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A b s t r a c t  

The paper discusses a recent extension of the linguistic 
framework of the Rosetta system. The original frame- 
work is elegant and has proved its value in practice, 
but it also has a number of deficiencies, of which the 
most salient is the impossibility to assign an explicit 
structure to the grammars. This may cause problems, 
especially in a situation where large grammars have 
to be written by a group of people. The newly devel- 
oped framework enables us to divide a grammar into 
subgrammars in a linguistically motivated way and to 
control explicitly the application of rules in a subgram- 
mar. On the other hand it enables us to divide the 
set of grammar rules into rule classes in such a way 
that we get hold of the more difficult translation rela- 
tions. The use of both these divisions naturally leads 
to a highly modular structure of the system, which 
helps in controlling its complexity. We will show that 
these divisions also give insight into a class of difficult 
translation problems in which there is a mismatch of 
categories. 

1 T h e  R o s e t t a  F r a m e w o r k  

In this section we will give an outline of the approach 
to machine translation pursued in the Rosetta project, 
which takes place at Philips Research Laboratories. 
The linguistic framework of Rosetta can be character- 
ized by a number of principles. These are 'working 
principles', intended to be helpful for systematic re- 
search on translation and for the actual construction 
of translation systems. 

The principles are discussed here to the extent in 
which they are relevant to this paper. 

~rhis paper is the merger of two complementary papers 
on the Rosetta translation system that were submitted to 
the European ACL Conference 1987, i.e. 'Subgrammars and 
Rule Classes in the Rosetta Translation System' by Appelo 
and Fellinger and 'Controlled M-Grammars in the Rosetta 
System' by Landsbergen. 

This research was partially sponsered by Nehem (Neder- 
landse Herst ruct ureringsmaatschappij). 

P r i n c i p l e  o f  E x p l i c i t  G r a m m a r s :  There is 
an explicit grammar for both the source and the 
target language. 

In most translation systems the target language is 
defined indirectly by means of contrastive transfer 
rules that specify the differences with the source 
language. We think it important to have an in- 
dependent criterion for correctness of the target 
text. 

C o m p o s i t i o n a l i t ¥  Principle." The meaning of 
an expression is a function of the meaning of its 
parts and the way in which they are syntactically 
combined. 

This principle was adopted from Montague Gram- 
mar (cf. Thomason, 1974). Obviously, this prin- 
ciple will lead to an organlsation of the syntax 
that is strongly i~nfiuenced by semantic considera- 
tions. But as it is an important criterion of a cor- 
rect translation that it is meaning-preserving, this 
seems to be a useful guideline in machine transla- 
tion. 

The compositional grammars of Rosetta, called 
M-grammars, consist of three components: a syn- 
tactic, a semantic and a morphological compo- 
nent. 

The s y n t a c t i c  c o m p o n e n t  defines surface trees 
of sentences. The surface trees used in Rosetta, 
called S-trees, are ordered trees of which the 
nodes are labelled with syntactic categories and 
attribute-value pairs that bear other morpho- 
syntactic information. The branches are labelled 
with syntactic relations. S-trees are used as inter- 
mediate representations as well. 

The syntactic component defines the set of correct 
S-trees by specifying: 

1. a set of bas ic  express ions .  

2. a set of compositional s y n t a c t i c  ru les .  

These rules make it possible to derive new S-trees 
and ultimately surface trees of sentences from the 
basic expressions. The rules have ' transforms. 
tional power', they may perform various opera- 
tions on S-trees. The process of deriving a surface 
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tree starting from basic expressions by applying 
syntactic rules recursively, in a 'bottom-up' way, 
can be represented in a syntactic derivation 
tree with the basic expressions at the terminals 
and the names of the applied rules at the non- 
terminals. With each node of the derivation tree 
an intermediate resulting S-tree can be associated, 
i.e. the S-tree that is the result of the application 
of the rule of that node on the resulting S-trees of 
its daughters (see figure I). 

the donkey is eating apples 

-the donkey 

the donkey eat apples 

donkey R, 

eat zl z2 

R4 Ra 

R2 

z t  eat apples 

apples 

apple 

Figure I: syntactic derivation tree, the derived S-trees are 

paraphrased by strings 

The leaves of a complete surface tree correspond 
to the words of the sentence, but they have the 
form of categories and attribute-value pairs. The 
morphological component relates these leaves 
to actual symbol strings. In this paper we will 
ignore this morphological component and the S- 
trees will be 'paraphrased' by strings most of the 
time to enhance the readability of these trees. 

The M-grammars have a semantic component 
that specifies 

1. the meaning of the basic expressions (basic 
meanings). 

2. the meaning of the rules (rule mean ings ) .  

In Montague Grammar these meanings are ex- 
pressed in intensional logic. In the Rosetta system 
the meanings of rules and basic expressions are 
not elaborated on in a logical language, but they 
are represented by means of unique names. The 
consequence is that a meaning of a sentence can 
be represented as a so-called semantic deriva- 
tion tree: a tree with the same geometry as the 

syntactic derivation tree but labelled with names 
of rule meanings and basic meanings instead of 
syntactic rules and basic expressions. In figure 2 
an example of a semantic derivation tree is given, 
corresponding to the syntactic derivation tree of 
figure 1. 

As basic expressions may have various meanings, 
there is in general a set of semantic derivation 
trees corresponding to a syntactic derivation tree. 
There is in general a set of syntactic derivation 
trees corresponding to each semantic derivation 
tree, because a basic meaning may correspond to 
various basic expressions and a meaning rule may 
correspond to various syntactic rules. 

M6 

I 
Ms 

M+ Ma 

B~ Mt M2 

/ %  i 
B2 X~ X2 Bt 

Figure 2: semantic derivation tree corresponding to the 

syntacticderivatlon tree of figure 1 

One  Grammar Principle: The analysis and 
generation components for one language are based 
on the same grammar. 

In other terms, we require the compositional 
grammar defined above to be 'reversible'. The 
analysis component maps sentences onto deriva- 
tion trees, the generation component maps deriva- 
tion trees onto sentences. 

Because of this principle M-grammars have to 
obey certain conditions. The most important con- 
dition is that for each generative syntactic rule 
there must be a reverse analytical rule. For a 
more extensive discussion of these conditions we 
refer to Landsbergen (1984). Thanks to these con- 
ditions analysis algorithms can be defined which 
yield for any input sentence the set of syntactic 
derivation trees of that sentence (see section 6 for 
the formal definitions). 

In addition to theoretical motives, there are eco- 
nomic motives for adopting the One Grammar 
Principle. If we plan to make translation systems 
that translate both from and into a particular lan- 
guage, it is efficient if these systems can be based 
on one grammar. 

Because of this principle it suffices most of the 
time to discuss the grammars from a composi- 
tional, generative point of view only. 
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• I s o m o r p h y  P r i n c i p l e :  Two sentences are trans- 
lations of each other if their meanings are derived 
from the same basic meRnings in the same way, i.e. 
if they have the same semantic derivation tree. 

So this principle says that the information that 
has to be conveyed during translation is not only 
the meaning, but also the way in which the mean- 
ing is derived. 

This implies that we have to attune the grammars 
of the system in the following way: 

1. each basic expression in one grammar corre- 
sponds to at least one basic expression in the 
other grammar with the same meaning (i.e. 
corresponding to the same basic meaning). 

2. each syntactic rule of one grammar corre- 
sponds to at least one rule in the other 
grammar with the same meaning (i.e. cor- 
responding to the same rule meaning). 

