
PARSING AND DERIVATIONAL EQUIVALENCE*

Mark Hepple and Glyn Morrill

Centre for Cognitive Science, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW Scotland

Abstract

It is a tacit assumption of much linguistic inquiry
that all distinct derivations of a string should assign
distinct meanings. But despite the tidiness of such
derivational uniqueness, there seems to be no a pri-
ori reason to assume that a gramma r must have this
property. If a grammar exhibits derivational equiv-
alence, whereby distinct derivations of a string as-
sign the same meanings, naive exhaustive search
for all derivations will be redundant, and quite
possibly intractable. In this paper we show how
notions of derivation-reduction and normal form
can be used to avoid unnecessary work while pars-
ing with grammars exhibiting derivational equiv-
alence. With grammar regarded as analogous to
logic, derivations are proofs; what we are advocat-
ing is proof-reduction, and normal form proof; the
invocation of these logical techniques adds a further
paragraph to the story of parsing-as-deduction.

I n t r o d u c t i o n

The phenomenon of derivational equivalence
is most evident in work on generalised categorial
grammars, where it has been referred to as ~spu-
rious ambiguity'. It has been argued that the ca-
pacity to assign left-branching, and therefore incre-
mentally interpretable, analyses makes these gram-
mars of particular psychological interest. We will
illustrate our methodology by reference to gener-
alised categorial grammars using a combinatory
logic (as opposed to say, lambda-calculus) seman-
tics. In particular we consider combinatory (cate-
gorial) grammars with rules and generalised rules

*We thank Mike Reape for criticism and suggestions in
relation to this material, and Inge Bethke and Henk Zee-
vat for reading a late draft. All errors are our own. The
work was carried out by the alphabetically first author under
ESRC Postgraduate Award C00428722003 and by the sec-
ond under ESRC Postgraduate Award C00428522008 and
an SERC Postdoctoral Fellowship in IT.

of the kind of Steedman (1987), and with metarules
(Morri~ 19ss).

Although the problem of derivational equiva-
lence is most apparent in generalised categorial
grammars, the problem is likely to recur in many
grammars characterising a full complement of con-
structions. For example, suppose that a grammar
is capable of characterising right extraposit ion of
an object 's adjunct to clause-final position. Then
sentences such as Joha met a m an yesterday who

swims will be generated. But it is probable that
the same g r ammar will assign Joha met a maa who

swims a right extraposi t ion derivation in which the
relative clause happens to occupy its normal posi-
tion in the string; the normal and right extrapo-
sition derivations generate the same strings with
the same meanings, so there is derivational equiva-
lence. Note tha t a single equivalence of this kind in
a g r ammar undermines a methodological assump-
tion of derivational uniqueness.

Combinatory Logic and Combina-
tory G r a m m a r

Combina tory logic (CL; Curry and Feys, 1958;
Curry, Hindley and Seldin, 1972; Hindley and
Seldin, 1986) refers to systems which are ap-
plicative, like the lambda-calculi, but which for-
malise functional abst ract ion through a small num-
ber of basic 'combinators ' , ra ther than through a
variable-binding opera tor like A. We will define a
typed combinatory logic. Assume a set of basic
types, say e and t. Then the set of types is defined
as follows:

(1) a. If A is a basic type then A is a type

b. If A and B are types then A-*B is a type

A convention of r ight-associativity will be used for
types, so tha t e.g. (e-- , t)-*(e-- , t) may be writ-

- 10-

ten (e---*t)--*e--,t. There is a set of constants (say,
John', walks', ...), and a mapping from the set of
constants into the set of types. In addition there
are the combinators in (2); their lambda-analogues
are shown in parentheses.

(2) IA-.., A
B(B-~ C)-* (A--~B)-*A-*C
C (A-* B--~C)-~ B--* A--~C
W(A--* A-*B)-*A--*B

(~x[x])
(~x~y~,.[x(y--)})
(~x~y~,.[(x,)y])
(AxAy[(xy)y])

The set of CL-terms is defined thus:

(3) a. If M is a constant or combinator of type A then
M is a CL-term of type A

b. If M is a CL-term of type B---~A and N is a CL-
term of type B then (MN) is a CL-term of type
A.

