DECLARATIVE MODEL FOR DEPENDENCY PARSING -
A VIEW INTO BLACKBOARD METHODOLOGY

Valkonen, K., Jappinen, H., Lehtola, A. and Ylilammi, M.
KIELIKONE-project, SITRA Foundation
P.0.Box 329, SF-00121 Helsinki

Finland

tel. intl + 358 0 641 877

ABSTRACT

This peper presents a declarative, dependency
constraint model for parsing an inflectional free word
language, Llike Finnish. The structure of
Finnish sentences is described as partial dependency
trees of depth one. Parsing becomes a
nondeterministic search problem in the forest of
partial parse trees. The search process is able to
solve also ambiguities and long-distance dependencies.
parsing is controlled by a blackboard system. A
working parser for Finnish has been implemented based
on the model.

order

1 INTRODUCTION

computational model for
progressed in three parallel

The development of our
dependency parsing has
and interrelated phases:

level
well
free

(1) The development of a perspicuous high
grammar specification Llanguage which gresps
regularities and idiosyncracies of inflectional
word order languages.

(2) The acquisition of a grammar using that
as the description media.

(3) The development of a parsing strategy and a
compiler for the specification language.

language

In our first approach the parsing process is described
as a sequence of local decisions (Nelimarkka et al.
1984). A pair of adjacent structures of an input
sentence is connected if there exists a valid binary
dependency relation between them. Binary relations
are boolean expressions of the morphological and
syntactic restrictions on argument structures, In
that first version dependency sructures were modelled
procedurslly with finite two-way automata (Lehtola et
al. 1985). Grammar descriptions turned out to be
complicated to handle, and due to purely [local
decisions some global phenomena, such as long-distance
dependencies, were not snalyzed.

218

A new grammar description formalism and computational
method was developed: a declarative high Llevel
language FUNDPL (Jéppinen et sl. 1986) for a grammar,
and an underlying blackboard-based parsing method
(Valkonen and Lehtola, 1986). Recently, we have
sugmented the dependency parsing model to cover also
long-distance dependencies. According to the
augmented model we have implemented a blackboard-based
dependency parser ADP (Augmented Dependency Parser).
In this paper we shortly describe our model and focus

on the parsing strategy. For the grammar development
environment and the compilation of the high level
description Llanguage, see Lehtola et al. (1985,
1986).

Our parsing method belongs to the class of constraint

systems: a user specifies the constraints holding in

the problem domain, and a goal for the computation.
The interpreter must search for the goal. The result
foltows indirectly from the search process. In our

model binary relations specify constraints on argument
structures. The goal is to find a matching Llocal
environment description for each word of an input
sentence, As a side effect of the recognition
corresponding partial dependency trees are built. The
partial dependency trees are linked into a parse tree
covering the whole sentence (Figure 1).

GOAL: @ complste

parse tree

PROBLEM SPACE:

partial dependsncy trecs
of depth ocne

Sentence
v W w W w
1] 2 3 4 [}
Figure 1. Parsing as a search process in a forest of

partial dependency trees.

2 GRAMMAR DESCRIPTION

For the development of a grammar notation
idiosyncfﬁcies of the object Llanguage had to be
observed. Finnish is a relatively free word order
language. The syntactic-semantic knowledge is often
expressed in the inflections of the words.
Furthermore, the parser was needed to work as a

practical tool for real production applications, so
the process of parsing was taken as a starting point
instead of sentence generation.

A grammar description consists of four parts:

(1) Type definitions: linguistic properties, features
and categories.

(2) A lexicon for sssociating features with words,

(3) Binary dependency relations that may hold between
regents and their dependents.

(4) Functional schemata for defining the (local
environments of regents.

2.1 Type definitions

In the type definition part a grammar writer defines
the types and their values used in a grammar
description. This corresponds to the classification
of Llinguistic properties. There are three kinds of
types: CATEGORIES, FEATURES and PROPERTIES. In

addition to this the structure of the lexical entries
is described in this part.

