AN ENGLISH GENERATOR FOR A CASE-LABELLED DEPENDENCY REPRESENTATION

John Irving Tait
Acorn Computers Ltd.
Fuloourn Road
Cherry Hinton
Cambridge CBL 4JN

Abstract

The paper describes a program which has been
constructed to produce English strings framn a
case-labellea dependency representation. The
program uses an especially simple and uniform
control structure with a well defined separation
of the different knowledge sources used during
generation. Furthermore, the majority of the
systemn's knowledge 1is expressed in a declarative
form, so in priciple the generator's knowledge
bases could be used for purposes other than
generation. The generator uses a two-pass control
structure, the first translating fram the
semantically orientated case-labelled dependency
structures into surface syntactic trees and the
second translating from these trees into English
strings. .

The generator is very flexible: it can be run in
such a way as to produce all the possible
syntactically legitimate wvariations on a given
utterance, and has built in facilities to do some
synonym substitution. It has been wused in a
nunber of application domains: notaply as a part of
a free text retrieval system and as part of a
natural language front end to a relational database
system,

1. Introduction
This paper describes a proyraim which has been
constructed to translate fram Boguraev's

case-labelled dependency representations (Boguraev,
1979: see also Boguraev and Sparck Jones, 1982) to
English strings. Although the principles on which
the program has been constructed are primarily a
new mix of established ideas, the generator
incorporates a number of novel features. In
particular, it cauwbines an especially simple and
uniform control structure with a well defined
separation of the different knowledge sources used
during generation. It operates in two passes, the
first translating from the semantically orientated
case-labelled dependency structures into surface
syntactic trees and the second translating from
these trees into English strings.

The translation fran dependency structures to
surface syntactic trees is the more camplex of the
two passes undertaken by the generator and wikl be
described here., The other, translation fram
instantiated surface trees to text strings is

194

U. K.

relatively straightforward and will not be dealt
with in this paper. It is fundamentally a tree
flattening process, and is described in detail in
Tait and Sparck Jones (1983).

2. The Generator's Knowledge Structures

The generator's knowledge is separated into four
sections, as follows.

1) a set of bare templates of phrasal and
clausal structures which restrict the
surface trees other parts of the system may
produce by defining the branching factor at
a given node type. For example, the patterns
record that English has intransitive,
transitive and ditransitive, but not
tritransitive, verb phrases. The bare
template for noun phrases is illustrated in
Figure 1.

2) a lexicon and an associated morphological
processar .,
3) a set of production rules which fill out
partially instantiated syntactic trees
produced fram the phrasal and clausal
patterns. These rules contain most of the
system's Kknowledge about the relationship
between the constructs of Boguraev's
representation language and English forms.

4) another set of production rules which convert
filled out surface trees to English strings.

/—Quantifier
-Determiner
-Qrdinal

Noun Phrase ==|-Number

-Adjective~list
=Naminal-modifier-list
-Head

\-Post-madifers

Figure 1
Template for Noun Phrase

These four knowledge sources represent the
generator's entire knowledge of both English and
Boguraev's representation language. Although they
are obviously interrelated, each is distinct and
separate. This well defined separation greatly

increases the extensability and maintainability of
the system.

As noted in the previous section the application of
the rules of section 4 will not be discussed in
this paper. The remainder of the paper discusses
the use made of the first three knowledge sources.

3. Translation fran Dependency Structures to
Surface Syntactic Trees

The primary work of conversion £fram the dependency
representations to the surface syntactic trees is
unuertaken by a set of production rules, each rule
being associated with ane of the case labels used
in Boguraev's representation scheme. These rules
are applied by a suite of programs which exploit
information about the structure of Boguraev's
dependency structures., For example they know where
in a naminal aependency structure to find the word
sense name of the head noun ('oscillatorl' in
Figure 2) and where to find its case list (to
which the production rules should be applied).