The interpretat ion of a te rm built by (3b) is given
by the functional application of the interpretat ion
of the left-hand sub- term to tha t of the right-
hand one. We will assume a convention of left-
association for application. Some examples of CL-
terms are as follows, where the types are writ ten
below each component term:

(4) a. walks' John'

e - * t e

b. C I

((e---* t) ---, e-* t)--* e---, (e---, t) --* t (e---,t)---,e---,t

e-* (e--* t)---,t

c. B probably I walks'

(t -* t) -* (e - -* t) -*e -* t t--*t e--~t

(e -* t) -*e - -+t

e--~t

Other basic combinators can be used in a CL, for
example S, which corresponds to Ax~yAz[(xz)(yz)].
Our CL definition is (extensionally) equivalent to
the ALcalculus, i.e. the lambda-calculus without
vacuous abstract ion (terms of the form AxM where
x does not occur in M). There is a combinator K
(AxAy[x]) which would introduce vacuous abstrac-
tion, and the CL with S and K is (extensionally)
equivalent to the AK-calculus, i.e. the full lambda-
calculus.

A combinatory grammar (CG) can be defined in
a largely analogous manner. Assume a set of basic
categories, say S, NP, ... Then the set of categories

is defined as follows:

(5) a. If X is a basic category then X is a category

b. If X and Y are categories then X/Y and X\Y are
categories

A convention of left-associativity will be used for
categories, so tha t e.g. (S \ N P) \ (S \ N P) may be
wri t ten S \ N P \ (S \ N P) . There is a set of words,
and a lexical association of words with categories.
There is a set of rules with combinators, mini-
mally:

(6) a. Forward Application (>)

f: X / Y + Y = ~ X (w h e r e f x y = x y)

b. Backward Application (<)

b: Y + X \ Y ::~ X (w h e r e b y x = x y)

The set of CG-terms is defined thus:

(7) a. If M is word of category A then M is a CG-term
of category A

b. If X I + . • "+Xn :~ X0 is a rule with combinator ~b,
and $1, . . . , Sn are CG-terms of category X1,. . . ,
Xn, then [~# S 1 ... Sn] is a CG-term of category
X0.

The interpretat ion of a te rm built by (Tb) is given
by the functional application of the combinator to
the sub- term interpretations in left-to-right order.

A verb phrase containing an auxiliary can be de-
rived as in (8) (throughout, VP abbreviates S \NP) .
The meaning assigned is given by (ga), which is
equal to (91)).

(8) will see John

VP/VP VP/NP NP
.>

VP
)

VP

(9) a. (f will' (f see' John'))

b. will' (see' John')

Suppose the g rammar is augmented with a rule
of functional composition (10), as is claimed to be
appropriate for analysis of extraction and coordina-
tion (Ades and Steedman, 1982; Steedman, 1985).
Then for example, the right hand conjunct in (l l a)
can be analysed as shown in (l lb) .

- 1 1 -

(10) Forward Composition (>B)

B: X / Y + Y/Z =~ X /Z (where B x y z = x (y z))

(11) a. Mary [phoned and will see] John

b. will see

VP/VP VP/NP
.>B

VP/NP

Forward Application of (l l b) to John will assign
meaning (12) which is again equal to (gb), and this
is appropriate because toill see John is unambigu-
ous.

(12) (f (B will' see') John')

However the grammar now exhibits derivational
equivalence, with different derivations assigning
the same meaning. In general a sequence
A1/A2 +A2/A3 9.A3/A4 9."'9"An can be analysed
aS AI with the same meaning by combining any
pair of adjacent elements at each step. Thus there
are a number of equivalent derivations equal to
the n u m b e r of n-leaf binary trees; this is given by
the Catalan series, which is such that Catalan(n)
> 2 '~-2. As well as it being inefficient to search
through derivations which are equivalent, the expo-
nential figure signifies computat ional intractability.