So, two sentences are translations of each other 
if they have corresponding, i s o m o r p h i c  syntac- 
tic derivation trees, i.e. trees with the same ge- 
ometry and corresponding basic expressions and 
corresponding rules at the leaves and at the nodes 
respectively (see figure 3). 

Following this principle there are corresponding 
sets of rules, related to the same meaning rule, 
and corresponding sets of basic expressions, re- 
lated to the same basic meaning. We call the 
grammars isomorphic if these corresponding sets 
of rules obey certain applicability conditions. 

The Isomorphy Principle is the most characteris- 
tic principle of the Rosetta system, as it expresses 
our compositional theory of translation. 

In this approach complex structural transfer rules 
are avoided, as rules and basic expressions of the 
source language are related locally to rules and 
basic expressions of the target language, although, 
of course, the individual grammars may be com- 
plicated because of the attuning. 

• Principle of Interllnguality: There is an 
intermediate language into which analysis com- 
ponents of various languages translate and from 
which the generation components of these lan- 
guages are able to translate. If we combine this 
principle with the Isomorphy Principle, the main 
consequence is that the semantic derivation trees 
constitute the intermediate language and that the 
attuning of the grammars is done for possibly 
more than two grammars. 

It should be stressed that the isomorphy and not 
the interlinguality is the primary characteristic of 
the Rosetta framework. 

For a more extensive discussion of these principles 
and more interesting examples we refer to Appelo and 
Landsbergen (1986). Leermakers and Rous (1986) give 

an introduction to the Rosetta method along different 
lines. 

The global design of the Rosetta system, which fol- 
lows from these principles is sketched in figure 4. For 
each M-grammar the following system components are 
defined: 

• an analytical and a generative morphological com- 
ponent, A-MORPH and G-MORPH. They ac- 
count for the relation between strings and lexical 
S-trees (i.e. S-trees corresponding to words). 

• an analytical and a generative syntactic com- 
ponent, M-PARSER and M-GENERATOR. 
They account for the relation between surface 
trees and syntactic derivation trees. These sys- 
tem components follow directly from the syntac- 
tic component of an M-grammar. Their formal 
definition is given in subsection 6.1. 

• an analytical and a generative semantic compo- 
nent, A - T R A N S F E R  and G - T R A N S F E R .  
They account for the relation between syntactic 
and semantic derivation trees. 

M-PARSER is preceded by a component called S- 
P A R S E R  (for surface parser) which maps a sequence 
of lexical S-trees (which is the output of A-MORPH) 
onto a set of surface trees of which the lexical S-trees 
are the leaves. This set should contain the correct sur- 
face trees, but may contain also incorrect ones. The 
generative counterpart, L E A V E S ,  is trivial; it maps 
the surface tree onto the sequence of its leaves. 

2 P r o b l e m s  w i t h  t h e  R o s e t t a  
f r a m e w o r k  

The framework outlined above has been worked out in 
a way that is simple and mathematically elegant, as the 
formal definitions in subsection 6.1 will illustrate. This 
formalism has also proved its value in practice: the 
implemented systems Rosettal  and Rosetta2 have been 
written in this framework. In the sequel we will refer 
to it as the Rosetta2 framework. However, it also has 
a number of deficiencies, which may cause problems, 
especially in a situation where large grammars have 
to be written by a group of people. Three kinds of 
problems can be distinguished. 

1. Lack of  s t r u c t u r e  in M-g rammaar s  
Grammars for natural languages are very large 
and inherently complex. In an M-grammar the 
syntactic component specifies a set of rules with- 
out any internal structure. Although the mathe- 
matical elegance of free production systems is ap- 
pealing, they are less suited for large grammars. 
As the number of rules grows, it becomes more 
and more desirable that the syntax be subdivided 
into parts with well-defined tasks and well-defined 
interfaces with other parts. 
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ENGLISH <==> DUTCH 

the donkey 

donkey 

R6 / " ~ - - - - - - _ _ _ _ ~ _  
I the donkey is eating apples 

Rs 
the donkey eat apples 

R4 R3 ~ ~ R~ 

Ri R2 ~ ezel 

apples 

eat z, z2 apple 

R'~ 
I de ezel eet appels 

R I 
/ ~  de ezel appel8 eten 

~ zt appels eten 

R'~ R~ 

//~I appas 
eet zt z~ appel 

Figure 3: isomorphic syntactic derivation trees for the sentence The donkey is eating apples and its translation in Dutch De ezel 
set appel8 

Source language Target language 

sentence sentences 

A-MORPH 

J, ? 
sequences of sequences of 

lexical S-trees lexical S-trees $ 't 

S-PARSER | L AVES ,,,] 

surface trees 

4, 
M-PARSER 

surface trees 

syntactic syntactic 
derivation derivation 
trees J, trees 

A-TRANSFER I G-TRANSFER 

) semantic derivation trees J, I 

Figure 4: Global design of the Rosetta system 

2. 

This holds in particular if the grammars are devel- 
oped by a group of people. It is necessary to have 
an explicit division of tasks and to coordinate the 
work of the individuals in a flexible way so that 
the system will be easy to modify, maintain and 
extend. 

In computer science it is common practice to di- 
vide a large task into subtasks with well-defined 
interfaces. This is known as the m o d u l a r  ap-  
proach .  This approach has gained recognition in 
the field of natural language processing too (cf. 
Isabelle and Macklovitch, 1986 and Vauquols and 
Boitet, 1985). The question is how such a mod- 
ular approach can be applied in a compositional 
grammar, in an insightful and linguistically moti- 
vated way. 

Lack of con t ro l  on ru le  applications 
In many cases the grammar writer has a certain 
ordering of the rules in mind, e.g. he may want 
to express that the rules for inserting determiners 
during NP-formation should be applied after the 
rules for inserting adjectives. In the M-grammar 
formalism explicit ordering is impossible, but the 
rules can be ordered implicitly by characterizing 
the S-trees in a specific way, e.g. by splitting up 
a syntactic category into several categories, and 
by giving the rules applicability conditions which 
guarantee that the aspired ordering is achieved. 
For example, if one wishes to order two rules that 
both operate on an NP, this can be achieved by 
creating categories NP1, NP2 and NP3 and to 
let the first rule transform an NP1 into an NP2 
and the second rule an NP2 into an NP3. This 
approach w ~  followed in Rosetta2. One of its 
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disadvantages is that it leads to a proliferation of 
rather unnatural categories. 

It is hard to find an elegant and transparent way 
of specifying rule order in a compositional gram- 
mar; the situation is more complicated than in 
transformational systems llke ROBRA (Vauquois 
and Boitet, 1985), because rules may have more 
than one argument. 

In addition to linear ordering one may want to 
add other means of controlling the application of 
rules, e.g. one may want to make a distinction 
between obligatory, optional and recursive rules. 
In M-grammars all rules are optional and poten- 
tially recursive. It is not clear how to add obliga- 
tory rules to such a free production system; in fact 
it is hard to understand what that would mean. 
There is also a problem with the reversibility of 
obligatory rules: a rule that is obligatory dur- 
ing generation is not necessarily obligatory during 
analysis. 

3. Lack of  s t r u c t u r e  In t he  t r a n s l a t i o n  r e l a t i on  
As we have explained in section 1, the translation 
relation between languages is defined by attuning 
the grammars to each other. In this way complex 
structural transfer (as discussed in Nagao and 
Tsujii, 1986) can be avoided, but in some cases 
the dependency between the grammars may com- 
plicate individual grammars. C a t e g o r y  mis-  
m a t c h  is one of these translation problems, e.g. 
the graag//iilce case, where a Dutch adverb corre- 
sponds to an English verb. In cases like this there 
is a mismatch of syntactic categories coupled with 
different behaviour with respect to, e.g., tense: a 
verb has tense, whereas an adverb has not. 

