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ABSTRACT 

Programming languages which have 
adequate primitives for linguistic 
information processin~ and a clear 
semantics at the formal computational 
level are now slowly emergin~ as a 
convergent effort from computer science, 
linguistics, and artificial intelligence. 
Our work on the processin~ of a special 
kind o f  linguistic information, namely 
temporal information ,has led us to 
advocate the use of a language with the 
following characteristic features: 

- high level of abstraction; 
- capacity for inference; 
- modularity. 

A h i g h  l e v e l  o f  a b s t r a c t i o n  i s  n e e d e d  
t o  d e a l  w i t h  c o m p l e x  l i n £ u i s t i c  n o t i o n s  
which are not easily reducible to 
elementary data structures. 

A capacity for inference is required, 
as most criteria or tests in linguistics 
make use of particular kinds of 
deductions, at different levels of the 
linguistic analysis. 

As for modularity, a typical situation 
in linguistics has to do with a hierarchy 
of concepts or units, and the relations 
between those units at different levels. 

This paper discusses the relevance of 
the choice of parametrized abstract 
ob jec t s  as tools for linguistic 
information processing and exemplifies 
the use of such objects for temporal 
information. 

INTRODUCTION 

In computational linguistics, more 
than often there is a tendency to 
directly implement a model without really 
~oing through a specification step which 
would provide a correct abstraction of 
the implementation. This attitude has at 
least two drawbacks: Firstly, there is no 
formal way of comparing two models; this 

c a n  l e a d  t o  s o m e  p o i n t l e s s  d i s c u s s i o n s  
b e t w e e n  d i f f e r e n t  a p p r o a c h e s  w h i c h ,  a t  
an abstract level, can be shown to be 
equivalent; secondly, any extension or 
modification of the implemented model 
requires a different program instead of 
a mere adjustment at the abstract level 
which should facilitate the modular 
updatin~ of the implementation and allow 
a formal comparison between the old and 
the new model. 

Our work on tense -and time has 
convinced us that, especially in 
linguistic domains where models are 
either loose or controversial, a 
systematic approach to linguistic 
information processin~ allowing 
compatible constructions at all levels is 
highly desirable. We therefore advocate 
the use of a language with the following 
features: 

- high level of abstraction; 
- capacity for inference; 
- modularity. 

This paper is in two parts. In the 
first part, we try to justify our choice 
of abstract parametrized objects as 
adequate tools for lin~uistic information 
processing; in the second part we 
exemplify our approach by ~ivin~ a 
detailed account of the way we define and 
construct temporal objects. 

PARAMETRIZED ABSTRACT OBJECTS 

One of the basic difficulties in 
natural language processing arises from 
the fact that modularity is both a 
desirable and hardly attainable property 
of the systems. At first it seems quite 
reasonable to break the programs into 
manageable, modular sub-programs0 
especially as the linguistic data, at 
least at first approximation,lend 
themselves to a clear-cut classification 
in terms of morphology, syntax, semantics 
and pra~matics. Moreover, comparatively 
sophisticated techniques and methods are 
already available in eachsubfield. 

Unfortunately, it has now become 
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commonplace knowledge that this strategy 
of developing separate modules for each 
sub-problem and integratin~ them smoothly 
is not satisfactory: the operations of 
parsing sentences, producing internal 
representations, reasoning about them, 
answerin~ questions, generatin~ text, and 
so on, are strongly interdependent. The 
degree, order and location of the 
interactions between different parts may 
vary significantly, according to 
individual situations. 

A consequence of the realization of 
this fact has been the development of 
strongly integrated, usually procedural 
systems, where the individual sub- 
programs operate simultaneously on 
several deeply intricated linguistic 
levels . The price one has to pay for a 
relative success o f  this approach is in 
terms of understandability a n d  
~eneralization: many systems are strongly 
dependent on the particular type of 
problem they have been programmed to 
solve, and possible extensions or 
transpouitions would require fundamental 
modifications. 

Uhat kind of software tools would 
allow at the same time modularity and 
multi-faceted, polymorphic and concurrent 
interactions between processes ? 
Modularity and complex interactions are 
characteristic features of the object 

oriented paradigm . 
Modularity iS provided by the 
structuration in terms of objects. 
Complex interaction is a consequence of 
the distribution of the control between 
t~e different objects and of the 
(possibly multiple) inheritance 
facilities between hierarchically 
dependent objects. The possibility of 
using different points o f  views f O r  the 
same objects is a consequence of this 
structuration. 

