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ABSTRACT 

In this paper we present an efficient 
context-free (CF) bottom-up, non deterministic 
parser. It is an extension of the ICA (Immediate 
Constituent Analysis) parser proposed by 
Grishman (1976), and its major improvements 
are described. 

It has been designed to run Augmented 
Phrase-Structure Grammars (APSG) and 
performs semantic interpretation in parallel 
with syntactic analysis. 

It has been implemented in Franz Lisp and 
runs on VAX 11/780 and, recently, also on a 
SUN workstation, as the main component of a 
transportable Natural Language Interface (SAIL 
= Sistema per I'Analisi e I'lnterpretazione del 
Linguaggio). Subsets of grammars of italian 
written in different formalisms and for 
different applications have been experimented 
with SAIL. In particular, a toy application has 
been developed in which SAIL has been used as 
interface to build a knowledge base in MRS 
(Genesereth et al. 1980, Genesereth 1981) 
about ski paths in a ski environment, and to ask 
for advice about the best touristic path under 
specific weather and physical conditions. 

1. INTRODUCTION 

Many parsers for natural language have 
been developed in the past, which run different 
types of grammars. Among them, the most 
successful are the CF grammars, the 
augmented phrase-structure grammars 
(APSGs), and the semantic grammars. All of 
them have different characteristics and 
different advantages. In particular APSGs offer 
a natural tool for the treatment of certain 
natural language phenomena, such as subject- 
verb agreement. Semantic grammars are prone 
to a compositional algorithm for semantic 
interpretation. 

The aim of our work is to implement a 
parser which associates the full extension of 
an APSG to compositionality of semantics. The 
parser relies on the well stabilized ICA 
algorithm. This association allows a wide range 
of applications in syntactic/semantic analyses 
together with the efficiency of a CF parser. 

2. Funct iona l  descr ip t ion  of the 

pars ing a lgor i thm 

The parsing algorithm consists of the 

following modules: 
- a preprocessor; 
- a parser itself; 
- a post-processor and interpreter; 
and interacts with: 
- a dictionary, which is used by the 

preprocessor; 
- the grammar, used by the parser. 
Figure 1 shows the structure of the system we 
have designed. Some of the modules, such as 
the spelling corrector, the robusteness 
component, and the NL answer generator, are 
still being developed. 

2.1. The dictionary 

The dictionary contains the 'word-forms', 

known to the interface, with the following 
associated information, called 'interpretation': 
- syntactic category; 
- semantic value; 
- syntactic features as gender, number, etc.; 
A form can be single (a single word) or 
multiple (more than one word). Multiple forms 
are frequent in natural language and are in 
general referred to as 'idioms'. However, in 
semantic grammars, the use of multiple words 
is wider than in syntactic ones as also some 
simpler phrases may be more conveniently 
treated in the dictionary. This is the reason 
why multiple forms are treated by specific 
algorithms which optimize storage and search. 
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The description of this algorithm is not the aim 
of this paper. 
Figure 2 shows an example of such a 
dictionary, which contains the single forms 
che (that as conjunction), e' (is), noto 
(well-known) and the multiple forms e' noto 
(it's well-known) and e' noto che (it's 
well-known that). The mark EOW indicates 
a final state in the interpretation of the form 
currently being scanned. 

2.2. The grammar 

The grammar is a set of complex 

grammatical statements (CGS), represented in 
BNF as follows: 

CGS::=<RULE> <EXPRESSION> 
<RULE> ::.<PRODUCTION> <TESTS> <ACTIONS> 
<PRODUCTION>::=<LEFT-SYMBOL> 

<RIGHT-PATTERN> 
<LEFT-SYMBOL>::- a non terminal symbol 
<RIGHT-PATTERN>::= a sequence of categories 
<TESTS>::= a whatever predicate 
<ACTIONS>::- a whatever action 
<EXPRESSION>::= a semantic interpretation in 

any chosen formalism 

As we have already stated, the 
<PRODUCTION>'s can be instantiated both with 
syntactic and with semantic grammars. The 
schema of the rule and the order of the 
operations are fixed, regardless of the chosen 
instance grammar. 
<TESTS> are evaluated before the application 
of a rule and can inhibit it if they fail. 
<ACTIONS> are activated after the application 
of a rule and perform additional structuring and 
structure moving. Both participate into a 
process of syntactic recognition and are to be 
considered as the syntactic augmentation of the 
rules. When using a semantic grammar the 
<ACTIONS> are, in general, not used. 

