
A TOOL FOR THE AUTOMATIC CREATION, EXTENSION AND UPDATING 

OF LEXICAL KNOWI.F.nGE BA.~F-g 

Walter M.P. Daelemans 
AI-LAB 

Vrije Universiteit Brussels 
Pleiniaan 2 Building K 

B-1050 Brussels 
Belgium 

E-mail: walterd@arti, vub.uucp 

ABSTRACT 

A tool is described which helps in the creation, 
extension and updating of lexical knowledge bases 
(LKBs). Two levels of representation are distinguished: a 
static storage level and a dynamic knowledge level. The 
latter is an object-oriented environment containing linguis- 
tic and lexicographic knowledge. At the knowledge level, 
constructors and filters can be defined. Constructors are 
objects which extend the LKB both horizontally (new 
information) and vertically (new entries) using the linguis- 
tic knowledge. Filters are objects which derive new LKBs 
from existing ones thereby optionally changing the storage 
structure. The latter use lexicographic knowledge. 

INTRODUCTION 

Despite efforts in the development of tools for the 
collection, sorting and editing of lexical information (see 
Kipfer, 1985 for an overview), the compilation of lexical 
knowledge bases (LKBs, lexical databases, machine read- 
able dictionaries) is still an expensive and time-intensive 
drudgery. In the worst case, a LKB has to be built up 

from scratch, and even if one is available, it often does 

not come up to the requirements of a particular applica- 

tion. In this paper we propose an architecture for a tool 

which helps both in the construction (extension and updat- 

ing) of LKBs and in creating new LKBs on the basis of 

existing ones. Our work falls in with recent insights about 

the organisation of LKBs. 

The main idea is to distinguish two representation 

levels: a static storage /eve/ and a dynamic knowledge 
level At the storage level, lexicai entries are represented 
simply as records (with fields for spelling, phonetic tran- 
scription, lexical representation, syntactic category, case 
frames, frequency counts, definitions etc.) stored in text 
files for easy portability. The knowledge level is an 
object-oriented environment, representing linguistic and 
lexicographic knowledge in a number of objects with 
attached information and procedures, organised in general- 
isation hierarchies. Records at the storage level are lexi- 
cal objects in a 'frozen' state. When accessed from the 
knowledge level, these records 'come to life' as structured 
objects at some position in one or more generalisation 

hierarchies (record fields ate interpreted as slot fillers). 
This way, a number of procedures becomes accessible 
(through inheritance) to these lexical objects. 

For the creation and updating of d i c t i o~es ,  coll~- 
stmctors ate defined: objects at the knowledge level which 
compute new lexicai objects (corresponding to new 
records at the storage level) and new information ~n~hed 
to already existing lexical objects (corresponding to new 
fields of existing records). To achieve this, constructor 
objects mai¢ use of information already existing in the 
LKB and of the linguistic kaowledge r~re~nted at the 
knowledge level. Few constructors can be developed 
which arc complete, i.e. which can operate fully automati- 
cally without checking of the output by the user. Them- 
fore, a central part in our system is a cooperative user 
interface, whose task it is to reduce initiative from the 
user to a minimum. 

Filters are another category of objects. They use an 
existing LKB to create automatically a new one. During 
this transformation, specified fields and entries arc k ~ ,  
and others are omitted. The storage strategy used may be 
changed as well. E.g. an indexed-sequential file of 
phoneme representations could be derived from a diction- 
ary containing this as well as oliver information, and 
stored in another way (e.g. as a sequential text file). The 
derived lexical knowledge base we call a daughter dict/on- 
ary (DD) and the source LKB m o o r  dictionary (MD). 
Filters use the lexicographic knowledge specified at the 
knowledge level. In principle, one MD for each language 
should be sufficient. It should contain as much information 
as possible (see Byrd, 1983 for a similar opinion). Con- 
stmctors can be developed to assist in creating, extending 
and updating such an MD, thereby reducing its cost, 
while LKBs for specific applications or purposes could be 
derived from it by means of filters. The basic architecture 
of our system is given in Figure 1. 