Several suggestions have been made in relation
to this problem. Pareschi and Steedman (1987) de-
scribe what they call a ' lazy chart parser' intended
to yield only one of each set of equivalent analy-
ses by adopting a reduce-first parsing strategy, and
invoking a special recovery procedure to avoid the
backtracking that this strategy would otherwise ne-
cessitate. But Hepple (1987) shows that their al-
gorithm is incomplete.

Wit tenburg (1987) presents an approach in
which a combinatory grammar is compiled into one
not exhibiting derivational equivalence. Such com-
pilation seeks to avoid the problem of parsing with
a grammar exhibiting derivational equivalence by
arranging that the grammar used on-line does not
have this property. The concern here however is
management of parsing when the grammar used
on-line does have the problematic property.

Kar t tunen (1986) suggests a strategy in which
every potential new edge is tested against the chart
to see whether an existing analysis spanning the
same region is equivalent. If one is found, the new
analysis is discarded. However, because this check

requires comparison with every edge spanning the
relevant region, checking time increases with the
number of such edges.

The solution we offer is one in which there is
a notion of normal form derivation, and a set of
contraction rules which reduce derivations to their
normal forms, normal form derivations being those
to which no contraction rule can apply. The con-
traction rules might be used in a number of ways
(e.g. to transform one derivation into another,
ra ther than recompute from the start, cf. Pareschi
and Steedman). The possibility emphasised here
is one in which we ensure that a processing step
does not create a non-normal form derivation. Any
such derivation is dispensable, assuming exhaustive
search: the normal form derivation to which it is
equivalent, and which won' t be excluded, will yield
the same result. Thus the equivalence check can
be to make sure that each derivation computed is
a normal form, e.g. by checking that no step creates
a form to which a contraction rule can apply. Un-
like Kar t tunen 's subsumption check this test does
not become slower with the size of a chart. The test
to see whether a derivation is normal form involves
nothing but the derivation itself and the invarlant
definition of normal form.

The next section gives a general outline of re-
duction and normal forms. This is followed by an
illustration in relation to typed combinatory logic,
where we emphasise tha t the reduction constitutes
a proof-reduction. We then describe how the no-
tions can be applied to combinatory grammar to
handle the problem of parsing and derivational
equivalence, and we again note that if derivations
are regarded as proofs, the method is an instantia-
tion of proof-reduction.

R e d u c t i o n a n d N o r m a l F o r m

It is a common state of affairs for some terms of
a language to be equivalent in that for the intended
semantics, their interpretations are the same in all
models. In such a circumstance it can be useful to
elect normal forms which act as unique represen-
tatives of their equivalence class. For example, if
terms can be transformed into normal forms, equiv-
alence between terms can be equated with identity
of normal forms. 1

The usual way of defining normal forms is by

1For our purposes 'identity I can mean exact syntactic
identity, and this simplifies discussion somewhat; in a system
with bound variables such as the lambda-calculus, identity
would mean identity up to renaming of bound variables.

- 1 2 -

defining a r e l a t ion l> (' c o n t r a c t s - t o ') of CONTRAC-
TION be tween equiva len t terms; a t e r m X is sa id to
be in NORMAL FORM if and only if the re is no t e r m
Y such t h a t X 1> Y. T h e c o n t r a c t i o n r e l a t ion gen-
e ra tes a r e d u c t i o n r e l a t i on ~ (' r educes - to ') a n d an
equa l i t y r e l a t ion -- (' equals ') be tween t e r m s as fol-
lows:

(13) a. I fX I> YthenX_> Y

b. X > X

c. If X_> YandY_> Z thenX >_ Z

(14) a. I fX I> Y t h e n X = Y

b. X = X

c. If X = Y a n d Y = Z t h e n X = Z

d. I f X = Y t h e n Y = X

T h e equa l i t y r e l a t ion is sound wi th r e spec t to a
s eman t i c equivalence re l a t ion -- if X = Y impl ies
X = Y, a n d comple t e if X ---Y impl ies X -- Y. I t is a
sufficient cond i t ion for soundness t h a t the con t r ac -
t ion r e l a t ion is val id . Y is a n o r m a l form of X if a n d
only if Y is a n o r m a l fo rm a n d X _> Y. A sequence
X0 I> X1 1> . . - I> Xn is ca l led a REDUCTION (of
X0 to X.).

W e see f rom (14) t h a t if t he re is a T such t h a t P
>_ T a n d Q >_ T, t hen P -- Q (-- T) . In pa r t i cu la r ,
if X a n d Y have the same n o r m a l form, t hen X --
Y.

Suppose the re la t ions of r educ t i on and equa l i t y
gene ra t ed b y the c o n t r a c t i o n re la t ion have the fol-
lowing p r o p e r t y :

(15) Church-Rosser (C-R): If P --- Q then there is a T
such that P >_ T and Q _> T.

T h e r e follow as corol lar ies t h a t if P a n d Q a re dis-
t inc t n o r m a l forms t hen P ~ Q, and t h a t any nor-
ma l form of a t e r m is un iquef l If two t e rms X and
Y have d i s t i nc t n o r m a l forms P and Q, t hen X --
P a n d Y - - Q , b u t P ~ Q , s o X ~ Y.

2Suppose P and Q are distinct normal forms and that P
---- Q. Because normal forms only reduce to themselves and
P and Q are distinct, there is no term to which P and Q can
both reduce. But C-R tells us that if P = Q, then there/a
a term to which they can both reduce. And suppose that
a term X has distinct normal forms P and Q; then X = P,
X = Q, and P -- Q. But by the first corollary, for distinct
normal forms P and Q, P ~ Q.

W e have e s t ab l i shed t h a t if two t e r m s have the
same n o r m a l fo rm then t h e y are equa l a n d (given
C-R) t h a t if t hey have different n o r m a l forms then
t h e y are no t equal , a n d t h a t n o r m a l forms are
unique. Suppose we also have the following prop-
e r ty :

(16) Strong Normalisation (SN): Every reduction is finite.

Th i s has the coro l la ry (normal i sa t ion) t h a t every
t e r m has a n o r m a l form. A sufficient condi t ion to
d e m o n s t r a t e SN wou ld be to f ind a me t r i c which
assigns to each t e r m a f inite non-nega t ive in teger
score, a n d to show t h a t each app l i ca t i on of a con-
t r a c t i o n de c r e me n t s the score b y a non-zero inte-
gra l a m o u n t . I t follows t h a t a n y r educ t i on of a t e rm
m u s t be finite. G iven b o t h C - R a n d SN, equa l i ty is
dec idable : we can reduce a n y t e r m s to the i r no rma l
forms in a f inite n u m b e r of s teps , a n d compare for
ident i ty .

Norxizal F o r m and P r o o f - R e d u c t i o n
in C o m b i n a t o r y Logic

In the CL case, no te for e xa mp le the following
equivalence (omi t t i ng t y p e s for the momen t) :

(17) B probably ~ walks ~ John ~ -- probably ~ (walks' John #)

We m a y have the fol lowing con t r ac t i on rules:

(18) a. I M I>M

b. B M N P i > M (N P)

c. C M N P i > M P N

d. W M N i > M N N

These s t a t e t h a t a n y t e r m con ta in ing an occurrence
of the form on the left can be t r ans fo rmed to one
in which the occur rence is r ep l aced by the form on
the r ight . A form on the left is ca l led a REDEX, the
fo rm on the r ight , i t s CONTRACTUM. To see the va-
l i d i ty of the con t r ac t i on r e l a t ion def ined (and the
soundness of the consequent equa l i ty) , no te t h a t
the func t iona l i n t e r p r e t a t i o n s of a r edex a n d a con-
t r a c t u m are the same, and t h a t by c o m p o s i t i o n a l
ity, the i n t e r p r e t a t i o n of a t e r m is unchanged by
s u b s t i t u t i o n of a s u b t e r m for an occur rence of a
s u b t e r m wi th the s ame i n t e r p r e t a t i o n . A n exam-
ple of r educ t i on of a t e r m to i ts n o r m a l form is as
follows:

- 1 3 -

(19) C I John' (B probably' walks n) I>
I (B probably I walkd) Johnll>
B probably ~ walk~ John' I>
probably I (walks' John')

Returning to emphasise types, observe that they
can be regarded as formulae of implicational logic.
In fact the type schemes of the basic combinators
in (2), together with a modus ponens rule corre-
sponding to the application in (3b), provide an
axiomatisation of relevant implication (see Morrill
and Carpenter, 1987, for discussion in relation to
grammar):

(20) a. A-+A
(B-+C)-+(A-+B)-+A-+C
(A-*B-+C)-+(B-+A-+C)
(A.--,A-~B)--*A-'*B

b. B---~A B

A

Consider the typed CL-terms in (4). For each of
these, the tree of type formulae is a proof in im-
plicational relevance logic. Corresponding to the
term-reduction and normal form in (19), there is
proof-reduction and a normal form for a proof over
the language of types (see e.g. Hindley and Seldin,
1986). There can be proof-contraction rules such
as the following:

(21) B N M P
m ~ ~ m

(B-+C)-+(A-~B)-+A-+C B-*C A-+B A

(A-+B)-+A-+C

A-+C

c
N M P

B--~C A--,B A
1>

B

c

Proof-reduction originated with Prawitz (1965)
and is now a standard technique in logic. The sug-
gestion of this paper is that if parse trees labelled
with categories can be regarded as proofs over the
language of categories, then the problem of parsing
and derivational equivalence can be treated on the
pattern of proof-reductlon.

Before proceeding to the grammar cases, a cou-
ple of remarks are in order. The equivalence ad-
dressed by the reductions above is not strong (ex-
tensional), but what is called weak equivalence. For

example the following pairs (whose types have been
omitted) are distinct weak normal forms, but are
extensionally equivalent:

(22) a. B (B probablyanecessarily l) walks l

b. B probablyW(B necessarilylwalks s)

(23) a. B I walks I

b. walks'

Strong equivalence and reduction is far more com-
plex than weak equivalence and reduction, but un-
fortunately it is the former which is appropriate
for the grammars. Later examples will thus differ
in this respect from the one above. A second dif-
ference is that in the example above, combinators
are axioms, and there is a single rule of applica-
tion. In the grammar cases combinators are rules.
Finally, grammar derivations have both a phono-
logical interpretation (dependent on the order of
the words), and a semantic interpretation. Since
no derivations are equivalent if they produce a dif-
ferent sequence of words, derivation reduction must
always preserve word order.

N o r m a l F o r m a n d P r o o f - R e d u c t i o n
in C o m b i n a t o r y G r a m m a r

Consider a combinatory grammar containing
the application rules, Forward Composition, and
also Subject Type-Raising (24); the latter two en-
able association of a subject with an incomplete
verb phrase; this is required in (25), as shown in
(26).

(24) Subject Type-Raising (>T)

T: NP =~ S/(S\NP) (where T y x = x y)

(25) a. [John likes and Mary loves] opera

b. the man who John likes

(26) John likes

NP S\NP/NP
"-->T

S/(S\NP)
.>B

S/NP

This grammar will allow many equivalent
derivations, but consider the following contraction
ru les :

- 1 4 -

x / v Y/Z z
,>B

x / z

x

x /Y v / z z

l>~ Y

X

(f (B ~y) ,) = (fx (ry ,))

b. X/Y Y/Z Z/W X/Y Y/Z Z/W
• >B >B

X/Z 1>2 Y/W
>B ,>B

x / w x / w

(B (B x y) z) = (B x (B y ,))