<EXPRESSION>'s are the semantic augmentation 
and specify the interpretation of the sentence, 
for top level rules, or (partial) constituents, 
for the other rules. These two augmentations 
improve the syntactic power of the grammar, 
by adding context sensitiveness, and add a 
semantic relevance to the structuring of 
constituents, due to the one-to-one 
correspondence between syntactic and 
semantic rules. 

The set of rules of a grammar is partitioned 

into packets of rules sharing the same 
rightmost symbol of the <RIGHT-PATTERN> of 
productions. This partitioning makes their 
application a semi-deterministic process, as 
only a restricted set of them is tried, and no 
other choice is given. 

2.3. The preprocessor 

The preprocessor scans the sentence from 
left to right, performs the dictionary look-up 
for each word in the input string, and returns a 
structure with the syntactic and semantic 
information taken from the dictionary. At the 
end of the scanning the input string has been 
transformed into a sequence of such lexical 
interpretations. The look-up takes into account 
also the possibility that a word in input is part 
of a multiple form. 

2.4. The parser 

The parser is an extension of the ICA 
algorithm (Grishman 1976). It shares with ICA 
the following characteristics: 

it performs the syntactic recognition 
bottorfi-up, left-to-right, first selecting 
reduction sets by an integrated breadth and 
depth-first strategy. It does not reject 
sentences on a syntactic basis, but it only 
rejects rule by rule for a given input word. If 
all the rules have been rejected with no 
success, the next word in the preprocessed 
string is read and the loop continues. 

Termination occurs in a natural way, when 
no more rule can be applied and the input string 
has come to an end; 

- it gives as output a graph of all possible 
parse trees; the complete parse tree(s) is 
(are) extracted from the graph in a following 
step. This characterizes the algorithm as an all- 
path-algorithm which returns all possible 
derivations for a sentence. Therefore, the 
parser is able to create structure pieces also 
for ill-formed sentences, thus outputting, even 
in this case, partial analyses. This is 
particularly useful for diagnosis and debugging. 

The following are the major extensions to 
the basic ICA algotrithm: 

it is designed to run an APSG, in 
particular it evaluates the tests before 
applying a rule; 
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it handles lexical ambiguities during 
parsing by representing them in special 
multiple nodes (see below); 

the partition of the rules into packets 
makes the selection of the rules semi- 
deterministic; 

it carries syntactic and semantic analysis 
in parallel. 

2.5 .  P o s t - p r o c e s s o r  a n d  i n t e r p r e t e r  

The graph built by the parser is the data 

structure out of which the parse tree is 
extracted by the post-processor. To this end 
the necessary conditions are that: 
a. there exists at least one top level node 
among the nodes of the graph: 
b. at least one of the top level nodes cover the 
whole sentence. 
If one of these conditions is not met, i.e. if 
there is no top level node or no top level node 
covers the entire sentence, the analyser does 
not carry any interpretation but displays a 
message to the user, indicating the more 
complete partial parsing, where the parser 
stopped. 

In case of ambiguity more than one top level 

node covers the entire sentence and more than 
one semantic interpretation is proposed to the 
user who will select the appropriate one. If, 
instead, only one top level node is found, the 
semantic interpretation is immediately 
produced. 

3. Data structure and a l g o r i t h m  

3 .1 .  D a t a  s t r u c t u r e  

The algorithm takes in input a preprocessed 

string and returns a graph of all possible parse 
trees. The nodes in the graph can be either 
terminals (forms), or non terminals 
(constituents). Nodes are identified as follows: 
- t h e  'name' can be either FORMi or 
CONSTITUENTj, according to the type. i and j 
are indexes, and forms and constituents have 
two independent orderings; 
- a general sequence number. 
The following two types of structural 
information are associated with each node: 
a. the 'annotation' specifies the associated 
'interpretation', i.e.: 

-the syntactic category of the node 
(the label); 

- i ts  semantic value: 
- its features. 