CATEGORY statement assigns names in hierarchies. For
example, a category SyntCat for word classes could be
defined as

(CATEGORY: SyntCat
< (Word)
(Noun ! Word)
(Proper ! Noun)
(Common ! Noun)
(Pronoun | Word)
(PersPron | Pron)
(DemPron | Pron)
(IntPron | Pron)

In a FEATURE statement a feature name and its values
are defined, Vvalues can be mutually exclusive:
adding of the complement value automatically destroys
the old value.

(FEATURE: SyntFeat
< (Locative)
(InfAttr)

;a name of a place

;a8 noun, that may have an
infinitivial attribute

(Countneasure) ;a countable measure noun

219

PROPERTY values are like FEATURES except that they may
have default values. For example:

(PROPERTY: Polar < (Pos) Neg >)

In this type definition polarity is positive by
default,

2.2 Llexicon

The parser is preceded by a morphological analyzer

(Jédppinen and Ylilammi 1986).
analyzer produces for each word its morphological
interpretation including lexical information. The
parser associates defsult features for words. Those
words which have idiosyncratic features, as all verbs
do, are in the parser’s lexicon. Some example entries
of the parser’s lexicon:

The morphological

METRI (Common (SubstMeasure))
HELSINKI (Proper (Locative))

AJATELLA (TrProcV (InfObj PartisObj))
for

“Metri® (meter) is a measure unit common nouns.

“Helsinki® is a proper noun and a name of a place.
¥AJatella" (to think) is a transitive verb that may
have infinitivial or participle objects.

2.3 Binary dependency relations

The dependency parsing model aims at providing
anslyzed sentences with their dependency trees.
According to this approach two elements of a sentence

are directly related in a dependency relatfon if one
depends on another. The two elements are called the
regent R (or head or governer) and the dependent D (or
modifier). Binary relations define all permitted
dependency relations that may exist between two words
in Finnish sentences. for example, the binary
relation Subject is the following boolean expression
of the morphological and syntactic features of a
finite verb and its nominal subject:

(RELATION: Subject (D :» Subject)
((R = Verb Act
< (< Ind Cond Imper Pot Ilpartis > (PersonP D)(PersonN D)
-~ Negative - Auxiliary)
(Auxiliary llpartis Nom - Negative)
(Negative < (lmper Pr < (S 2P) Neg >)
(Cond Pr § 3P) (Pot Pr Neg)
(lipartis Nom)> - Auxiliary)>)
(D = PersPron Nom))...

R must be an active verb. Further restrictions for it

appear within angle brackets that indicates a
disjunction. Negation is expressed by "-", (PersonP
D) (PersonN D) indicates an agreement test. D must be
s personal pronoun in nominative case in this
fragment.

In our computational model words of an input sentence
appear as complexes of their morphological,
syntactical and semantic properties. We call this
complex a constituent. If a binary relation holds
between R and D, they are adjoined into a single

This is what we mean by a functional
It can be stated formally as mepping

constituent.
description.

f(R,D) -> R’

swhere R’ stands for the regent R after that it has
bound D. Function f is defined by the corresponding
binary relation. This function abstraction should be
distinguished from grammatical functions, even though
in our grammar specification dependency relations also
estimate grammatical functions.

2.4 Functional schemata

In functional schemata the local environment of &
regent is described by dependency functions.
Functional schemata can be seen as partial dependency
tree descriptions. A simplified schema for verb
phrases, when a regent is a transitive verb and it fs
preceeded by & negative auxiliary verb, could be
defined as
(SCHEMA: NegTransVerb
WHEN (AND (R = ProcVerb Act Transitive)
C(LEFT = Auxiliary Negative))

FUNCTIONS (MULTIPLE Adverbial)

(OBLIGATORY Negation Subject Object)

(LEFT Negation Subject Object Adverbial)

(RIGHT Object Subject Adverbial)
MARK (R := VerbP))
This schema s able to recognize and build, for

instance, partisl dependency trees shown in Figure 2.