Current and forthcoming storage and search tech- 
nology (optical disks, dictionary chips) allow us to store 
enormous amounts of lexical data in external memory, and 
retrieve them quickly. In view of this, the traditional 
storage versus computation debate (should linguistic infor- 
mation be retrieved or computed?) becomes irrelevant in 
the context of language technology. Natural Language 

70 



STORAGE LEVEL 
(Mother Dictionary) 

KNOWLEDGE LEVEL 

CONSTRUCTORS 
(Semi-automatic) 

USER INTERFACE 

FILTERS 
(Automatic) 

1 
(Daughter Dictionaries) 

Figure 1. A System for Creating, Extending and 
Updating LKBs. 

Processing systems should exhibit enough redundancy to 
have it both ways. For instance, at the level of morphol- 
ogy, derived and inflected forms should be stored, but at 
the same time enough linguistic knowledge should be 
available to compute them if necessary (e.g. for new 
entries). We think the proper place for this linguistic 
knowledge is the dictionary system. 

There is some evidence that this redundancy is 
psychologically relevant as well. The duplication of infor- 
mation (co-existing rules and stored forms) could be part 
of the explanation for the fuzzy results in most psycho- 
linguistic experiments aimed at resolving the concrete 
versus abstract controversy about the organisation of the 
mental lexicon (Henderson, 1985) .  The concrete 
hypothesis states that it is possible to produce and inter- 
pret word forms without resort to morphological rules 
while the abstract hypothesis claims that in production and 
comprehension rules are routinely used. 

THE KNOWLEDGE LEVEL 

We used the knowledge representation system KRS 
(Steels, 1986) to implement the linguistic and lexico- 
graphic knowledge. KRS can best be viewed as a glue for 
connecting and integrating different formalisms (functional, 
network, rules, frames, predicate logic etc.). New formal- 
isms can also be defined on top of KRS. Its kernel is a 
frame-based object-oriented language embedded in Lisp, 

with several useful features. In KRS objects are called 
concepts. A concept has a name and a concept structure. 
A concept structure is a list of subjects (slots), used to 
associate declarative and procedural knowledge with a 
concept. Subjects are also implemented as concepts, which 
leads to a uniform representation of objects and their 
associated information. 

KRS has an explicit notion of meaning: each con- 
cept has a referent (comparable to the notion of ~ o n )  
and may have a definition, which is a Lisp form that can 
be used to compute the referent of the concept within a 
particular Lisp environment (comparable to the notion of 
intcnsion). This explicit notion of meaning makes possible 
a clean interface between KRS and Lisp and between 
different formalisms. 

Evaluation in KRS is lazy, which means that new 
objects can always be defined, but are only evaluated 
when they are accessed. Caching assures that slot fillers 
are computed only once, after which the result is stored. 
The built-in consistency maintenance system provides the 
automatic undoing of these stored results when changes 
which have an effect on them are made. Different /nber/- 
tance strategies can be specified by the user. 

At present, the linguistic knowledge pcrtain.q to 
aspects of Dutch morphology and phonology. Our word 
formation component consists of a number of morphologi- 
cal rules for afftxmion and compounding. These rules 
work on lexical representations (confining graphcmes, 
phonemes, morphophoncmes, boundary symbols, stress 
symbols etc.) A set of spelling rules transforms Icxical 
representations into spelling representations, a set of pho- 
nological rules transforms lexical representations into 
phonetic transcriptions. We have implemented object 
hierarchies and procedures to compute inflections, internal 
word boundaries, morpheme boundaries syllable boun- 

daries and phonetic representations (our linguistic model is 
fully described in Dnelemans, 1987). 

Lcxicographic knowledge consists of a number of 
sorting routines and storage strategies. At present, the 
definition of filters can be based on the following primi- 

tive procedures: sequential organisation, (single-key) 
indexed-sequential organisation, letter tree organisation, 
alphabetic sorting (taking into account the alphabetic posi- 
tion of non-standard letters like phonetic symbols) and fre- 
quency sorting. 