This approach leads to focussing on 
the basic process of abstraction. In 

this context, abstraction is a process 
which, starting from a description of the 
data, yields an abstract specification. 
This involves three steps. 

- define the relevant objects for the 
problem under study; 

- define the possible functions and 
relations on the objects; 

-give explicitly the constraints 
between the functions and relations. 

The object-oriented approach is 
usually equated with the Smalltalk 
"vision" ( Goldberg and Robson, 1983 ), 
while other views of objects are rejected 
as being irrelevant or even self 
contradictory. 

Smalltalk objects can be characterized 
by the following properties: 

- Each object is an instance of a class 
(a generic object). 
- Each object has a local memory which 
can only be updated by functions (or 
procedures) local to the object. 
- Objects are orsanlzed into a tree-llke 
hierarchy implyin~ tree-like inheritance. 
- Communication between objects is 
organized through message passing. 

However ,it has been argued that the 
object oriented approach can be 
fruitfully carried over into applicative 
language contexts (Steels ,198Z) or into 
particular systems based on lo~ic where 
the fundamental mechanism is data 
abstraction (Goguen et al. 1983). 

As regards Smalltalk, it does not 
provide systematic facilities for 
deflnin~ abstract data types; all 
computations are highly dependent on side 
effects (assi£nment is systematically 
used in local operations) and there is no 
explicit typing. 

ge favour the approach exemplified by 
such lan£uaaes as OBJ and their possible 
extensions (Goguen and Meseguer, 1984), 
as we think that they will allow ,in the 
lon~ range, a more efficient programming 
style and make the systematic proof of 
programs possible. 

The OBJ languaQe is based upon data 
abstraction: an object i s  a type (i.e. a 
domain of values with functions accessing 
those values); o b j e c t s  a r e  organized into 
a hierarchy ( an acyclic ~raph) 
representin~ the dependencies among 
types. Computations are performed by 
using equatlonal axioms as oriented 
rewrite rules. 

Therefore , granted the availability 
of a theorem prover , t h e  consistency of 
the specifications given in the abstract 
data type can be formally checked. More- 
over , since the objects have a clear 
mathematical definition, all the 

techniques of abstract algebra are also 
available. 

More generally, axioms could be given 
not only as equations . but also as 
formulas in a logical theory (such as 
first order predicate calculus or 
temporal logics) assuming those theories 
satisfy some given restrictions ( Goguen 
and Bursta11, 1984). 

As we have no access yet to any 
version of OBJ, we have decided , in a 
first stage, to restrict the object 
structure to its free component, i.e. 
only the signatures, not the axioms are 
defined. Therefore~ the computations have 
to be explicitely coded. As a 
consequence,, no checking of consistency 
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is possible for the time being. 

The actual implementation is done in 
the ML language (Gordon et al., 1979). 
ML is a functional language which is 
fully higher-order. "It has a polymorphic 
t y p e  discipline which combines the 
flexibility o f  programming in a typeless 
language with the security o f  compile- 
time type checking". Moreover, one c a n  

define one's own types , which may be 
abstract and/or recursive. 

To give a flavour of the ML 
programming style, consider a possible 
definition of the abstract recursive type 
of binary trees, with tip values o f  
a n  a r b i t r a r y  t y p e  ( d e n o t e d  b y  * )  a n d  n o n  
t i p  n o d e s  o f  s o m e  o t h e r  a r b i t r a r y  t y p e  
(denoted by **). (This exemple is taken 
from Gordon et al., 1979): 

a b s r e c t y p e  (*,**) t r e e  = 
* + * *  # ( * , * * ) t r e e  # ( * , * * ) t r e e  

with tiptree x = abs_tree (inl x) 
and comptree (y,tl,t2) = 

abs_tr(~u (inr (y,tl,t2)) 
and istip t =isl(rep_tree t) 
and tipof t= o u t l ( r e p t r e e  t) 
and labelof t = fSt(OUtr (reptree t)) 
and sonof t =snd(outr(reptree t)) 

This type is defined as recursive and 
abstract. The symbols "+" and "#" 
respectively, denote the two type 
constructors "disjoint sum" and 
"cartesian product" The functions 
"abs_tree" and "rep_tree" ,both of them 
o f  t y p e  (ty -> ty), are only available 
inside the definition o f  the abstract 
type "tree" : abs_tree maps the concrete 
representation of a tree unto its 
abstraction; rep_tree has the converse 
effect. Finally, isl, inl, inr, outl, 
outr are functions or predicates on the 
disjoint sum. They are defined as 
follows: 

isl: (* + **) -> bool 
tests membership o f  left summand; 

inl: * -> (* + **) 
injects into left summand; 

inr: * -> (** + *) 

injects into right summand; 
outl: (* + **) -> * 

projects out left summand; 
o u t r :  (* + **) -> ** 

projects out right summand. 