C. NP S\NP NP S\NP

S/(S\NP) I>s S

S

(f (Tx) y) ---- (b x y)

Each contraction rule states that a derivation
containing an occurrence of the redex can be trans-
formed into an equivalent one in which the occur-
rence is replaced by the contractum. To see that
the rules are valid, note that in each contraction
rule constituent order is preserved, and that the
determination of the root meaning in terms of the
daughter meanings is (extensionally) equivalent un-
der the functional interpretation of the combina-
tors.

Observe by analogy with combinatory logic that
a derivation can be regarded as a proof over the
language of categories, and that the derivation-
reduction defined above is a proof-reduction. So
far as we are aware, the relations of reduction and
equality generated observe the C-R corollaries that
distinct normal forms are non-equal, and that nor-
mal forms are unique. We provid e the following
reasoning to the effect that SN holds.

Assign to each derivation a score, depending on
its binary and unary branching tree structure as
follows:

(28) a. An elementary tree has score 1

b. If a left subtree has score z and a right subtree has
score y, the binary-branching tree formed from
them has score 2z -t- y

c. If a subtree has score z then a unary-branching
tree formed from it has score 2z

All derivations will have a finite score of at least 1.
Consider the scores for the redex and contractum in

each of the above. Let z, y, and z be the scores for
the subtrees dominated by the leaves in left-to-right
order. For I>1, the score of the redex is 2 (2 z ÷ y) ÷ z
and that of its contractum is 2z-t-(2y + z): a decre-
ment of 2z, and this is always non-zero because all
scores are at least 1. The case of 1>2 is the same.
In I>s the score of the redex is 2(2z) -t- y, that of
the contractum 2~-t-y: also a proper decrement. So
all reductions are finite, and there is the corollary
that all derivations have normal forms.

Since all derivations have normal forms, we can
safely limit attention in parsing to normal form
derivations: for all the derivations excluded, there
is an equivalent normal form which is not excluded.
If not all derivations had normal forms, limitation
to normal forms might lose those derivations in the
grammar which do not have normal forms. The
strategy to avoid unnecessary work can be to dis-
continue any derivation that contains a redex. The
test is neutral as to whether the parsing algorithm
is, e.g. top-down or bottom-up.

The seven derivations of John will see Mary in
the grammar are shown below. Each occurrence of
a redex is marked with a correspondingly labelled
asterisk. It will be seen that of the seven logical
possibilities, only one is now licensed:

(29) a. John will see Mary

NP VP/VP VP/NP NP
>

VP

b.

VP
C

John will see Mary

V P / N P m ,

\ VP

S

c. John will see Mary
m m

NP VP/VP VP/NP NP

S/NP ~.

S

- 1 5 -

d. John will see Ma"~y

* i NP>T VP/VP VTTNP N P

e. John will see Mary

NP vP/vP vP/NP NP
~ > T ~B

* l S/VF' S/NP VP/NP S .>S .>)

f. John will see Mary *tNP;1,~'VP/VP VP/NP>B~NP ~

/ J [- "s vP) ,

g. John will see Mary

NP VP/VP VP/NP NP
~ > T ~,

"1~'S/VP)
S/VP ~B VP.>

S

The derivations are related by the contraction
relation as follows:

(so) 1 3
2 / e " f ~ b - ~

/
c a

Consider now the combinatory grammar ob-
tained by replacing Forward Composition by
the Generallsed Forward Composition rule (31a},
whose semantics B" is recursively defined in terms
of B as shown in (31b).

(31) a.

b.