Versr VereP

AN TANNY

b neg) sub) neg adv ebf o) swb| wag

Figure 2. Example trees built by 8 schema NegTransVerb
There are three parts in the simplified
NegTransVerb: UREN, FUNCTIONS and MARK.

describes festures for the regent and
FUNCTIONS part describes
regent. MNULTIPLE clause

schema
WHEN peart
its context.
the dependents for the
indicates which dependents

220

say exist multiple times. OBLIGATORY names obligatory

dependents. LEFT and RIGHT give the structure of the
left and right context of the regent.
The free word order is allowed by default because of

the particular interpretation of the clauses LEFT and
RIGHT. The definition only indicates which dependents
exist the named context, not their mutual order.
All the permutations are allowed. There is also means
of fixing word ordering. ORDER clause indicates
mutual ordering of dependents. For example, a grammar
writer may define for the simple NP’s

in

(ORDER AdjAttr GenAttr R RelAttr)

For this particular regent the most immediate left
neighbour must be a genetive attribute. The next to
that is an sdjective attribute. The right neighbour
is a relative clause.

For long-distance dependencies the local decision
strategy must be augmented. The binding of
long-distance dependents has two phases: the

recognition and the actual binding.

In transformational grammar, long-distance
dependencies are dealt with by assuming that in the
deep structure the missing word is in the place it
would be in the corresponding simple sentence. It is
then moved or deleted by a transformation. The
essential point is that long-distance dependency is
caused by an element which has moved from the tocal
environment of a regent to the local environment of
another regent. Hence a moved element must be
recognized by the functional schema associated with
that latter regent. The binding, then, is done later
on by the schema of the former regent.

In the recognition phase the long-distance dependents

are recognized and bound “away" (captured), so that
the current regent can govern its environment.
After this capture the possibie long-distance
dependent remasins waiting for binding by another
schema.

Capturing dependency functions are marked in the
CAPTURE clause:

(CAPTURE DistantMember)

The dependency function DistantMember is general
enough to capture atl possible long-distant
dependents. Ffor the actual binding of Llong-distance
dependents, one must mark in the clause DISTANT the

dependents which may be distant:

(DISTANT Object)

3 BLACKBOARD-BASED COMTROL FOR DEPENDENCY PARSING

Blackboard is a problem-solving model for expert
systems (Hayes-Roth et al. 1983, Nii 1986). We have
adopted that concept and utilized it for parsing
purposes. Our blackboard model application is rather
simple (Figure 3).

There sre three main components: a blackboard, s
control part and knowledge sources. The blsckboard
contains the active environment description for a
regent. According to the structural knowledge in that
environment description corresponding partial parse
tree is built in the blackboard. Also all other
changes in the state of computation are marked in the
blackboard.

Functional schemata and binary dependency relations
are independent and separate knowledge sources; no
communication happens between them. Atl data flow
takes place through the blackboard. Which module of
knowledge to apply is determined dynamically, one step
at & time, resulting in the incremental generation of
partial solutions.

In functional schemata a grammar writer has described
local environments for regents by dependency
functions. The schemata are compiled into an internal
LIsP-form. At a time, only one of the schemata is
chosen as an active environment description for the
current regent. The activated schema is matched with
the environment of the regent by binary relation
tests. The binary relations respond to the changes in
the blackboard according to the structural description
in the active schema and the properties of the regent
and dependent candidates. At the same the partiat
dependency tree is built by corresponding dependency
function applications. When a schema has been fully
matched and the active regent bound to its dependents
through function links, the local partial dependency
parse is complete.

A scheduler for knowledge sources controls the whole
system. It monitors the changes on the blackboard and
decides what actions to take next. The scheduler
employs a8 finite two-way automston for recognition of
the dependents.