(n (oscillatorl THING
(3@ det (thel ONE))
(## nmod
((((trace (clause v agent))
(clause
(v (be2 BE
(@@ agent
~ (n (frequencyl SIGN)))
(@@ state
(st (n (nameless NIL))
(val (high3 KIND))))
1)) M)

Figure 2
Boguraev Representation used for
"the high frequency oscillator”

It must be emphasizea that Boguraev's use of the
term case is much wider than is comnon in
linguistics. Not only is it used to cover
prepositional attachament to nouns as well as
verbs; it is also used to cover same other forms
of attachment to, and modification of, nouns, for
example by determiners (like "a") and even for
plural or singular number. In the phrase "the high
frequency oscillator®, whose representation is
illustrated by Figure 2, the link between
‘oscillatorl' (standing for “oscillator”), and the
determiner ('(thel ONE)', representing "the") is
the so-called case-label det. Similarly the
prenaminal modifier "high frequency®™ (represented
by the canplex structure to the lower right of the
figure) is linked to 'oscillatorl' by nmod.

Each case-associated production rule takes four
inputs, as follows:

1) the dependent item attacheu to the case link,
for example '(thel ONE)' in the case of det
given below;

2) an environment which is used to pass
information from the processing of higher
levels of the representation down to lower
levels: for example tense fran the
sentential level into an embedded relative
clause; the environment is also used to allow
various kinds of control over the generation
process: for example to determine how many
paraphrases of a sentence are produced;

3) a partially instantiated phrase or clause
template, which will ultimately form part of
the surface syntactic tree cutput by the
first pass of the generator;

4) the dictionary entry for the daminant item of
the current case list: in Figure 2 this is
the entry for ‘oscillatorl', presented in
Figure 3.

(cscillatorl
(oscillatorl-#l
(root oscillator)
(syntax-patterns Noun-phrase-pattern)))

Figure 3
Dictionary entry for ‘oscillatorl’

The rules vary greatly in canplexity: “the structure
illustrated in Figure 2 requires the use of both
the simplest and most camplex form of rule.

The det production rule may be described in

pseudo-English as:
If the partially instantiated template is for
a noun phrase then look up the lexical items
(potentially synonyms) associated with the
word sense name ‘thel’, and insert each in
the determiner slot in a new copy of the
syntactic node,

(Of course for English there is only one lexical
item associated with 'thel': "the".) At the other
extreme i3 the production rule for the nmod case.
The nmod case in Boguraev's dependency structures
is used to associate the pre-naminal modifiers in
a camnpound nominal with the head noun. The
pre-nominal modifiers are represented as a list of
simple naninal representations.

(Noun-Phrase (NIL the NIL ~NIL NIL
((Noun-Phrase NIL NIL NIL NIL
(high) NIL frequency NIL))
oscillator NIL))

Figure 4 .
Surface Structure Tree for
"the high frequency oscillator”

In English the nmod production rule might be

expresseq as:

If the partially instantiated template is for
a noun phrase, apply the processor which,
given an existing naminal representation,
instantiates a corresponding phrasal
tamplate, to each naminal representation in
the dependent item list: form the results
into a set of lists, one for each
canbination of possible results for
expressing each nominal: insert each result
list into a copy of the partially
instantiated template originally passed to
the rule.

The surface structure tree produced after these
rules have been applied to the representation of
Figure 2 is given in Figure 4. Note that the tree
contains syntactic category names, and that
unfilled slots in the tree are filled with NIL.
Thus if the phrase to be generated was "all the
high frequency oscillators®, the first NIL in the
surface syntactic tree (representing the unfilled
quantifier slot of the dominant noun phrase node)
would be replaced by "all". The order of the words
in the surface syntactic tree represents the order
in which they will be produced in the output
sentence.