For terminal nodes, their interpretation, i.e. 
their annotation coincides with the 
interpretation associated to the form by the 
preprocessor. For non terminal nodes, instead, 
the interpretation is made during the building of 
the node and the applied rule gives all 
necessary information; 
b. the 'covering structure' of a node contains 
the information necessary to identify in the 
graph the subtree rooted in that node. Each 
node in the graph dominates a subtree and 
covers a part of the input, i.e. a sequence of 
terminal nodes. In this sequence, the form 
associated with the leftmost terminal node is a 
'first form'. The form immediately to the right 
of the form associated to rightmost terminal 
node is the 'anchor'. For terminal nodes the 
covering structure contains: 

- the first form (the node itself); 
- the anchor (the next form in the input 

string); 
- the list of parent nodes; 
- the list of anchored nodes, i.e. the nodes 

which have as anchor the form itself; 
while for non terminal nodes it consists of: 

- t h e  first form; 
- the anchor; 
- t h e  list of parents: 
- the list of sons. 

Two trees T1 and T2 are called adjacent if the 
anchor of T1 is the first form of T2. 

3.2 .  T h e  a l g o r i t h m  

The parser is a loop realized as a recursion. 

It scans the preprocessed string and creates a 
terminal node for every scanned form. As a 
terminal node is created, the algorithm 
attempts to perform at! the reductions which 
are possible at that point. A 'reduction set' is 
defined as the set of nodes N1,N2 ..... Nn which 
are roots of adjacent subtrees and correspond, 
in the same order, to the <RIGHT-PATTERN> of 
the examined production. If no (more) reduction 
is possible, the parser scans the next form. 
The loop continues until the string is exhausted. 
The parser operates on the graph and has in 
input two more data structures, i.e.: 
- the stack of the active nodes, which contains 
all the nodes which are to be examined; this is 
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accessed with a LIFO policy; 
the list of rule packets, which contains the 

rules potentially applicable on the current node. 

The loop starts from the first active node. 

Its annotation is extracted and the 
corresponding rule packet is selected, i.e. the 
one whose rightmost symbol corresponds to 
the current node category. The reduction sets 
are thus selected. A reduction set is searched 
by an integrated breadth and depth-first 
strategy as alternatives are retrieved and 
stored all together as for breadth-first search, 
but are then expanded one by one. 
The choice of the possible applicable rules is 
not a blind one and the rules are not all tested, 
but they are pre-selected by their partition 
into packets. More than one set is possible at 
each step, i.e. the same rule can be applied 
more than once. During the matching step 
reduction sets are searched in parallel; 
reductions and the building of new nodes are 
also carried in parallel. 
Once a reduction set is identified, the tests 
associated with the current rule are evaluated. 
If they succeed, the corresponding rule is 
applied and a new node which has as category 
the <LEFT-SYMBOL> of the production is 
created and inserted in the active node stack. 
This becomes the root of the (sub)tree whose 
sons are in the reduction set. The evaluation of 
tests prior to entering a rule is a further 
improvement in efficiency. 
The annotation of the new nodes is now created 
by the execution of the actions, which insert 
new features for the node, and the evaluation 
of the expression which assigns to it a 
semantic value. 
If the tests fail, the next reduction set is 
processed in the same way. If there is no 
(more) reduction set, the next rule in the 
packet is examined until no more rule is left. 
When the higher level loop is resumed the next 
active node is examined. Termination occurs 
when the input is consumed and no more rule 
can be applied. 

3.3. Lexical ambiguity 

The algorithm can efficiently handle lexical 

ambiguity. 
For those forms which have more than one 
interpretation, a special annotation is provided. 
It contains a certain number of interpretations 

and each interpretation has the following form: 

(#i ((<cat> <sem_val>) 
((<feat_name> <featval>)'))) 

where #i is the ordering number of the 
interpretation. This structure is called 
'multiple node'. Figure 3 shows multiple nodes 
participating to different structures. 