Generalised Forward Composition (>B"):

B": X/Y + Y/ZI.--/Zn =~ X/ZI ' " /Zn

B* =B; B "+z = BBB n, .> 1

This rule allows for combinations such as the fol-
lowing:

(32) will give

vP/vP vP/PP/NP
>B 2

VP/PP/NP
We may accompany the adoption of this rule with
replacement of the contraction rule (27b) by the
following generalised version:

(ss) a. X/Y WZz"'/Zm Zm/Wz"'/W.
,)B m

Y/Zz.. -/Zm
-~B n

x / z z - - . / z ~ . z / w z - . . / W n

X/Y Y/Zz---/Z~ Zm/Wz.../Wn
,~B n

l>g Y/ZI. . . /Zm.1/Wl. . . /Wn .)Bin+n-1
X/Zr--/Zm.1/Wr--/Wn

b. (B n (Bm x y) ,) = (B ('r'+"-*) x (B" y ~-))
f o r , > I; m>_l

It will be seen that (33a) has (27b) as the special
case n = 1, m = 1. Furthermore, if we admit a
combinator B ° which is equivalent to the combi-
nator f, and use this as the semantics for Forward
Application, we can extend the generalised contrac-
tion rule (33) to have (27a) as a special case also
(by allowing the values for m and n to be such that
, ~_ 0; m > 1). It will be seen that again, every
contraction results in a proper decrement of the
score assigned, so that SN holds.

In Morrill (1988) it is argued at length that even
rules like generalised forward composition are not
adequate to characterise the full range of extrac-
tion and coordination phenomena, and that deeper
generalisations need to be expressed. In particular,
a system is advocated in which more complex rules
are derived from the basic rules of application by
the use of metarules, like that in (34); these are sim-
ilar to those of G azdar (1981), but with slash inter-
preted as the categorial operator (see also Geach,
1972, p485; Moo/tgat , 1987, plS).

(34) Right Abstraction

#: X + Y = ~ V ==~ R~b: X + Y / Z = > V / Z

(where (R g x y) -- = gx(yz))

Note for instance that applying Right Abstraction
to Forward Application yields Steedman's Forward
Composition primitive, and that successive appli-
cation yields higher order compositions:

- 1 6 -

(35) a. Rf: X / Y + Y/Z ::~ X / Z

b. R(Rf): X/Y + Y/Z/W ::~ X/Z/W

Applying Right Abstraction to Backward Applica-
tion yields a combinator capable of assembling a
subject and incomplete verb phrase, without first
type-raising the subject:

(36) a.

b.

Rb: Y + X\Y/Z =~ X/Z

John likes

NP S\NP/NP
'Rb

S/NP

(Note that for this approach, the labelling for a rule
used in a derivation is precisely the combinator that
forms the semantics for that rule.)

Consider a grammar with just the applica-
tion rules and Right Abstraction. Let R'~ be
R (. . . 1%(~6)...) with n _> 0 occurrences of R. In-
stead of the contraction rules earlier we may have:

(3~) a. x v / z z / w l . . . / w .
R"f

YIWI'--IW.

VlW~...lw.

x VlZ z l w r . . l w .

~,~ V/Z
Rnf

v / w l . . . / w .

b. (R"~b x (Rnf y z)) -- (R"r (Re x y) z)

Suppose we now assign scores as follows:

(38) a. An elementary tree has score I

b. If a left subtree has score z and a right subtree has
score y, the binary-branching tree formed from
them has score z + 21/

The score ofa redex will be x+2(y-i-2z) and that of
its contractum (x + 2y) + 2z: a proper decrement,
so SN holds and all derivations have normal forms
as before. For the sentence John will see Mary,
the grammar allows the set of derivations shown in
(39).