BLACKBOARD KNOWLEDGE
SOURCES
An active U]
environment Schema xxx Z:::m::‘:
description ¢
S e —— e | P

trees)

Partial solutions (local dependency

AL A —

p

Other computational state dote

dependency
relations

Y
<

mm— control {low
dats flow

A scheduler for knowledge
sources

CONTROL

Figure 3. A blackboard

model for dependency parsing.

221

3.1 The Dblackboard-based control for

dependency parsing

strategy

For the formal definition of the parsing process we
describe the input sentence as a sequence
(c(1),6(2),...,c(i-1), (i), c(i+1),...,c(n)) of word
constituents. With each constituent c(i) there is
associated a set (s8(i,1),...,8(i,m)) of functional
schemata. The general parsing strategy for each word
constituent c(i) can be modelled using a transition

network. puring parsing there are five possible
computational states for each constituent c(i):

$1 The initisl state. One of the schemata
associated with c(i) is activated.

S2 Left dependents are searched for c(i).

$3 c¢(i) is waiting for the building of the right
context.

sS4 Right dependents are searched for c(i).

§5 The final state. The schema associated with c(i)

has been fully matched and becomes inactive. c(i)
is the head of the completed (partial) dependency
tree.

At any time, only one schema is active, i.e. only one
constituent ¢(i) may be in the state S2 or S4. Only a
completed constituent (one in the state S5) is allowed
to be bound as a dependent for a regent. There may be
8 number of constituents simultaneousty in the state
§3. We call these pending constituents (implemented
as a stack PENDING).

The parsing process starts with c¢(1) and proceeds to
the right. Initially all constituents c(1),..,¢c(n)
are in the state St. A sentence is well formed if in
the end of the parsing process the result is a single
constituent that has reached the state $5 and contains
all other constituents bound in its dependency tree.
For each constituent c(i) the parsing process can be
described by the following five steps. Parsing begins
from the step 1 with i,k = 1.

2»

Figure 4.

1) A schems candidate s(i, k) associated with c(i) is
activated, i.e. the constituent c(i) takes the role
of a regent. Following the environment description in
8(i,k), dependents for c(i) are searched from its
immediate neighbourhood. Go to the step 2 with j =
i-1.

2) The search
subcases:

of left dependents. There are two

2a) There are no left neighbours (j = 0), none is
expected for c(i), or c(j) (j < i) exists and is
in the state S3.

Go to the step 3 with j = jet.

2b) c(j) ¢(j < i) exists and is in the state S5.
Binary relation tests are done. In the case of a
succes the mapping f(c(i), ¢(j)) -> e(i)’ takes

place. Repeat the step 2 with j = j-1 and c(i) =
c(i)’.
3) Building the right context of the regent. There
are two subcases:
3a) There are no right neighbours (j > n) or none
is expected for c(i). Go to the step 5.
3b) c(j) ¢j > i) exists. Go to the step 1 with

c(i) = c(i+1) and PENDING = push (c(i), PENDING).

4) The search of right dependents. Binary relation
tests are done. In the case of succes the mapping
f(c(i), c(j)) -> c(i)’ takes place. Repeat the step 3
with j = j+1 and c(i) = c(i)’.

5) The final state. There are two subcases:

5a) The environment description has been matched.

If there remains no unbound c¢(j)’'s (j < i or j >
i) the sentence is parsed. If c(i+1) exists go to

the step 1 with i = i+¢1. 1f c(i+1) doesn’t exist
or the steps followed previous case returned a
failure, go to the step 4 with c(i) = pop
(PENDING).

5b) The environment description has not been

matched. Return a failure.

The transition network model of the

control strategy.