4. An example 

The most relevant application of SAIL is its 

use as a NL interface towards a knowledge base 
about ski environments. Natural language 
declarations about lifts, snow and weather 
conditions, and classification of slopes are 
translated into MRS facts, and correspondently 
NL questions, including advice requests, are 
processed and inserted. 

Let's take the question: 

'Come si sale da Cervinla al Plateau 
Rosa ?' 
'How can one get on the Plateau Rosa 
from Cervinla ?' 

and the grammar: 

Rule1 : 
PROD: TG -> come <connette> <partenza> 

<arrive> ? 
TESTS: t 
ACTIONS: t 
EXPRESS ION :(trueps 

'(connette (SEMVAL '<partenza>) 
(SEMVAL '<arrive>) 
$mezzo)) 

Rule2: 
PROD: <partenza> -> da <luogo> 
TESTS: t 
ACTIONS: t 
EXPRESS ION: (S EMVAL '<luogo>) 

Rule3: 
PROD: <arrive> -> al <tuogo> 
TESTS: t 
ACTIONS: t 
EXPRESSION: (SEMVAL '<luogo>) 
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CONSTITUENT7recognizes 'la nota polemica ° 'the well-known controversy' 

Figure 3. Multiple nodes. 

10,TG 

1, C ? 

come sl sale da Cervinia al Plateau Rosa ? 

Figure 4. The parse-tree of the example. 
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DICTIONARY-FORM#I :<connette> -> sl sale 
DICTIONARY-FORM#2:<connette> -> si giunge 
DICTIONARY-FORM#3:<Iuogo> -> Cervinia 
DICTIONARY-FORM#4:<Iuogo> -> Plateau 

Rosa 

SEMVAL is a function that gets the semantic 
value from the node having the category 
specified by its parameter; this category must 
appear in the right-hand side of the production. 
trueps is an MRS function that checks the 
knowledge base for the presence or not of a 
predicate. 
The parser starts by creating the terminal 
nodes: 

node1 : form 0 : c o m e  
node2: form 1 : sl sale 
node3: form 2 : da 
node4: form 3 : Cervinia 

and the rule2 can be applied on nodes node3 and 
node4. The following node is created: 

node5: constituent 0 : da Cervinia 
In an analogous way other nodes are added. 

node6: form 4 : al 
node7: form 5 : Plateau Rosa 
node8: constituent 3 : al Plateau Rosa 
node9: form 6 : ? 
node10: constituent 4 : c o m e  si sale da 

Cervinla al Plateau Rosa ? 
As the syntactic category of node10 is TG (Top 
Grammar) and it covers the entire input, the 
parsing is successful. Figure 4 shows the parse- 
tree for this sentence. 

5.Conclusions and future developments 

At present the parser described above has 

been efficiently employed as a component of a 
natural language front-end. The natural 
language is Italian and typical input sentences 
either give information about the possible trips 
(paths/alternative paths) and their 
characteristics (type of lift, condition of snow, 
weather), or have the following form: 

'Qual'e" II percorso migliore per 
andare da X a Y per uno sclatore 
provetto ?' 
'What Is the best path from X to Y for 
an excel lent  skier ?' 

Three different improvements are in 

progress: 
the implementation of a spelling correcter 

and of a dictionary update system.The parser 
rejects such sentences where some forms 
occur that are not in the dictionary. A form not 
included in the dictionary cannot be 
distinguished from a form incorrectly typed 
but present in the dictionary. The two cases 
correspond to different situations and need 
distinct solutions. In the former case the 
defective form may be inserted in the 
dictionary by means of an appropriate update 
procedure. In the latter case the typing error 
may be corrected on the basis of a 
classification of errors compiled according to 
some user's model; 

another perspective is making the parser 
more powerful also about more strictly 
linguistic phenomena as the resolution of 
ellipsis and anaphora; 

finally, the identification of general semantic 
functions to be employed in the <EXPRESSION> 
part of the rule has been started. 
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