These two production rules, for the det and nmod
case labels, are fairly typical of those used

elsewhere in the system, There is, however, an
important feature they fail to illustrate. In
contrast with moreé conventional cases, mmod and

det do not require the identification of a lexical
1tem associated with the case-label itself. This is
of course necessary when expressing prepositional
plirases,

4. Distinctive Features of this Translation Process

The two most noteworthy features of the generation
phase which produces surface structure trees are
the control structure employed and distribution of
the systems language knowledge between its
different camponents.

No mention of the system's control structure was
made in the previous section. The structure used
15 sufticiently powerful and elegant that it could
be ignored entirely when building up the systems
knowledge of Boguraev's representation language
and of English. However, the efficiency of the
generator described here is largely a result of the
control structure used. It 1is rare for this system
to take more than a few fractions of a second to
generate a Sentence: a sharp contrast with
approaches based on unification, 1like Appelt's
(1983) TELHEGRAM,

First the current representational structure is
classified as clausal, simple naminal, or complex
(typically relativised) nominal. Second, a suitable
structure dismantling function 1is applied to the
structure which identifies the head lexical token
from the structure and separates out its case-list.
Third the dicticnary entry for the head lexical
item is obtained, and, after checkina the

196

syntactic markers in the dictionary entry ana
phrasal or clause templates suitable for the
environment are identified. Fourth, appropriate
production rules are applied to each element of the
structure's case list in order to instantiate the
templates. Freguently this whole process is applied
recursively to same dependent representation level.
So, for example, the representation for "high
frequency" is processed by a second call of the
noun phrase processor from within the call dealing
with the daminant naninal, ‘'oscillatorl'. When the
case list has been canpletely processed, the
dismantling function applies any necessary
morphological processing to the head lexical item
(for example to reflect subject/verb and
person/number agreement).,

This simple framework covers all the processing
done by the generator.

The split between the syntactic knowledge
represented in the phrasal and clausal templates
and in the production rules is also unusual. The
templates define the shape of the surface
syntactic trees which the system can produce, It
places no restrictions on the form of the fillers
for any slot in a grammar node. The production
rules enforce categorial and ordering
restrictions. So, for example, the templates
reflect the fact that English possasses
intransitive, transitive and ditransitive verbs,
whilst the production rules ensure that the
subject of a clause is of a suitable syntactic
category, and that the subject precedes the verb
in simple declarative sentences.

The surface structure trees produced contain all
the words in the sentence to be produced in the
order and form in which they are to be output. Thus
it is a straightforward matter to generate English
strings fran them.

5. Conclusion

The generator presented bhere is in essence a
development of the Micro-Mumble generator
described in Meehan (198l). But in the process of
extending Meehan's framework for a wide coverage
gsystein, his original design has been radically
transformed. Most notably, the system described
here has its syntactic knowledge largely separated
fran its knowledge of the input representation
language. It has, however, retained the elegant
control structure of Meehan's original. This
distinguishes it fram the early generators in the
same style, 1like Goldman's (1975) BABEL.

At the same time the generator described here is
very flexible: it can be run in such a way as to
produce all the possible syntactically legitimate
variations on a given utterance, and has built in
facilities to do same synonym sSubstitution. The
environment mechanism is very (perhaps too)
powerful, and could be used to dynamically select
possible ways of expressing a given structure in
almost any way requirad.

The system's knowledge of natural language and of

the representation language is expressed in a
fundamentally rule~like way, most notably without
the use of an assignment mechanism. In principle
such rules could be used backwards, that is they
could be used to parse incoming English, However no
work has been done to develop a parser which uses
the generators rules, so this possibility remains
pure speculation at present.