In Landsbergen (1984) a solution of the graag//like 
problem by means of isomorphic grammars w ~  
discussed, for small example grammars. For 
larger grammars a more systematic and struc- 
tured treatment of these translation problems is 
needed, but this is not supported by the Rosetta2 
formalism. 

Another problem is caused by the fact that in 
the isomorphic grammar framework each syntac- 
tic rule of one grammar must correspond to at 
least one rule of another grammar. For rules that 
contribute to the meaning this is exactly what we 
want, because what h ~  to be conveyed during 
translation is not only the meaning, but also the 
way in which the meaning is derived. However, 
there is a problem with rules that are only rele- 
vant to the form of the sentence and that carry no 
translation-relevant information, especially if they 
are language-specific. A purely syntactic transfor- 
mation as Verb-Second in an SOV language like 
Dutch does not correspond in a natural way to 
a syntax rule of English. In Rosetta2 this prob- 
lem could be solved in one of the following two 
ways: by adding a corresponding rule to the En- 

glish syntax that did nothing more than change 
the syntactic category or by merging the Dutch 
transformation rule with a meaningful rule. These 
solutions are not very elegant and complicate the 
grammars unnecessarily. It would be better if 
the correspondence between rules as required by 
the Isomorphy Principle must hold for meaning- 
ful rules only. The translation relation would then 
be defined in terms of a reduced derivation tree, 
which is labelled with meaningful rules. The gen- 
eration component (M-GENERATOR) will oper- 
ate on such a reduced tree and will have to decide 
what syntactic transformations are applicable at 
what point of the derivation. This requires some 
way of controlling the applicability of the trans- 
formation rules. 

In the next sections we will describe the modular ap- 
proach chosen for the development of Rosetta3, which 
may help to solve the above-mentioned problems. We 
will discuss a syntax oriented dlvlslon into subgram- 
mars in section 3 and a translation oriented division 
into rule classes in section 4. In section S we will argue 
that a combination of the two divisions is needed. In 
section 6 the newly introduced notions will get a formal 
treatment. It will turn out that the way in which sub- 
grammars are defined enables us to define the control 
of rule applications in a transparent way. 

The proposed modifications are completely in accor- 
dance with the basic principles mentioned in section 1. 

3 Subgrammars, a Syntax 
Oriented Division 

From the computer language Modula2 (cf. Wlrth, 
1985) we learned the essentials of the modular ap- 
proach: 

I. divide the total into smaller parts (modules) 
with a well-defined task, 

2. define explicitly what is used from other parts 
(Import) and what may be used by other parts 
(expor t ) ,  

3. separate the definition from the implementation. 

The explicit definition of import and export and 
the strict separation of implementation and definition 
makes it possible to prove the correctness of a module 
in terms of its imports, without having to look at the 
implementation of the imported modules. This tack- 
les the above-mentioned complexity problem and the 
coordination problem caused by the lack of structure 
in the M-grammars nicely. In our view, applying the 
modular approach to grammars comes down to the fol- 
lowing requirements: 

1. dividing the grammar into s u b g r a m m a r s  with a 
well-defined linguistic task, 
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2. defining explicitly what is visible to other sub- 
grammars (export) and what is used from other 
subgrammars (Import), 

3. ensuring that the actual implementation (i.e. the 
rules) is of local significance only. 

Dividing grammars into subgrammars with a linguistic 
task has been done before, e.g. in the GETA-systems 
(cf. Vauquois and Boitet, 1985). However, to our 
knowledge, they do not meet requirement 2 and 3 

The actual subdivision chosen for the development of 
Rosetta3 was inspired by the notion projection from 
the X.-theory of Transformational Generative Gram- 
mar (cf. e.g. Chomsky, 1970): every major category X 
is said to have a maximal projection X '~z, e.g. NOUN 
has the maximal projection NP. Such projections pro- 
vide a syntactic division of the constituents of language 
and appear to be a useful choice for modular units in 
a natural language system. 

Applying this idea to the compositional grammars 
of Rosetta implies that basic expressions have a ma- 
jor category X and that there are syntactic rules that 
will ultimately compose S-trees of category X "~'=. For 
each maximal projection a subgrammar can now be de- 
fined that expresses how X '~ can be derived from X 
and other imported categories. We will call a possible 
derivation process of the projection from X to X maz a 
projection path (see figure 5. The most important 
major categories (and their projections) in use in the 
Rosetta systems are: NOUN (NP), VERB (VP), ADJ 
(ADJP), ADV (ADVP) and PREP (PP). 

R .... X "~z 

/ 
R 

S 

I 
41 

R 

/ 
X 

Figure 5: A projection path from X to X 'naz 

X-theory also states that all projections have a sim- 
ilar syntactic structure (i.e. phrase marker), which is 
represented in the schema of figure 6, but this aspect 
is less relevant for the Rosetta grammars. For us, it is 
of more interest whether they are the result of similar 
derivations. We will come back to this point in section 

5. 

A sentence is usually seen as a subject-predicate re- 
lation, i.e. a combination of an NP and a VP. But other 

( speci/Z~.. " ~  

( complement ) X ( complement ) 

Figure 6: The projection of X to X 'naz 

XP (i.e. X maz) categories than VP, together with an 
NP, can express a subject-predlcate relationship as well 
(cf. Stowell, 1981). Such subject-predlcate relations 
are called small clauses. For example, the NP him and 
the ADJP funny in I think [him funny], or the two NP's 
him and a fool in I consider [him a foo 4 form a small 
clause. In Rosetta such tenseless clauses are called XP- 
PROP in which X stands for the X of the predicate. 
For example, in [him funny] we have ADJPPROF (with 
X = ADJ) and in [him a foo4 we have NPPROP (with 
X = NOUN). A tensed XPPROP is called a CLAUSE 
in Rosetta. For example, in the sentences I think that 
he is sleeping and I think that he is funny we have the 
CLAUSEs [that he is sleeping] and [that he is funny] 
respectively. 

This means that, starting from a basic expression of 
category X, in principle three S-trees with a different 
top category X '°P can be derived: XP, XPPROP and 
CLAUSE. Figure 7 shows some of the resulting deriva- 
tion trees and S-trees of the examples given above. 

Defining subgrammars in accordance with these 
'projection paths' provides a natural way of expressing 
the application order of the rules within a subgrammar: 
the order is defined with respect to the projection path 
only. A side effect of this explicit ordering of rule ap- 
plication is that it enables us to use a more efficient 
parse algorithm (M-PARSER). 

A subgrammar can now be characterized as follows: 

1. export S-tree of category X t"p (XP, XPPROP or 
CLAUSE) 

2. import: 

• S-tree with a special category, the X- 
category, also called the head category. 

• S-trees with categories that are exported by 
other subgrammars and that can be taken 
as an argument by rules with more than one 
argument. 

3. rules: a set of rules that take care of the pro- 
jection from X to X '°p. Every rule has one argu- 
ment, which is called the head argument, i.e. 
the S-tree with the head category or one of the 
intermediate results during its projection. 
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R2 

NP 

A 
he 

CLAUSE 

he is sleeping 

Rl CLAUSE 

xl VP 
/,,, 
sleep 

xL VERB 

A 
sleep 

R4 

NP 

A 
him 

A D J P P R O P  

him funny 

R3--ADJPPROP 

x2 ADJP 
/ ' , .  
funny 

x2 ADJ 

funny 

NPPROP 

him a fool 

R6, 

A 
NP Rs 

him 

x3 NOUN 

~ o l  

NPPROP 

x~ NP 
/ N  
a fool 

Figure  7: The derivation trees with the resulting S-trees of 

the projection of VERB to CLAUSE, ADJ to ADJPPROP 

and NOUN to NPPROP 

4. con t ro l  express ion :  a definition of the possible 
application sequences of the rules, ordered with 
respect to their head arguments. 