222

3.2 The implementation of the control strategy

The control system has two levels: the basic Llevel
employs a general two-way automaton and the upper
level uses a blackboard system. There is a clear

correspondence between the grammar description and the

control system: the two-way automaton makes tocal
decisions according to the binary relations. These
local decisions are controlled by the blackboard

the environment descriptions
written in the schemata. This two-level control model
has certain advantages. The two-way automaton is
computationally efficient in local decisions. On the
other hand, the blackboard system is able to utitize
global knowledge of the input sentence.

system which utilizes

Chronological backtracking

To account for ambiguities there are three kinds of
backtracking points in the control system.
Backtracking may be done in regard to choice of
dependency functions, homographic word forams, or

sssociated schemata. Backtracking is chronological.
In our system a constituent c(i) may contain several
different morphotactic interpretations of a word form.
Function backtracking takes place {f there are several
possible binary relations between 8 given constituent
pair. The preconditions of the schemata may allow
multiple schema candidates for a given constituent.

All alternatives are gone through one by one, if
necessary, in chronological backtracking. As 8
result, the system may perform an exhsustive search

and produce all possible solutions.

Register for long-distance dependencies

The recognition of possible lond-distant dependencies
is done by the capture function. An element is bound
as & possible “distant member® in the context where
the capture function fires. An element is also moved
to the special register for a set of distant elements.
The actual binding is done by the distant function
from another schema. In chronological backtracking
also distant bindings are undone.

The strategy of local decisions controlled by global
knowtedge of the input sentence yields a strongly
data-driven, left-to-right and bottom-up parse whereby
partial dependency trees are built proceeding from
middle to out.

223

3.3 EXAMPLES

To visualize our discussion, a functional schema
IntrimpNegvP {s described in Figure 5. A grammar
writer has declared in WHEN-part that R must be a

transitive process verb in active tense and imperative
mood. In its left context there must be a negative
verb in imperstive mood and of the lexical form "El*
(“NOT"). There is one obligatory dependency relation
NegVerb. Adverbials may exist multiple times. A
grammar writer has written in clauses LEFT and RIGHT
the teft and right context binary relations of the
regent. After the schema has fully matched, the
regent {is marked VerbP and features PersonN and
PersonP of the dependent recognized as NegVerb are
marked for the regent.

(SCHEMA:
WHEN

IntrimperNegVvP

CAND
(R = Procverb Act Imper (NOT VerbTr))

(Left = ‘El Imper))
(OBLIGATORY NegVerb)
(MULTIPLE Adverbial)
(LEFT NegVerb Adverbial Connect)
(RIGHT Adverbial)
(R := verbP (RecNegVerb (PersonP Personi)))

FUNCTIONS

MARK

Figure S. A functional schema IntrimperNegvP
A full trace of parsing the sentence
metsdssd!" (Don’t get Llost in a forest) appears in
Figure 6. Parsing starts from the left (an arrow).
Next line indicates the selected schema and dependents
that are tested. The first word “&ld" is identified
8s & negative imperative verb with no dependents
(schema DummyVP ok). The imperative verb "eksy" (to
get lost) is then tried by the schema
IntrimperNegVP. The binary relation Negverb holds
between the two verbs, and the corresponding
dependency function adjoins them. The other functions
fail. Dependents are searched next from the right
context. The control proceeds to the word "“metsdssa"
(forest). For that word no dependents are found and
the sy#tem returns to the unfinished regent “eksy",

The schema
remaining:

whld eksy

IntrimperNegVP has only two relations
Connect and Adverbial, The word
“metslissd" is bound es an adverbial. The schema has
been fully matched and the input sentence is
completely parsed.

> _#ld eksy metséssél

MORFO:

(((("&l&" EIl Verb Act Imper Pr § /2P/)))
(({"eksy" EKSYK Verb Act Imper Pr § /2P/)))
((("metsdssd" METSA Noun SG In)))
CC("I" EXCLAMATION))))

s> (dld) (eksy) (metsdssd)

Schema: DummyVP nil

DummyVP ok

(8ld) (eksy) (metsdssd)

Schema: IntrimperNegVP (NegVerb Adverbial Connect)

NegVerb ok

Adverbial failed

Connect failed

((8l&) eksy) (metsdssd)

Schema: TrivialSP (DefPart R)

DefPart failed

TrivialSP ok

returning to unfinished constituent...