(sg) a . John will see Mary

NP VP/VP VP/NP NP
Rb

s/vP
Rf

S/NP
f

S

b. John will see Mary

c. John will see Mary

j
f

S

d. John will see Mary

NP VP/VP VP/NP NP
Rf

e. John will see Maw

NP~ VP/VPRb VP/NP NP)

" _ v ' ,

\ . S

As before, we can see that only one derivation,
(39b), contains no redexes, and i t is thus the only
admissible normal form derivation. The derivations
are related by the contraction relat ion as follows:

(40) b ' d ~ c . a

C o n c l u s i o n

We have offered a solution to the problem of
parsing and derivational equivalence by introduc-
ing a notion of normal-form derivation. A defini-
tion of redex can be used to avoid computing non-
normal form derivations. Computing only normal
form derivations is safe provided every non-normal
form derivation has a normal form equivalent. By

- 17-

demonstrating strong normalisation for the exam-
ples given, we have shown that every derivation
does have a normal form, and that consequently
parsing with this method is complete in the sense
that at least one member of each equivalence class
is computed. In addition, it would be desirable
to show that the Church-Rosser property holds, to
guarantee that each equivalence class has a unique
normal form. This would ensure that parsing with
this method is optimal in the sense that for each
equivalence class, only one derivation is computed.

R e f e r e n c e s

Ades, A. and Steedman, M. J. 1982. On the Or-
der of Words. Linguistics and Philosophy, 4: 517-
558.

Curry, H. B. and Feys, R. 1958. Combinatory
logic, Volume I. North Holland, Amsterdam.

Curry, H. B., Hindley, J. R. and Seldin, J. P.
1972. Combinatory logic, Volume II. North Hol-
land, Amsterdam.

Gazdar, G. 1981. Unbounded dependencies and
coordinate structure. Linguistic Inquiry, 12: 155-
184.

Geach, P. T. 1972. A program for syntax. In
Davidson, D. and Haman, G. (eds.) Semantics of
Natural Language. Dordrecht: D. ReideL

Hindley, J. R. and Seldin, J. P. 1986. Intro-
duction to combinators and h-calculus. Cambridge
University Press, Cambridge.

Hepple, M. 1987. Methods for Parsing Com-
binatory Grammars and the Spurious AmbiguiW
Problem. Masters Thesis, Centre for Cognitive Sci-
ence, University of Edinburgh.

Karttunen, L. 1986. Radical Lexicallsm. Re-
port No. CSLI-86-68, Center for the Study of Lan-
guage and Information, December, 1986. Paper
presented at the Conference on Alternative Con-
ceptions of Phrase Structure, July 1986, New York.

Moortgat, M. 1987. Lambek Categoria] Gram-
mar and the Autonomy Thesis. INL Working Pa-
pers No. 87-03, Instituut voor Nederlandse Lexi-
cologie, Leiden, April, 1987.

Morrill, G. 1988. Extraction and Coordina-
tion in Phrase Structure Grammar and Categorial
Grammar. PhD Thesis, Centre for Cognitive Sci-
ence, University of Edinburgh.

Morrill, G. and Carpenter, B. 1987. Compo-
sitionality, Implicational Logics, and Theories of
Grammar. Research Paper No. EUCCS/RP-11,
Centre for Cognitive Science, University of Edin-
burgh, Edinburgh, June, 1987. To appear in Lin-
guistics and Philosophy.

Pareschi, R. and Steedman, M. J. 1987. A
Lazy Way to Chart-Parse with Extended Catego-
rial Grammars. In Proceedinge of the £Sth An-
nual Meeting of the Association for Computational
Linguistics, Stanford University, Stanford, Ca., 6-9
July, 1987.

Prawitz, D. 1965. Natural Deduction: A Proof
Theoretical Study. Ahnqvist and Wiksell, Uppsala.

Steedman, M. 1985. Dependency and Coordi-
nation in the Grammar of Dutch and English. Lan-
guage, 61: 523-568.

Steedman, M. 1987. Combinatory Grammars
and Parasitic Gaps. Natural Language and Lin-
guistic Theory, 5: 403-439.

Wittenburg, K. 1987. Predictive Combinators:
a Method for Efficient Processing of Combinatory
Categorial Grammar. In Proceedings of the ~5th
Annual Meeting of the Association for Computa-
tional Linguistics, Stanford University, Stanford,
Ca., 6-9 July, 1987.

- 1 8 -