Neither the rules nor the intermediate results are 
known to other subgrammars. They can be considered 
local to the subgrammar. So 1 and 2 define the relation 
with other subgrammars, whereas 3 and 4 are only of 
local significance, thus meeting our requirements for 
the modular approach. 

An example of a subgrammar is the NP-subgrammar 
with a NOUN as head and exporting an NP. Other 
categories that are imported by this subgrammar are 
DETP, ADJPPROP,  etc. the set of rules contains 
modification rules and determiner rules, the control 
expression indicates that the modification rules can be 
applied recursively and that they precede the deter- 
miner rules. 

Obviously, there will now be subgrammars that con- 
tain the same rules, e.g. the subgrammars for NOUN 
to NP and PRONOUN to NP. For efficiency reasons, 
it is allowed to merge such subgrammars by defining 
a set of heads as import and a set of top categories as 

export. 
For an elaboration of the notion control expression 

and a formalisation of subgrammars we refer to section 

6. 

The advantages of this division into subgrammars 
are 1) that the structure of the grammar has become 
more transparent, 2) that we now have units with well- 
defined interfaces which enables us to divide the work 
over several people, 3) that we can work at and test 
smaller parts of a grammar. 

4 R u l e  C l a s s e s ,  a T r a n s l a t i o n  
O r i e n t e d  D i v i s i o n  

In the Rosetta framework as sketched in section 1, the 
translation relation is defined at the level of rules and 
basic expressions. If there is a rule or basic expression 
in one grammar, there must be at least one rule or 
basic expression in the other grammar with the same 
meaning (the Isomorphy Principle). It is hard to get 
hold of the translation relation as a whole in terms of 
these primitives alone. What we need is some structure 
of a higher order. 

1. We distinguish purely syntactic rules called 
t r a n s f o r m a t i o n s  and m e a n i n g f u l  ru les .  

Some rules in the Rosetta grammars do not carry 
'meaning', but serve only a syntactic, transforma- 
tional purpose. In the Rosetta2 framework these 
meaningless rules, which are often of a highly 
language-specific character, sometimes required 
rules in other languages that were of no use there. 
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This point was already mentioned in section 2. 
Such rules are now no longer considered to be 
part of the translation relation that is expressed 
by the isomorphy relation between the grammars. 
Therefore, they can be added freely to a gram- 
mar. In this way a better distinction can be made 
between purely syntactic (and hence language- 
specific) knowledge and t r a n s l a t i o n  r e l e v a n t  
knowledge. The translation relation now can be 
freed from improper elements, which is highly de- 
sirable. 

In section 2 it was noticed that the introduction of 
transformation rules requires some way of control- 
ling their applicability. The control expressions 
introduced in section 3 and formalised in section 
6 provide for this. 

2. The set of rules of the grammars are divided into 
groups called ru l e  classes,  each of which handles 
some linguistic phenomenon. These rule classes 
are subdivided into transformation classes and 
meaningful rule classes. A meaningful rule class 
handles a linguistic phenomenon of which the se- 
mantics should be preserved during translation. 

Such translation relevant linguistic phenomena 
are, e.g., valency/semantic relations, scope, time, 
negation and voice. The translation relation can 
be further structured by these meaningful rule 
classes. Only rules of different languages that be- 
long to the same meaningful rule class may corre- 
spond to each other or, to put it in other words, 
rules that do not belong to the same meaningful 
rule class can never be translations of each other 
(see figure 8). Within a meaningful rule c l~s  
there can, of course, be some 'semantic differentia- 
tion', which should be retained under translation. 
For example, in the time rule class more than one 
time reference can be distinguished, each with a 
distinct meaning, t 

There can also be 'corresponding' transformation 
classes in the grammars for different languages - 
e.g. agreement rules -, but they do not play a role 
in the translation relation. 

5 Combining Subgrammars  
and Rule Classes 

Having introduced some order into the syntactic rules 
of the grammar and into the translation relation, we 
see that these divisions of rules are along 'vertical '  and 
'horizontal '  lines respectively (see figure 9). The pro- 
jections of basic categories in one grammar, leading 
to the division of the grammar into subgrammars, are 

1For each distinct time reference meaning a separate rule 
can be defined, but it is also possible to introduce abstract 
basic expressions ranging over the possible time references 
and have one rule that has such an abstract basic expression 
as argument. 

m e a n i n g f u l  ru le  classes 

time rule class [~ 

i 

negation rule class 

G r a m m a r s :  Gt G2 

Figure 8: meaningful rule classes bring order in the trans- 

lation relation between the grammars of the languages in- 

volved 

along vertical lines. The relations between the gram- 
mars, leading to the division of all the rules of the 
grammars into (meaningful) rule classes, are along hor- 
izontal lines. 

These two ways of dividing grammars have several 
consequences. 

On the one hand, subgrammars help to structure 
the grammar in a more modular way; they also give 
some insight into the translation relation, but only in 
the more ' trivial '  cases, where the corresponding basic 
expressions have the same syntactic category, subgram- 
mar G,l of grammar G corresponds solely to subgram- 
mar Gt of grammar G . In category mismatch cases 
the corresponding basic expressions fall into different 
subgrammars (e.g. the graag/like case of section 2). 

On the other hand meaningful rule classes group to- 
gether semantically related rules, which gives insight 
in what has to be preserved during translation, but 
they are not the.right unit to make a modular struc- 
ture. This makes it hard to define an adequate inter- 
face (import/export)  between rule classes, because e.g. 
the rule that negates a sentence is determined more by 
the rules that form a sentence than by the other nega- 
tion rules (e.g. in an adjective phrase) with which it 
forms the negation rule class. 

However, both subgrammars and rule classes allow 
for a division of the labour over people. That this is the 

case with subgrammars is trivial, as subgrammars form 
a modular structure. The reason that rule classes are 
also useful units to divide the work is that knowledge 
of a specific linguistic topic is needed for every rule 
class, knowledge that can typically be handled by one 
person. 

In order to have the benefits of both we combined 
subgrammars and rule classes in the following way: 

I. the rules of subgrammars are divided into rule 
subclasses, which are subsets of rule classes 

2. the application sequences of rules are defined in 
terms of rule subclasses instead of rules. 
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m e a n i n g f u l  ru l e  classes 

time rule class [ 

rule class i" negation ! 

I 
NP 

~#/~/~ 

CLAUSE 
• m 

VP i NP VP CLAUSE 

S u b g r a n t m a r s  o f  g r a m m a r  G 1 S u b g r a m m a r s  o f  g r a m m a r  G: 

Figure  O: horizontal and vertical division within grammars. The shaded part denotes the subclass of the negation rules for the 

CLAUSE subgrammar of G t. 

The combination results in a modular structure of each 
grammar and helps to reduce the complexity of the 
translation relation. It also helps to solve the class of 
category mismatch problems elegantly. 

Isomorphic subgrammars 

As was already mentioned in section 3, X-theory 
states that the projections of all major categories have 
a similar structure. The division of the grammars into 
subgrammars was based on the notion major category 
and the sorts of projections that we recognize (XP, 
XPPROP and CLAUSE). The fact that in X-theory 
the phrase markers of the resulting constituents are 
similar, suggests that it is possible to assign similar 
derivations to them in a compositional grammar. This 
similarity is also suggested by the fact that most rule 
classes handle phenomena that play a role in every 
subgrammar. For example, in all subgrammars rules 
for valency/semantic relations and negation are found. 
They may differ, of course, in their transformations. 

