodes point for point, moving back
and forth repeatedly, rather than following the
typical feasibility pattern of depth-first explora-
tion. Such a comparison pattern is highly struc-
tured, even though it would appear to the current
model as patternless alternation between
ask-pred-value queries on two different plan
branches. Metaplans that capture that layer of
problem-solving strategy would thus sig-
nificantly extend the power of the model.

Another important extension would be to
work out the metaplan structure of other dis-
course settings. For an example closely related
to expert advising, consider two people trying to
work out a plan for a common goal; each one
makes points in their discussion based on fea-
tures of the possible plan classes, and the
relationship between their statements and the
plans and the strategy of their movements in the
plan tree could be formalized in a similar system
of metaplans.

The current model also depends on a num-
ber of simplifying assumptions about the
cooperativeness and knowledge of the agent and
expert that should be relaxed to increase its
generality. For example, the model assumes that
both the expert and the agent have complete and
accurate knowledge of the plans and their
preconditions. As Pollack (1986) has shown, the
agent's plan knowledge should instead be for-
mulated in terms of the individual beliefs that
define what it means to have a plan, so the
model can handle cases where the agent's plans
are incomplete or incorrect. Such a model of the
agent's beliefs could also be a major factor in
the heuristics of plan tracking, identifying, for
example, predicates whose value the agent does
not already know which therefore are more
likely to be queried. The current model should
also be extended to handle multiple goals on the
agent's part, examples where the expert does not
know in advance the agent's top-level goal, and
cases of interactions between plans.

- 4 1 -

However, no matter how powerful the
pragmatic modeling approach becomes, there is
a practical limitation in the problem-solving set-
ting on the amount of data available to the expert
in the agent's queries. More powerful, higher
level models require that the expert have ap-
propriately more data about the agent's goals
and problem-solving state. That tradeoff ex-
plains why an advisor who is also a friend can
often be much more helpful than an anonymous
expert whose domain knowledge may be similar
but whose knowledge of the agent's goals and
state is weaker. The goal for cooperative inter-
faces must be a flexible level of pragmatic
modeling that can take full advantage of all the
available knowledge about the agent and the
recognizable elements of discourse structure
while still avoiding having to create high-level
structures for which the data is not available.

R E F E R E N C E S

Allen, James F.; and Perrault, C. Raymond.
1980 Analyzing Intention in Utterances.
Artificial Intelligence 15: 143-178.

Carberry, M. Sandra. 1983 Tracking User Goals
in an Information-Seeking Environment.
Proceedings of the National Conference on
Artificial Intelligence. William Kaufmann:
59-63.

Carberry, M. Sandra. 1984 Understanding
Pragmatically Ill-Formed Input. Proceedings
of the lOth International Conference on Com-
putational Linguistics. ACL: 200-206.

Carberry, M. Sandra. 1985a A Pragmatics-
Based Approach to Understanding Intersen-
tential Ellipsis. Proceedings of the 23rd An-
nual Meeting of the ACL: 188-197.

Carberry, M. Sandra. 1985b Pragmatic Model-
ing in Information System Interfaces. Ph.D.
thesis, University of Delaware.

Grosz, Barbara J. 1977 The Representation and
Use of Focus in a System for Understanding
Dialogues. Proceedings of lJCAI 77. Morgan
Kaufmann: 67-76.

Grosz, Barbara J.; and Sidner, Candace L. 1985
The Structures of Discourse Structure. Tech-
nical Report 6097, Bolt Beranek and New-
m a n .

Kautz, Henry A. 1985 Toward a Theory of Plan
Recognition. Technical Report 162, Univer-
sity of Rochester.

Lilman, Diane J. 1985 Plan Recognition and
Discourse Analysis: An Integrated Approach

for Understanding Dialogues. Ph.D. thesis,
University of Rochester.

Pollack, Martha E. 1986 Inferring Domain
Plans in Question-Answering. Ph.D. thesis,
University of Pennsylvania.

Robinson, Ann E. 1980a The Interpretation of
Verb Phrases in Dialog. Technical Report
206, SRI International.

Robinson, Ann E.; Appelt, Douglas E.; Grosz,
Barbara J.; Hendrix, Gary G.; and Robinson,
Jane J. 1980b Interpreting Natural-Language
Utterances in Dialogs About Tasks. Tech-
nical Report 210, SRI International.

Sidner, Candace L. 1983 What the Speaker
Means: The Recognition of Speaker's Plans
in Discourse. International Journal of Com-
puters and Mathematics 9(1): 71-82.

Sidner, Candace L. 1985 Plan Parsing for In-
tended Response Recognition in Discourse.
Computational Intelligence 1: 1-10.

Wilensky, Robert. 1983 Planning and
Understanding. Addison-Wesley.

- 4 2 -