((ata) eksy) (metsdssd)

Schema: IntrimperNegVP (Connect Adverbial)

Adverbial ok

IntrimperNegVP ok

(C(dl8) eksy (metsdéissd)) PARSED

=>

=>

<3

>
The parse took 0.87 seconds CPU-time on VAX-11/751.

Figure 6. An example of parsing.

The second example shows how our parser solves the
following sentence (adopted from Karttunen, 1986b)
which has a long-distance dependency:

En mind tennists aio ruveta pelaamaan.

not I tennis intend start play

! do not intend to start to play tennis.
infinitivial clause

The object of the subordinated

("tennisté") has been raised in the main clause thus
creating a gaep. The parse tree of the sentence is in
Figure 7.
aio
Predicete
t
4rceceanan drcmmecane R L *
1 ! ! 1
en aind tennists ruvets
Negation Subject Distant(1) Object
!
#eccccccccnnanoncaes +
1
pelaamaan
Adverbial
!
L +
!
tennisti
Object(1)

Figure 7. An example of a long-distance dependency.

224

In the parsing process the schema NO-VP has matched
the environment of the verb "aio" (intend) and the
schema O-LocativeVP of the verb "pelaamaan" (play).

(SCHEMA: NO-VP
ASSUME (R :» Negative)
FUNCTIONS (OBLIGATORY Object Negation)

(MULTIPLE Adverbial DistantMember)
(LEFT Auxilisry Negation Object Adverbial Connector)
(RIGHT Object Adverbial Comma)
(CAPTURE DistantMember)
CLAUSE_READY

CHECX {VerbObjCongr Negation Object)
MARK (R := ProcVP Predicate (Negation (PersonP PersonN}))
)
(SCHEMA: O-Locativeve
FUNCTIONS (OBLIGATORY Object)
(MULTIPLE Adverbial DistantMember)
(RIGHT Object Adverbial)
(LEFT Object Adverbial)
(CAPTURE DistantMember)
(DISTANT Object Adverbial)
MARK (R := LocativevP Predicate)

)

The schema NO-VP has captured the word “tennists" as a
DistantMember. The schema O-LocativeVP has later on
bound it as a removed Object.

& COMPARISON

The notion of unification has recently emerged as a
common descriptive device in many linguistic theories
like FUG, PATR-I1l and KPSG (Shieber 1986). Another
popular approach has been to apply attribute grammars
originally developed as a theory for formal languages
(Knuth 1968). LFG and DCG can be viewed as attribute
grammar systems. The trend has been towards strictly
declarative descriptions of syntactic structure.
Syntactic rules are often expressed in the form of
complex feature sets.

Our ADP system also uses features, but differs both
from the unification-based approach and attribute
grammar approach. The basic difference is, of course,

that there is neither unification nor correspondence
to attribute grammars in our system. We use a pattern
matching via binary relation tests. Through

blackboard approach we have gained a flexible control.

Blackboard system can conveniently take into account
global knowledge of the sentence. In our model
dependents become "hidden® from further processing

once they have been found. A regent solely represents
the constituents hanging below. This makes the
parsing process simpler as the number of constituents
decreases during parsing. There are, however, some
cases where some information must be raised from the
dependent to the regent (e.g. from conjuncts to the
conjunction), so that the regent could represent the
whole constituent.

5 CONCLUSION

In our system linguistic knowledge and processing
mechanisms are separated., Structural information of
the functional schemata is interpreted by the

blackboard scheduler as control knowledge, according

to which dependencies are searched. The difference
between local and global decisions is clearly
separated. Local decisions controlled by global

knowledge of the input sentence has made it possible
to find solutions for problems that are difficult to
solve in traditional parsing systems. ADP finds all
solutions for an ambiguous sentence. Augmented search
process covers long-distance dependencies as well.