The fact that we consider the Dutch NPs de ezel die 
appels set and de appels etende ezel to be paraphrases 
which are both translations of the English NP the don- 
key that is eating apples 2 suggests that a tensed relative 
clause should be composed similar to a tenseless 'ad- 
jectival '  relative clause, or in other terms: that their 
derivation trees should be i s o m o r p h i c  with respect 
to their meaningful rules. The same can be said for 
the adjectival phrase smart and the relative clause that 
is smart in the [smart] girl and the girl [that is smart/ 
respectively. 

To make it possible that such phr~es and clauses are 
translations of each other, the subgrammars involved 
are attuned as far as possible, resulting in 'isomorphic' 
subgrammars within one grammar. 

We will discuss two cases: 

2the eatin¢ apples donkey is ungrammatical. 

1. Same head category, but different top category 

2. Different head category 

Same head category, but  different top cate- 
gory 

In the example of the smart girl / the girl that is 
8mart the subgrammars for the projection of ADJ to 
A D J P P R O P  and ADJ to CLAUSE are involved. They 
differ in that a transformation exists for the insertion 
of the auxiliary verb be in the clause case. For isomor- 
phy reasons, in both cases a rule for time reference is 
needed: in the clause case it spells out the tense for 
the verb be; in the adjectival case it seems to be super- 
fluous, but with model-theoretical semantics in mind 
it can be argued to be needed, if we assume a model 
with a time component (see figure 10). 

A D J P P R O P  C L A U S E  

Rtimepre~ent Rtimepresent 

! 
R~tart R~tart 

xl*~smext xt//~smart 

Figure 10: Derivation trees resulting from the subgram- 

mars ADJ to ADJPROP and ADJ to CLAUSE 

This kind of paraphrasing can be helpful if the literal 
translation is not allowed in the other language as is the 
c ~ e  with de appels etende ezei, which cannot be trans- 
lated into *the eating apples donkell or I expect him to 
leave which cannot be translated into *ik ~erwacht hem 
te vertrekken, but has to be translated into ik verwaeht 
dat hij vertrekt (I-expect-that-he-leaves). 
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C L A U S E  

N P . ~ b . , , ~ ,  

V E R B P P R O P  V E R B P P R O P  

C L A U S E  

~ub.t,z l 
RNPi[ R...~.~., 

lllt, 
hij I| R , 

[ [ R.,o.. 

X2 toeqallig [ k xl komen 

ADVPPROP VERBPPROP 

He happened to come Hi] klnam toevallig 

Figure  l h  Syntactic derivation trees with the relevant subgrammars 

D i f f e r e n t  h e a d  c a t e g o r y  

If the approach of attuning subgrammars as far as 
possible is extended to subgrammars with different 
head categories, then it can help to solve the problems 
with the above-mentioned class of category mismatch 
c a s e s .  

For example, in he happened to come the raising verb 
happen occurs and in hi] kwam toevallig the sentential 
adverb toevallig. As these two sentences are considered 
translations of each other, the subgrammars for VERB 
and ADV should be attuned to each other. This seems 
to be impossible because it is quite natural  that the 
complement of happen, i.e [he come] is inserted into the 
clause of happen, whereas toevallig (the basic expression 
that  corresponds to happen) is inserted into the clause 
corresponding to the complement clause of happen, i.e 
[hi] komen]. 

Semantically, in both cases, the clause is the ar- 
gument of happen and toevallig, but from a syntactic 
viewpoint adverbs are inserted into their arguments. 
We can solve this problem by allowing in these cases 
a 'switch of subgrammar' .  This is possible if the sub- 
grammars are split into two parts in such a way that 
the place of this subdivision coincides with the 'switch 
point ' .  There is another argument for making this sub- 
division: the first part  of the control expression of the 
subgrammars for X to XPPROP and X to CLAUSE is 
the same. The succeeding part is in the CLAUSE case 
very similar for all X. 

Figure 11 sketches how the examples He happened 
to come and Hi] kwam toevallig now can be derived 
isomorphically. 

We noticed that this kind of mismatch of syntac- 
tic category appears most frequently with modal verbs 
and adverbs, auxiliaries and semi-auxiliaries, at least in 
the languages Rosetta deals with (Dutch, English and 
Spanish). In translation systems dealing with Japanese 
and English these phenomena occur more frequently. 

(cf. Nagao and Tsujii, 1986). 

Partial i s o m o r p h y  o f  s u b g r a m m a r s  

Isomorphy between grammars of different languages 
must be defined in terms of isomorphy between the 
subgrammars of these languages. It should be noted 
that it is not always possible to make a subgrammar of 
one language completely isomorphic to one subgram- 
mar of the other language. However, it is possible to 
make subgrammars partially isomorphic and sets of 
subgrammars completely isomorphic, both within one 
language and between different languages. For exam- 
ple, within one language the subgrammars for ADJ to 
CLAUSE and ADJ to ADJPPROP need not be com- 
pletely isomorphic, neither do the ones for ADV to 
CLAUSE and VERB to CLAUSE. But together the 
subgrammars for ADJ to CLAUSE and ADJ to AD- 
JPPROP for Dutch can be completely isomorphic to 
the corresponding subgrammars for English. 

6 F o r m a l  a s p e c t s  

In this section we will discuss the main consequences 
for the Rosetta formalism of the ideas put forward 
in sections 3, 4 and 5. These consequences relate 
in particular to the definition of M-PARSER and M- 
GENERATOR. We will first give - in section 6.1 - the 
original definitions for the free, i.e. 'uncontrolled' M- 
grammars of Rosetta2. In 6.2 we will give the revised 
definitions for controlled M-grammars, currently used 
for the development of Rosetta3. 

6 . 1  F r e e  M - g r a m m a r s  

The syntactic component of an M-grammar defines a 
set of objects called S-trees (surface trees). 

1 2 7  



An S - t r e e  is 
- a node N, 
- or an expression of the form 

N[rl/tl,..., r . / t . ]  (n>0) 

where N is a node, the ri's are syntactic relations and 
the t;'s are S-trees. 

(we will often use this kind of recursive definition: 
the second - recursive - part  of the definition indi- 
cates tha t  S-trees may have arbitrary, but  finite, depth; 
the first part  shows how the recursion terminates:  the 
leaves of the trees are always ( terminal)  nodes) 

A node N is defined as a syntactic category followed 
by a tuple of a t t r ibute-value  pairs (ai:vi).  

N = O{a l :v ,  . . . . .  ak:vk} (k>O) 

For each syntactic category the corresponding .-it- 
tributes are defined, for each attribute the set of pos- 
sible values is defined. So, given a set of syntactic 
relations and a set of syntactic categories with the cor- 
responding attributes and values, the set of possible 
S-trees is defined. This set is called T: the domain of 
S-trees. 

So the general form of an S-tree t is 

t = C { a t : v , , . . . ,  ak:vk} [ r t / t t , . . . ,  r , / t . ]  

C is called the syntactic category of t. 

1 .  

2. 

3 .  

ad 1. 

ad 2. 

The syntactic component of an M-grammar defines 

- the domain T by enumerating the syntactic re- 
lations, the categories and the corresponding at- 
tributes and values. 

- the set TM of well-formed S-trees, a subset of T. 
TM consists of the surface trees of sentences that 
are well-formed according to the grammar. 

TM is defined by specifying: 

a set B of basic S-trees, 

a set of syntactic rules, called M-rules, 

a special category: SENTENCE. 