The generator described here, it must be
emphasized, covers only part of the task of
generation. Unlike, for example, McKeown's (1980)

system, it deals not with what to say, but only
with how to say it. Boguraev's representation
identifies sentence boundaries and the majority of
content words to be used in the utterance being
produced (see Figure 1), making the task of the
generator relatively straightforward. However, the
techniques used could deal with a representation
which was much less closely related to the surface
text provided this representation retained a
fairly straightforward relationship between
oropositional units of the meaning representation
and the clausal structure of the language. For
example, a representation language which
represented only states and times, but not the
events which linked different states and times
would probably require a more powerful framework
than that provided by the generator described
here. However, another case-labelled dependency
language, like Schank's (1975) Conceptual
Dependency (CD) Representation, could be handled
by providing the generator with a new set of
syntactico-semantic préduction rules, a new lexicon
and the replacement of the functions for
dismantling Boguraev's dependency representation
with functions for dismantling CD structures.

The framework of the generator has been campletely
implemented and tested with a lexicon of a few
hundred words and a grammar covering much of the
English noun phrase and a number of the more
straightforward sentence types. It has been used
in a number of applications, most notably document
retrieval (Sparck Jones and Tait, 1984a and 1984b)
and relational database access (Boguraev and
Sparck Jounes, 1983).

The program described here is efficient
taking more than a few fractions of second to
geuerate a sentence) in contrast with approaches
based on complex pattern matching (like Appelt
(1983), and Jacobs (1983)). On the other hand, the
essential simplicity and uniformity of the approach
adopted here has meant that the generator is no
wore difficult to maintain and extend than wmore
linguistically motivated approaches, for example
Appelt's. Thus it has demonstrated its usefulness
as a practical tool for computational 1linguistic
research.

(rarely

197

ACKNOWLEDGEMENTS

This work was supported by the British Library
Research and Development Department and was
undertaken in the University of Cambridge Computer
Laboratory. I would like to thank Bran Boguraev,
Ted Briscoe and Karen Sparck Jones for the helpful
caments they made on the first draft of this
paper. I would also like to thank my ancnymous
referees for the very helpful comments they made on
the an earlier draft of the paper.

REFERENCES

Appelt, D.E. (1983) TELHGRAM: A Grammar Formalism
for Language Planning, Proceedings of the
Eighth International Joint Conference on
Artificial Intelligence. Karlsruhe.

Boguraev, B. K. (1979) Autamatic Resolution of
Linguistic Ambiguities. Technical Report No. 11,
University of Cambridge Camputer Laboratory.

Boguraev, B.K. and K. Sparck Jones (1982) A natural
language analyser for database access. In
Information Technology: Research and
Development; vol. 1.

Boguraev, B.K. and K. Sparck Jones (1983) A natural
lanquage front end to data bases with
evaluative feedback. In New Applications of
Databases (Bd. Garadin and Gelenbe), Academic
Press, London.

Goldman, N. (1975) Conceptual Generation,
Conceptual Information Processing,
Schank, North Holland, Amsterdan.

Jacobs, P. S. (1983) Generation in a NWatural
Language Interface. Proceedings of the Eighth
International Joint Conference on Artificial

In
R.C.

Intelligence. Karlsruhe,
McKeown, K.R. (1980), Generating Relevant
Explanations: Natural Language Responses to

Questions about Database Structure. Proceedings
of the First Annual National Counference on
artificial Intelligence, Stanford, Ca.

Meehan, J. (198i) Micro-TALE-SPIN. In Inside
Camputer Understanding, R.C. Schank and C.K.
Riesbeck, Lawrence Erlbaum Associates,
Hillsdale, New Jersey.

Schank, R. C. (1975) Conceptual
Processing, North Holland,

Sparck Jones K. and J. I. Tait (1984a), Autamatic
Search Term Variant Generation. Journal of
Documentation, Vol 40, No. 1.

Sparck Jones, K. and J. I. Tait (1984b),
Linguistically Motivated Descriptive Term
Selection. Proceedings of COLING 84, Association
for Computaticnal Linguistics, Stanford.

Tait, J.I. and K. Sparck Jones (1983), Autamatic
Search Term Variant Generation for Document
Retrieval; British Library R&D Report 5793,
Cambr idge.

Information
amsterdam.