Constructors can be defined using primitive pro- 
cedures attached to linguistic objects. E.g. when a new 
citation form of a verb is entered at the knowledge level, 
constructors exist to compute the inflected forms of this 
verb, the phonetic transcription, syllable and morphologi- 
cal boundaries of the citation form and the inflected 
forms, and of the forms derived from these inflected 
forms, and so on rccursively. Our present understandi~ 
of Dutch morphophonology has not yet advanced to such 

7 /  



a level of sophistication that fully automatic extension of 
this kind is possible. Therefore, the output of the con- 
structors should be checked by the user. To this end, a 
cooperative user interface was built. After checking by 
the user, newly created or modified lexical objects can be 
transformed again into 'frozen' records at the storage 
level. This happens through a translation function which 
transforms concepts into records. Another translation func- 
tion creates a KRS object on the basis of a record. 

Figure 2 shows a KRS object and its corresponding 
record. This record contains the spelling, the lexical 
representation, the pronunciation, the citation form (lex- 
eme) and some morpho-syntactic codes of the verb form 
werkte (worked). (Records for citation forms contain 
pointers to the different forms belonging to their para- 
digm, and information relevant to all forms of a para- 
digm: e.g. case frames and semantic information). The 
corresponding concept contains exactly the same informa- 
tion in its subjects, but through inheritance from concepts 
like verb-form and werken-lexeme, a large amount of 
additional information becomes accessible. 

werkte werklO@ wcrk le  werken-lexeme 11210 

(defoonoept werkte-form 
(a  verb-form 

(spelling [string "werkte']) 
(lexioal-representatlon [siring "'werk#O@']) 
(pronunolat|on [siring °wErkt(~']) 
(lexeme werken-lexeme) 
(finiteness flnile) 
(lense pasl) 
(grammatical-number singular) 
(gramme tioel-person 1-2-3))) 

Figure 2. A static record and its corresponding KRS 
concept. 

THE USER INTERFACE 

We envision two categories of users of our archi- 
tecture: linguists, who program the linguistic knowledge 
and provide primitive procedures which can be used as 
basic building blocks in constructors, and lexicographers, 
using predefined filters and constructors, creating new 
ones on the basis of existing ones and on the basis of 
primitive linguistic and lexicographic procedures, and 
checking the output of the constructors before it is added 
to the dictionary. The aim of the user interface is to 
reduce user intervention in this checking phase to a 
minimum. It fully uses the functionality of the mouse, 
menu and window system of the Symbolics Lisp Machine. 

When due to the incompleteness of the linguistic 
knowledge new information cannot be computed with full 
certainty, the system nevertheless goes ahead, using 
heuristics to present an 'educated gue,s' and notifying the 
user of this. These heuristics are based on linguistic as 

well as probabilistic aa ta  A user monitoring the o~put  
of the conswactor only needs to click on incorrect items 
or parts of items in the output (which is mouse-semitive). 
This activates diagnostic procedures associated with the 
relevant linguistic objects. These procedures can delete 
erroneous objects already created, recompute them or 
transfer control to other objects. If the system can diag- 
nose its error, a correction is presented. Otherwise, a 
menu of possible corrections (again constrained by heuris- 
tics) is presented from which the user may choose, or in 
the worst case, the user has to enter the correct informa- 
tion himself. 

Consider for example the conjugation of Dutch 
verbs. At some point, the citation form of an irregular 
verb (blijven, to stay) is ~ d ~  to the system, and we 
want to add all inflected forms (the paradigm of the verb) 
to the dictionary with their pronunciation. As a first 
hypothesis, the system assumes that the inflection is regu- 
lax. It presents the computed forms to the user, who can 
indicate erroneous forms with a simple mouse click. 
Information about which and how many forms were 
objected to is returned to the diagnosis procedure associ- 
ated with the object responsible for computing the regular 
paradigm, which analyses this information and transfers 
control to an object computing forms of verbs belonging 
to a particular category of irregular verbs. Again the 
forms are presented to the user. If this time no forms are  

refused, the pronunciation of each form is computed and 
presented to the user for correction, and so on. This 
sequence of events is illustrated in Figure 3. 

Diagnostic procedures were developed for objects 
involved in morphological synthesis, morphological 
analysis, syllabification and phonemisation. At least for 
the linguistic procedures implemented so fax a maximum 
of two corrective feedbacks by the user is necessary to 
compute the correct representations. 