The signature of this type is the set 
of operators: 

tiptree=-: * -> (**,*)tree 
comptree=-: 
• # (**,*)tree # (**,*)tree ->(*,**)tree 
istip=-: (*,**)tree ->bool 
tipof=-: (*,**)tree ->** 

l~belof=-:(*,**) tree -> * 
sonof=-: 
(*,**)tree ->((**,*)tree # ( * * , * )  t r e e ) )  

The version of ML we use (INRIA ,1984) 
is written in Lisp with access to the 
lisp system. So our object environment is 
constructed as a collection of abstract 
data types. The hierarchy between types 
results from the combination and 
enrichment of more basic types. This 
hierarchy creates multiple inheritance 
relations between types. Some examples 
will be given in the context of temporal 
o b j e c t s .  
Clearly, the management of the object 
level must be done on top of ML The 
explicit coding mixes Lisp and ML. 

As we work in a functional environment 
there is no "local memory".However, this 
is , to our viewpoint, a minor drawback 
compared to the advantage of the 
abstraction facilities. 
In a next stage, we intend to introduce 
the necessary axioms and perform the 
computations in a deductive style. 

This approach can be used for the 
formal representation of natural 
language, or as a grammar formalism . In 
particular the syntactical a n d  semantical 
analysis can be done in terms of objects. 
(De Boissieu and Forest , 1985). 

PROCESSING TEHPORAL INFORMATION 

Tense and time representation in natural 
languages is generally studied under 
one of the three main disciplines : 
logics, linguistics, a n d  artificial 
intelligence. A brief overview of these 

4 
different vlewpolnts is given in 
(Bestougeff an Ligozat, 1984). 

The main problem is to choose the 
relevant objects in order to get an 
adequate abstraction. It must be strongly 
emphasized that we deny ourselves the 
right to assume any particular physical 
representation of time from the outset. 
The concrete properties result from the 
specifications. 

The choice of the basic objects is 
somehow arbitrary, but it should 
nevertheless comply to the following 
rules :the objects must be 

- close to linguistic intuit{on. 
- general enough to be reusable as 

such in different contexts, or give rise 
to new objects by enrichment or 
inheritance. 

The second point is required to avoid 
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ad-hoc and independant specifications. To 
achieve these goals it may be necessary 
to define primitive objects, which do not 
have any lingustic interpretation but are 
merely buildinE blocks whose use enhances 
modularity 
In this case ,the lower level objects can 
be hidden to the user 

Keeping this in mind ,we can now 
proceed to the description of the 
linguistic motivations which are behind 
the construction of temporal objects 
The idea is to ~ive a systematic way of 

representing temporal information b y  
defining abstract structures based upon 
the concepts and the hypotheses of a 
particular linguistic theory. 

The linguistic theory we rely on is 
that of A. Culioli (Culioli, 1980), 
suitably adapted to computational 
purposes. 

Temporal information can be informally 
characterized as information pertaining 
to the location and "shape" of the states 
and events described by natural language. 
I n  particular, this includes what is 
commonly referred to as aspect. 

Furthermore, temporal information in 
natural language has both a descriptive 

and an operative structure: it describes 
and allows the users to make systematic 
inferences. Among these inferences are 
those concerned with the ordering of 
events, but such inferences are only part 
o~ a whole set of inferences on the 
factuality, the degree of completion, the 
type of occurrence, of the situations 
considered. In fact, it can be argued 
that the ordering relations are not 
necessarily of a primary nature. 

Some examples will illustrate the 
kind of data and inferences we have in 
mind. 

Consider the following simple 
sentences: 

(i) John is ill. 
( 2 )  John repairs cars. 
(33 John is repairing my car. 
(4) John repaired my car. 
(5) John has repaired my car. 
( 6 )  John was repairing my car. 
(7) My car has been repaired. 
(83 My car is repaired now. 
(9) John was singing. 
(i0) John sang. 
(Ii) John has been singing. 
(12) Cats are smart. 

We wish to account for some basic 
information imparted by the use of such 
sentences. For example: 
- Sentence (2) does not imply (3), 

neither does sentence (3) imply sentence 
(2). 
- Sentence (4) implies sentence (7), not 
(8). 

- Sentence (5) implies sentence (8). 
- Sentence (6) implies neither sentence 
(7) nor, a fortiori, (8), whereas 
sentence (9) implies sentences (i0),(ii). 