Different criteria have been expressed for grammar
formalisms (Winograd 1983, Karttunen 1986a):
perspicuity, nondirectionality, correspondence with
meanings, multiple dimensions of patterning,

order-independency, declarativeness and monotonicity.
Our model rates well in most of these criteria.
Perspicuity, correspondence with meanings snd
declarativeness are satisfied in the way the
functional schemata describe Llocal environments for
regents. The functional description is monotonic and
allows multiple dimensions of patterning.

There is a process of parsing as a starting point in
the grammar specification, 80 it Lacks
nondirectionatity. The weakest point is the
order-dependent control mechanism, albeit the grammar
description is order-independent, Plans for the
general, order-independent control strategy have been
done.

ADP has been implemented in FranzLisp. Experiments
with @& non-trivial set of Finnish sentence structures
has been performed on VAX 11/751 system. An average
time for parsing a six word sentence is between 0.5
and 2.0 seconds for the first parse. At the moment
the grammar description contains common sentence
structures quite well. There are 66 binary relations,
188 functional schemata and 1800 lexicon entries., The
lexicon of the morphological analyzer contains 35 000
words.

ACKNOWLEDGENENTS
This research has been supported by SITRA Foundation.
REFERENCES
Hayes-Roth, F., Waterman,

Building Expert Systems.
Company, Reading.

D. and Lenat, D. 1983

Addison-Wesley Publishing

Jéppinen, H.
of

1986 Associative Model
an Empirical Inquiry.

and Ylilammi, M.
Morphological Analysis:

225

Computational Linguistics, Volume 12, Number &,
October-December 1986, pp. 257-272.

Jéppinen, H., Lehtola, A. and Valkonen, K. 1986
Functional Structures for Parsing Dependency
Constraints. Proceedings of COLING86/ACL, Bonn, pp.
461-463.

Karttunen, L. and Kay, M. 1985 Parsing in a free
word order language. 1In Dowty, Karttunen and 2wicky

(Eds.), Natural Language Parsing, Cambridge University
Press.

Karttunen, L. 1986a The Relevance of Computational
Linguistics. A paper presented at the Conference on
Finnish Linguistics.

Karttunen, L. 1986b Radical Lexicalism. A paper
presented at a Conference on Alternative Conceptions
of Phrase Structure, New York.

Xnuth, D. 1968 Semantics of Context-Free Languages.
Mathematical Systems Theory 2(1968a), pp. 127-145.
Lehtola, A., Jéppinen, H. and Nelimarkka, E. 1985
Language-based Environment for Natural Language
Parsing. Proceedings of the 2nd European Conference
of ACL, Geneve, pp. 98-106.

Lehtola, A. and Valkonen, K. 1986 Knowledge

Repregentation Formalisms and Metadescriptions for the
Interpretation of Finnish. Proceedings of the Third
Finnish Symposium on Theoretical Computer Science, pp.
64-87.

Nelimarkka, E., Jéppinen, H., and Lehtola, A. 1984
Parsing an inflectional free word order language with
two-way finite automata. Proceedings of the 6th
European Conference on Artificial Intelligence, Pisa,
pp. 167-176. Also in O’Shea, 7. (Ed.), Advances in
Artificial Intelligence, North-Holland.

Nii, H. 1986 Blackboard Systems: The Blackboard
Model of Problem Solving and the Evolution of
Blackboard Architectures. The Al Magazine, Summer

1986, pp. 38-53, August 1986, pp. 82-106.
1986 An Introduction to Unification-Based

CSLI Lecture Notes Series, No.

Shieber, S.
Approaches to Grammar.
4.

1986 Blackboard Control

valkonen, K. and Lehtola, A.

for Dependency Parsing. A paper presented in Nordisk
seminar om maskinoversattelse, 9.-11.10 1986,
University of Copenhagen, 12 p. (in print).

Winograd, T. 1983 Language as a Cognitive Process.

Volume I: Syntax. Addison-Wesley.