72 



Indicate fa lse forms 

b l i j f t  
b l i j f t  

b l i jven  
bl i jvend 

m 

ndtcate fa lse forns 

blijft, 
blijft 

bl ijven 
blijvend 

bleef  
bleven 

gebleven 

Indlcate I~"~I x ~ron R pronunc t at tons  

I'bLe~ftl 
I'bLeH'tl 

I'bLe~v~nl 
I'bLe~v~ntl 

I 'bLefl  
I 'bLevanl 

Iga'bLevanl 

Figure 3. Corrective feedback by the user: Errone- 
ous forms are indicated (top left), second (and 
correct) try by the system (top right), presentation 
of the pronunciations of the accepted paradigm for 
checking by the user (down). 

CONSTRUCTING A RHYME DICTIONARY 

Automatic dictionary construction can be easily 
done by using a particular filter (e.g., a citation form dic- 
tionary can be filtered out from a word form dictionary). 
Other more complex constructions can be achieved by 
combining a particular constructor or set of constructors 
with a filter. For example, to generate a word form lexi- 
con on the basis of a citation form lexicon, we first have 
to apply a constructor to it (morphological synthesis), and 
afterwards filter the result into a suitable format. In this 
section, we will describe how a rhyme dictionary can be 
constructed on the basis of a spelling word form lexicon 
in an attempt to point out how our architecture can be 
applied advantageously in lexicography. 

First, a constructor must be defined for the compu- 
tation of a broad phonetic transcription of the spelling 
forms if this information is not already present in the 
MD. Otherwise, it can be simply retrieved from the MD. 
Such a constructor can be defined by means of the primi- 
tive linguistic procedures syllabification, phonemisation 
and stress assignment The phoncmisation algorithm should 
be adapted in this case by removing a number of 
irrelevant phonological rules (e.g. assimilation rules). 
This, too can be done interactively (each rule in the 
linguistic knowledge base can be easily turned on or off 
by the user). The result of applying this constructor to 
the MD is the extension of each entry in it with an addi- 
tional field (or slot at the knowledge level) for the tran- 

scription. Next, a filter object is defined working in three 
steps: 

(i) Take the broad phonetic transcription of each dic- 
tionary entry and reverse it (reverse is a primitive 
procedure available to the lexicographer). 

(ii) Sort the reversed transcriptions first acOordin~ to 
their rhyme determining part and then alphabeti- 
cally. The rhyme determining part consists of the 
nucleus and coda of the last stressed syllable and 
the following weak syllables if any. For example, 
the rhyme determining part of w~rrelea (to whirl) 
is er-ve-len, of versn6llea (to accelerate) el-lea, and 
of 6verwdrk (overwork) erk. 

(iii) Print the spelling associated with each transcription 
in the output file. The result is a spelling rhyme 
dictionary. If desirable, the spelling forms can be 
accompanied by their phonetic transcription. 

Using the same information, we can easily develop 
an alternative filter which takes into account the metre of 
the words as well. Although two words rhyme even when 
their rhythm (defined as the succession of stressed and 
unstressed syllables) is different, it is common poetic 
practice to look for rhyme words with the same metre. 
The metre frame can be derived from the phonetic tran- 
scription. In this variant, step (ii) must he preceded by a 
step in which the (reversed) phonetic transcriptions are 
sorted according to their metre frame. 

RELATRD ~ C H  

The presence of both static information (morpheancs 
and features) and dynamic information (morphological 
rules) in LKBs is also advocated by Domenig and Shann 
(1986). Their prototype includes a morphological "shell' 
making possible real time word analysis when only stems 
are stored. This morphological knowledge is not used, 
however, to extend the dictionary and their system is 
committed to a particular formalism while ours is 
notation-neutral and unresuictediy extensible due to the 
object-oriented implementation. 

The LKB model outlined in Isoda, Also, Kami- 
bayashi and Matsunaga (1986) shows some similarity to 
our filter concept. Virtual dictionaries can be created using 
base dictionaries (physically existing dictionaries) and 
user-defined Association Interpreters (KIPs). The latter are 
programs which combine primitive procedures (patmm 
matching, parsing, string manipulation) to modify the 
fields of the base dictionary and transfer control to other 
dictionaries. This way, for example, a virtual English- 
Japanese synonym dictionary can be created from 
English-English and FJlglish-Japanese base dictionaries. In 
our own approach, all information available is present in 
the same MD, and filters are used to create base dic- 
tionaries (physical, not virtual). Constructors are abeamt in 

73 



the architecture of Isoda et al. (1986). 