The set of basic S-trees is a subset of T (the basic 
lexicon). A basic S-tree b has a unique name, to 
be denoted as b_. 

An M-rule R; defines a compositional function F: 
from tuples of S-trees to finite sets of S-trees. So 
application of R; to a tuple tt,...,t, yields a set 
F~(tt,...,t,). The set is empty if the rule is not 
applicable. 

Each M-rule is reversible, i.e. it also defines an 
analytical function Fi, the reverse of Fi. 

t • F , ( t t  . . . . .  t . )  ¢==~ (t t  . . . . .  t , )  • F'i(t ) 

S-trees are constructed by applying M-rules recur- 
sively, starting from basic expressions, The set TM is 
the set of S-trees that can be derived in this way and 
that have the category SENTENCE. 

The derivation process can be displayed in a syntac- 
tic derivation tree. 

A d e r i v a t i o n  t r e e  is 
- the name b of a basic expression, 
- or an expression of the form 
R~ <d  t . . . . .  d ,  > ,  (n>0) ,  
where R; is a rule name and d r , . . . , d ,  are derivation 

trees. 

On the basis of the syntact ic  component  of an 
M-grammar  the functions M - G E N E R A T O R  and M- 
PARSER can be defined. M - G E N E R A T O R  is applled 
to a derivation tree and yields a set of S-trees; M- 
PARSER is applied to an S-tree and yields a set of 
derivation trees. 

M-GENERATOR(d) = ~,.f 

{ t I 3b• B : d = b  andt=b } 

U { t ] 3 t l , . . . , t . ,  dl  . . . . .  d . , R i :  
d = R , < d l , . . . , d . >  and 
t~ • M - G E N E R A T O R ( d l )  and 

t .  • M - G E N E R A T O R ( d . )  and 
t • F, ' ( t l  . . . . .  t , )  } 

(In this definition d, d~, d .  are derivation trees, t, 
t t ,  t .  are S-trees, B is the set of basic S-trees, b is a 
basic S-tree, b is the name of a basic expression, F:  is 
the compositional function defined by rule R~) 

M-PARSER( t ) =d..f 

{ d [ 3 b• B : t = b a n d  d=b} 

U { d [ 9 t l ,  . . . .  t . ,  d l  . . . .  ,dn, R; : 
s 

( t i  . . . .  , t . )  • F i ( t ) ,  
dt • M - P A R S E R ( t l )  and 
• . . 

d ,  • M-PARSER(t,~) and 
d = R ; < d t  . . . .  , d . >  } 

(F'; is the analytical  function defined by rule R;)  

Given the reversibility of the M-rules, it is easy to 
prove that  

t E M-GENERATOR(d)  ~ d E M-PARSER( t )  

128 



Note that M-PARSER and M-GENERATOR can 
both be used to define the set TM of well-formed S- 
trees. T~ can be defined as the set of S-trees (of cat- 
egory SENTENCE) that can be derived by applying 
M-GENERATOR to all possible derivation trees. Ta4 
can also be defined as the set of S-trees (of category 
SENTENCE) for which M-PARSER yields at least one 
derivation tree. Because these definitions are equiva- 
lent, the One Grammar Principle is obeyed. 

An M-grammar has to obey the measure condi- 

tion: 

First, a measure on S-trees, i.e. a function from S- 
trees to positive integers, must be defined. 

The condition says: if t is the result of applying a 
compositional rule to S-trees tl,...,tn then t is bigger 
according to this measure than each of the arguments 
tt,...,tn. So application of an analytical rule yields 
smaller S-trees, which guarantees that the recursion in 
M-PARSER is finite. 

The algorithms for the components M-PARSER and 
M-GENERATOR follow directly from the set-theoretic 

definitions. 

6 . 2  C o n t r o l l e d  M - g r a m m a r s  

The syntactic component  of a c o n t r o l l e d  M -  
g r a m m a r  defines the domain T of S-trees in the same 
way as for free M-grammars .  

The  set TM of well-formed S-trees is defined by spec- 
ifying: 

1. a set B of basic S-trees, 

2. a set of subgrammars ,  

3. a special category: S E N T E N C E .  

A s u b g r a m m a r  Gi consists of: 

• a set E X P O R T C A T S i  of syntactic categories (the 
categories of S-trees that  can be exported).  

• a set H E A D C A T S :  of syntactic categories (the 
categories of S-trees that  are allowed as the head), 

• a set I M P O R T C A T S :  of syntactic categories (the 
Categories of o ther  S-trees that  may be imported) ,  

• a set of M-rules, subdivided into a set MF-  
RULES:  of meaningful  rules and a set TR- 
RULES:  of t ransformat ion rules. For each mean- 
ingful M-rule one of the arguments has to be 
defined as the 'head '  argument ( transformations 
have only one argument) .  For notat ional  conve- 
nience we will assume here that  the head is always 
the first argument .  

• a control expression ce:, which indicates what se- 
quences of rule applications are possible, from im- 
ported head to exported result. (The ordering of 
the rules concerns the head arguments) 

The control expression indicates what the rule 
subclasses are, how they are ordered, what rules they 
consist of, and whether they are recursive, optional or 
obligatory. A control expression ce has the following 

form: 
ce= Ao • At ..... An, 
where each A~ is a rule subclass, either a meaningful 

rule class or a transformation class. 
A rule class A~ may be 
- obligatory: written as ( Rt [ ... ] Rt ), where the 

R,- are either meaningful rules or transformations. 
- recursive: written as { RI [ ... [Rk }, 
- optional: written as [ Rt [... [ R~ ]. 

An example: 

(R,). [R2 IRs l .  (R41Rs }. ( R 6 ] R , )  

This control expression defines all sequences beginning 
with Ri, then R2 or R3 or neither, then an arbitrarily 
long sequence (possibly empty) of R4 or R~, then either 
RG or RT. 

Actual ly a control expression is a restr icted kind of 
regular expression over the alphabet  of rule names. (It 
is not restricted in i t s cons t ruc t ions  but  in the pos- 
sible combinations of these constructions.)  Each reg- 
ular expression denotes a set of instances: sequences 
of rule names. Each such rule sequence is a possible 
p r o j e c t i o n  p a t h  in the subgrammar  (of. section 3). 
Note that  the rules in a sequence need not be applica- 
ble, this depends on the applicabili ty conditions of the 
rules themselves. 

It is required that  each instance of the regular ex- 
pression contains at least one meaningful  rule. 

The definition of a derivation tree has to be adjusted 
as follows. 

A d e r i v a t i o n  t r e e  is: 
- the name b_ of a basic expression, 
- or an expression of the form 
(G.R;)<d~ .... ,d.> (n>0), 
where Gi is (the name of) a subgrammar ,  R i is 

(the name of) a meaningful M-rule,  and dl , . . . ,d ,~ are 
derivation trees. 

There are two differences with the old definition. 
The first is that  the non-terminal  nodes contain the 
subgrammar  name, next to the rule name. The  sec- 
ond is that  the derivation tree is no longer a complete  
trace of rule applications, because the transformations 
d.re not indicated explicitly. 

In the revised definition of M - G E N E R A T O R  and M- 
P A R S E R  we will use a kind of incomplete  derivat ion 
tree, defined as follows. 

An o p e n  d e r i v a t i o n  t r e e  is: 
- the ' empty  derivation tree ' ,  D e .  
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- or an expression of the form 
(G ; ,R / )<DI , . . . ,D ,  >, 
where G# is the name of a subgrammar, R i is the 

name of a meaningful M-rule, DI is an open derivation 
tree, D2, . . . ,D,  are derivation trees. 

So an open derivation tree is like an ordinary deriva- 
tion tree, but with an empty derivation tree as leftmost 
leaf. 

Where this is useful we will refer to an ordinary 
derivation tree as a closed derivation tree. 

Be given open derivation trees Dl and D~. 
We define DL[D2] as the open derivation tree that 

results if D2 is substituted for DE in Dr. 
If D2 is a closed derivation tree, the result of the 

substitution DI[D2] is a closed derivation tree. 

We will now present the revised definitions of M- 
PARSER and M-GENERATOR, for controlled M- 
grammars. The definitions are not only valid for the 
restricted control expressions, but in fact for any regu- 
lar expression. Here the set-theoretical definitions are 
given, the algorithms can be derived from them di- 
rectly. The set TM of well-formed S-trees can be de- 
fined in terms of these functions, in the same way as 
in subsection 6.1. 

Revised definition of M-PARSER 

First we will give an informal description of M- 
PARSER, in an 'operational'  way. 

M-PARSER operates on an S-tree t. If t is a ba- 
sic expression b, M-PARSER(t) yields the derivation 
tree b_. For a non-basic t M-PARSER(t) tries to apply 
subgrammar parsers, by calling SG-PARSER(Gi,t) for 
all subgrammars G; with the appropriate export cat- 
egories (note that for the analytical functions the ex- 

-port categories indicate what can be 'imported'). SG- 
PARSER(Gi,  t) tries to apply the rules of control ex- 
pression cei to t (i.e. the ~nalytical versions of the 
rules, starting at the right of the control expression). 

A successful application of SG-PARSER yields a 
pair (D, u), where D is an open derivation tree and 
u is the resulting 'head'  S-tree. 

To u M-PARSER is applied again. If successful, M- 
PARSER(u) yields a derivation tree d. Then D{d] is a 
derivation tree of t. 

SG-PARSER is defined by means of a function CE- 
PARSER. CE-PARSER has 4 arguments (G;, ce, D, 
t), where G, is a subgrammar name, ce is a control 
expression, D is the open derivation tree resulting from 
previous applications of CE-PARSER, t is the S-tree 
that is yet to be parsed. 

When CF_,-PARSER is called for the first time, D is 
the empty derivation tree and ce is the control expres- 
sion ce; of G;. 

CF_,-PARSER(G;, ce, D, t) tries to apply the (an- 
alytical versions of the) rules of control expression ce 

to t, in right-to-left order. Successful application of a 
rule yields a tnple of S-trees t l , . . . , t , .  To tl  the 'next '  
rule of the control expression is applied. To t2, . . . , tn  
the full M-PARSER is applied. During the recurslve 
application of CF_,-PARSER D grows while ce shrinks. 

Application of a meaningful rule Rj leads to substi- 
tution of a new node (G#,Rj) in D. Application of a 
syntactic transformation does not change the deriva- 
tion tree. 

The result of applying CE-PARSER successfully to 
(Gi, ce~, D, t) is a triple (D2, u, A). All rules of one 
instance of ce; have been applied then. D2 has the form 
D{DI], where Dl is the open derivation tree with the 
meaningful rules of this instance of cel at its projection 
path and u is the remaining S-tree to be parsed yet 
(the 'head'). A is a boolean, which tells whether a rule 
(or transformation) has been applied. This is needed 
to avoid vacuous recursion of CF_,-PARSER in case of 
control expressions of the form { ce }, where ce has 
empty instances, e.g. if ce has itself the form cel•  The 
boolean A would not be needed if the definitions would 
be tuned to the restricted form of control expressions 
as a sequence of rule classes. 

The definitions: 

M-PARSER(t) =d..I 
{d 13 bEB:d=bandt = b } 
u { d 13 G,, dr, D2, u: 

syncat(t) E EXPORTCATS; and 
(D2, u) E SG-PARSER(G;,t) and 
d~ E M-PARSER(u) 
and d = D2[d~] } 

(In this definition d, dl are closed derivation trees, 
D2 is an open derivation tree, t, u are S-trees, syncat(t) 
is the syntactic category of t, b is a basic expression, b 
is the name of a basic expresslon, Gi is a subgrammar) 

SG-PARSER(G~,t) =d..! 
{ (D, u) I 
(D, u, true) e CE-PARSER(G;, ce;, DE, t)} 

(ce; is the control expression of ce;) 

CF_,-PARSER(G;, ce, D, t) =~..1 

{ (D2, u, A) I q ceh ce2, DI, t l :  
ce = cel.ce2 and "ce2 is not a concatenation s and 
(DI, t l ,  A~) E CE-PARSER(GI, ce2, D, t) and 
(D2, u, A~) E CE,-PARSER(G,, ce,, D, ,t,) and 
A= Al orA2 } 

U { (D2, u, A) [ 3 ce,, ce2: 
ce = cellce2 and "ce~ is not a disjunction s and 
(D2, u, A) e (OE-PARSER(G,, ce~, D, t) 
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U CF_.-PARSER(G,, cet, D, t)) } 

U { (D~, u, A) I 3 cet: 
ce = [ce, l and 
((D~ = D and u = t and A = false) or 
(D2, u, true) • CF_,-PARSER(GI, ce, ,  D, t) and 
A = true) } 

U { (D~, u, A) I B c e , :  

ce = {ce,} and 
((D~ = D and u = t and A = false) or 
( 3 D,, it, At: 
(Dr, tt, true) • CE-PARSER(Gi, ce,, D, t) and 
(D2, u, A,) • CE-PARSER(GI, ce, D,, tt) and 
A = true ) ) } 

U { (D2, u, true) I 3 k, n, Rk, d2 .... ,d.: 
ce = Rk and 
Rk • MF-RULESi and 
D2 = D[(G;, Rk)<D~, d2 .... ,d.>] and 

(u, ta ..... t,) • F'k(t ) and 
d~ 6 M-PARSER(t2) and 

d. •M-PARSER(t.) } 

U { (D2, u, true) I 3 k, at: 
Rk 6 TR-RULES; and 
D2 =D and ce =Rk and 
u • F't,(t) } 

(ce, ce,, ce2 are control (sub)expressions, D, D,, D2 
are open derivation trees, d2,...,d, are closed deriva- 
tion trees, De is the empty derivation tree, t, t,, t2, 
t., u are S-trees, Rk is an M-rule, F'k is the analytical 
function defined by rule Rk, A, At, A2 are booleans) 

An addit ional  advantage of controlled M-grammars 
is that the measure condition (cf. 6.1) can be reformu- 
lated in a way that is much easier to obey that in the 
original framework. 

The measure condition is reformulated as follows: 
1. For the grammar as a whole a measure must be 

defined in such a way that application of a subgrammar 
in generation yields exported S-trees which are bigger 
than the imported S-trees. Consequently application 
of a subgrammar during analysis yields smaller S-trees. 
This measure is similar to the measure for rules we 
had in the free M-grammar formalism, but it is easier 
to define a measure for complete subgrammars than 
for rules. Possible measures are: the total number of 
nodes or the depth of an S-tree. 

2. For each subexpression of the form { e } in a con- 
trol expression a measure on S-trees must be defined, 
such that  application of e during analysis yields output  
S-trees that  are smaller than the argument S-trees ac- 
cording to this measure. This measure can be defined 
separately for each expression ( e }. 

R e v i s e d  d e f i n i t i o n  o f  M - G E N E R A T O R  

As the definitions relating to M - G E N E R A T O R  are 
completely symmetric to the definitions relat ing to M- 
PARSER, we will present them without  further com- 
ments. 