Johnson (1985) describes a program computing a 
reconstructed form on the basis of surface forms in 
different languages by undoing regular sound changes. The 
program, which is part of a system compiling a compara- 
tive dictionary (semi-)automatically, may be interpreted as 
related to the concept of a constructor in our own system, 
with construction limited to simple string manipulations, 
and not extensible unlike our own system. 

CONCLUSION 

We see three main advantages in our approach. 
First, the distinction between a dynamic linguistic level 
with a practical user-friendly interface and a static storage 
level allows us to construct, extend and maintain a large 
MD relatively quickly, conveniently and cost-effectively 
(at least for those linguistic data of which the rules are 
fairly well understood). Obviously, MDs of different 
languages will not contain the same information: while it 
may be feasible to incorporate inflected forms of nouns, 
verbs and adjectives in it for Dutch, this would not be the 
case for Finnish. 

Second, the linguistic knowledge necessary to build 
constructor objects can be tested, optimised and experi- 
mented with by continuously applying it to large amounts 
of lexical material. This fact is of course more relevant to 
the linguist than to the lexicographer. 

Third, efficient LKBs for specific applications (e.g. 
hyphenation, spelling error correction etc.) can be easily 
derived from the MD due to the introduction of filters 
which automatically derive DDs. 

It may be the case that our approach cannot be 
easily extended to the domain of syntactic and semantic 
dictionary information. It is not immediately apparent how 
constructors could be built e.g. for the (semi-)automatic 
computation of case frames for verbs or semantic 
representations for compounds. Still, a heuristics-driven 
cooperative interface could be profitably used in these 
areas as well. 

So far, we have invested most effort into the 
development of an object-oriented implementation of mor- 
phological and phonological knowledge for Dutch (i.e. in 
the definition of the primitive procedures which can be 
used by constructors), in the development of heuristics 
and diagnostic procedures, and in the design of the user 
interface. A prototype of the system (written in ZetaLisp 
and KRS, and running on a Symbotics Lisp Machine) has 
been built. Future efforts will be directed to the extension 
of the linguistic and lexicographic knowledge, the develop- 
ment of a suitable script language for the definition of 
constructors, and to the testing of our architecture on a 
large LKB. We think of using the Topl0,000 dictionary 
which is being developed at the University of Nijmegen as 

a point of departure for the constm~on of a MD for 
Dutch. This LKB contains some 78,000 Dutch word 
forms with some morphological information. 

A C K N O ~  

This work was financially suppoRed by the EC 
(ESPRIT project 82). My research on this topic started 
while I was working for the Language Technology Project 
at the University of Nijmegen. I am grateful to Gerard 
Kcmpen and Koen De SrnecR for valuable comments on 

the text. 

Byrd, J.R. 1983  Word Formation in Natural 
Language Processing Systems. UCAI-83, Karlaruhe, 
West Germany; 704-706. 

Daclemans, W.M.P. 1987 S/ud/cs in 
Tcc2molog7. An Object-Olqentcd Computer Model of Mor- 
phophonologicM Aspects of Dutch. Doctoral DisscrtaIion, 
University of Leuven. 

Domcnig, M. and Shann P. 1986 Towards a Dedi- 
cated Database Management System for Dictionaries. 

COLING-86; 91-96. 

Henderson, L. 1986 Toward a psychology of mor- 
phemes. In Ellis A.W. (Ed.) Progress /n the Psycholosy 
of Language~ VoL I. London: Erlbaum. 

lsoda, M., ALso, H., Kamibayashi N. and Matsu- 
naga Y. 1 9 8 6  Model for Lexical Knowledge Base. 
COLING-86; 451-453. 

Johnson, M. 1985 Computer Aids for Comparative 
Dictionaries. L/ngu/st/cs 23, 285-302. 

Kipfer, B.A. 1985 Computer Applications in Lexi- 
cography --  Summary of the Store-Of-The-Art. Pape.~ /n 
Linguistics 18 (l); 139-184. 

Steels, L. 1986 Tutorial on the KRS Concept Sys- 
tem. Memo AI-LAB Brussels. 

74 