M-GENERATOR(d) =d~/ 
{tlBb6B:d=bandt=b} 
U { t I 3 G;, d,, D~, u: 

d = D2[dt] and 
u • M-GENERATOR(dr) and 
syncat(u) • HEADCATS; and 
t • SG-GEN(G;, D2, u) } 

( d, dt  are closed derivation trees, D2 is an open 
derivation tree, t, u are S-trees, b is a basic expression, 
b is the name of a basic expression, G# is a subgram- 
mar, syncat(u)  is the syntactic category of u) 

SG-GEN(G;, D, u) =a..! 
{t I (t, De, true) • CE-GEN(G,, ce,, D, u)} 

(cei is the control expression of Gi, D~ is the empty 
derivation tree) 

CE-GEN(G;, ce, D2, u) =d-.! 

{ (t, D, A) ] q eel, ce2, D,, ti: 
ce = ce,.ce2 and "cel is not a concatenation" and 
(t,, D,, A,) • CF_,-GEN(GI, ce,, D2, u) and 
(t, D, A2) • CE-GEN(G; ,  ce2, Dr,  t l )  and 
A = Al  or A2 } 

U { (t, D, A) I 3 ce,, ce2: 
ce = cel]ce2 and "cet is not a dlsjunction" and 
( t, D, A) • (CE-GEN(G; ,  ce, ,  D2, u) 

U CF_,-GEN(G,, ce, ,  D , ,  u)) } 

U { (t, D, A) I 3 ce,:  
ce = [cell and 
((D~ = D and t = u a n d A = f a l s e )  or 
((t, D, true) e CE-GEN(G; ,  ce, ,  Ds, u) and 
A = true)) } 

U { ( t , D , A )  J q c e t :  
ce = {cel} and 
((D2 = D and t = u and A = false) or 
( 3 D*, tl, At: 
( t , ,  Dr,  true) E CF_,-GEN(G,, cel ,  Ds, u) and 
(t, D, A,) 6 CE-GEN(G;, ce, Dl, tt) and 
A = true) ) } 

U { (t, D, true) I 3 k, n, Rk, d~ , . . . ,d . :  
ce = Rk and 
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Rk • MF-RULES; and 
D2 = D[(G,, Rk)<D~, d2 .... ,d.>] and 
t • Ft(u,t2,...,t,) and 
t2 • M-GENERATOR(d2) and 

t, • M-GENERATOR(d,) ) 

U { (t, D, true) [ q k, Rk: 
Rk • TR-RULES~ 
D = D2 and 
ce = Rt and t • Fk(u) } 

(ce, cet, ce2 are control expressions, D, Dr, D2 are 
open derivation trees, d2,...,d, are closed derivation 
trees, D~ is the empty derivation tree, t, it, t2, t,, 
u are S-trees, R~ an M-rule, Ft is the compositional 
function defined by rule Rk, A, At, A2 are booleans) 

Remarks 

In case of a recursive transformation class there is 
the possibility of infinite recurslon during application 
of CE-GEN. This must be prevented by defining a mea- 
sure on S-trees in such a way that each application of 
a transformation of the class yields a smaller S-tree 
according to this measure. 

The definition of M-GENERATOR is symmetric to 
the definition of M-PARSER• (There is one appar- 
ent exception: the condition on EXPORTCATS in 

• M-PARSER and the condition on HEADCATS in M- 
GENERATOR. However, these conditions are redun- 
dant from a formal point of view, because they must 
follow from the applicability conditions of the rules 
in the control expression•) Thanks to this symmetry 
it is simple to prove that M-GENERATOR and M- 
PARSER are each other's reverse. One of the virtues 
of this way of controlling rule applications is that the 
One Grammar Principle can still be obeyed. 

7 Conclusion 

In section 2 we enumerated three types of problems 
with the free M-grammar formalism used for the de- 
velopment of the Rosettal and Rosetta2 systems. 

The first problem was the lack of structure in free M- 
grammars. This was solved in section 3 by introducing 
a modular approach, where M-grammars are divided 
into subgrammars in a way that was inspired by the 
programming language Modula-2 on the one hand and 
by the notion projection from X-theory on the other 
hand. 

The second problem was that there is no way of 
explicitly controlling the application of rules in free M- 
grammars and that it is not obvious how this kind of 
control could be introduced in a compositional gram- 
mar, where rules may have more than one argument. 
The insight that was important to the solution of this 

problem was that application of a subgrammar comes 
down to following a projection path, from the imported 
head to the exported projection. This implies that 
defining control in a subgrammar comes down to spec- 
ifying a set of possible sequences of rule applications, 
which can be done by means of a control expression, 
a regular expression over rule names. An important 
advantage of this way of controlling rule applications 
is that the One Grammar Principle is still obeyed: the 
same grammar (i.e. the same subgrammars: the same 
rules, the same control expressions, etc.) can be used 
for the compositional and the analytical definition of 
a language. This is proved by the formal definitions in 
subsection 6.2. 

The third problem concerned the consequences of 
defining the translation relation by means of isomor- 
phic grammars. The introduction of an explicit dis- 
tinction between meaningful rules and syntactic trans- 
formations in section 4 avoids unnecessary complica- 
tions of the grammars without affecting the Principle 
of Isomorphy. Because the applicability of syntactic 
transformations is restrained by the control expres- 
sions, they do not cause problems with effectivity or 
efficiency. The introduction of rule classes gave more 
insight into complex translation relations. In section 
5 it was shown that category mismatch problems can 
be handled more systematically by a combination of 
subgrammars and rule classes. 

Acknowledgements 

The authors would like to thank all the members of the 
Rosetta team for their constructive criticism. In par- 
ticular we want to mention the invaluable contributions 
of Jan Odijk with respect to linguistic matters. 

References 

Appelo, L. and J. Landsbergen (1986), The Machine 
Translation Project Rosetta, Philips Research M.S. 
13.801, Proceedings First International Conference on 
State of the Art in Machine Translation, Saarbriicken, 
pp. 34-51. 

Chomsky, N. (1970), Remar~ on Nominalisation, in 
R.A. Jacobs and P.S. Rosenbaum (eds), Readings in 
English Transformational Grammar, Georgetown Univer- 
sity Press, Washington DC, pp. 184-9.21. 

Isabelle, P. and E. Macklovitch (1086), Tran.sfer and 
MT Modularity, Proceedings Coling 1986, Bonn, pp. 
115-117. 

Landsbergen, J. (1984), Isomorphic grammar~ and their 
use in the Rosetta translation 8ystent, Philips Research 
M.S. 12.950. Paper presented at the Tutorial on Ma- 
chine Translation, Lugano. To appear in M. King (ed), 

132 



Machine Translation the state of the art, Edinburg Uni- 
versity Press. 

Leermakers, R. and J. Rous (1986), The Translation 
Method of Rosetta, Computers and Translation, Voh 1, 
Number 3, pp. 169-183. 

Nagao, M. and J. Tsujii (1986), The Transfer Phase of 
the MU Machine Translation System Proceedings Coling 
1986, Bonn, pp. 97-103. 

Stowell, T. (1981), Origins of Phrase Structure, Ph.D.  
dissertation, MIT. 

Thomason, B. (1974), Formal Philosophy. Selected Pa- 
pers o| Richard Montague, Yale University Press, New 
HRven. 

Vauquois, B. and C. Boitet (1985), Automated Transla- 
tion at Grenoble University, Computational Linguistics, 
Vol. 11, Number 1, pp. 28-36. 

Wirth, N. (1985), Programming in Modula-2, Springer- 
Verlag, third corrected edition. 

133 