The different uses of the simple 
present tense in (I) and (Z) are related 
to a difference between the semantic 
types of the verbs t_So bee ili and to 
repair. We will account for this 

difference by adapting a classification 
(essentially due to Vendler (1967)) into 
four semantic types ( state, activity, 
accomplishement, achievement ) . The 
usefulness o f  such a classification is 
further illustrated b y  comparing the 
behaviour Of the verb to repair in 
sentences (6, 7, 8) with that of the verb 
t So sin~ in (9, 10, 11). 

T h e  comparison between (4) and (6) in 
relation with (7) shows the necessity o f  
suitably representing the difference 
between the simple and the progressive 
past, at least for verbs of the type to 

repair a car , which are classified as 
accomplishments. 

To represent the difference between 

(4) (simple past) and (5) (present 
perfect), we have to express what makes 
(8), but not (4), derivable from (5). 
Reichenbach's system of temporal indexes 
(point of speech, point of event, point 
of reference ) can be used to handle 
this phenomenon (Reichenbach, 1957 ). It 
provides a way of describin~ the notion 
of "present relevance", which is present 
in (5) , but not in (4). 

The contrast between (1 , 2) and (12.) 
points to another kind of distinction one 
has to make: (i) expresses a state, (2) a 
habit, which hold at the moment of 
speech. On the contrary, (12) states a 
general fact which is basically 
undetermined with respect to the moment 
of speech. Dependence on the time of 
speech is a fact of temporal deixis. Ue 
shall refer to it as enunsiativit Z , 
(following A. Culioli) . By opposition 

situations such as (12) will be termed 
aoristic. 

The preceding examples give sume idea 
of the type of information that has to be 
represented. We have deliberately played 
down the purely sequential type of 
information, which is the only type of 
temporal information most systems are 
concerned with. 

Moreover, the purely sequential 
type of information is mostly incomplete 
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(this is stressed in particular by Smith 
(1978)). Consider the followina examples: 

(13) John saw his doctor this morning: 
he is ill. 
(14) John saw his doctor this morning: 
now he is ill. 

Contrastin~ (13) and (14) shows a 
potential indeterminacy in the relation 
between the two sentences. Smith (1978) 
claims that sentences like (I), where no 
explicit "reference time" is provided 
(e.g. by a time adverbial such as now) 

are temporally incomplete. Ue will be 
content at this point of our discussion 
with notin~ the need for a convenient 
notation for such a phenomenon. 

TEMPORAL OBJECTS 

Ue assume that temporal information 
in a text can be represented by 
p r o c e e d i n ~  i n  t h r e e  s t e p s  o f  i n c r e a s i n ~  
difficulty: 

- Tense in main clauses. 
- Tense in subordinate clauses. 
- Tense in texts. 

This hierarchy follows that Of Ejerhed 
and Janlert ( 1981). 

To summarize the discussion of the 
previous paragraph, the followina 
elements of temporal information have to 
be abstracted: 

- temporal deixis (enunciative vs. 
aoristic situations) . Followin~ Comrie 
(1976), we use the term "situation" as a 
generic term coverin~ states, events or 
processes . 

- inception and termination of a 
situation. 

- information relative to the 
completion of the situation. 

- local inferences on situations. 

- mass/count properties of situations. 

In our system, these elements are 
reconstructed from the followin~ 
linguistic data: 

- tenses in the finite forms of verbs. 
temporal specifiers (temporal 

adverbials). 
-semantic types of situations 

(computed from the semantic type of the 
verbs & la Vendler, and the syntactic 
structure of the proposition). 

At this point, most existin~ systems 

of representation make a choice, since a 
notion of duration has to be included in 

the model as well. Either one conceives 
of the basic elements as points, and the 

notion of an interval has to be 

introduced; or an interval is a basic 
element, and a second relation (of 
overlapplna or inclusion ) is introduced. 
In fact, in most existina models of time, 
the basic elements of time are conceived 
as elements or subsets of (a subset o£) 
the real line (or some ramified structure 
built from it). 

The choice of either "points" or 
"intervals" as basic elements leads to 
definite advantages and particular 
difficulties. The point model is 
basically simpler, b u t  in some way harder 

to justify semantically. However, as 
shown by Kamp (1979) and Van Benthem 
( 1980 ), both points of views are 
essentially equivalent. 

Our claim in the matter follows the 
~eneral philosophy of abstraction: 
Instead o£ the nature of the basic 
elements, consider their intended 
properties and combination rules for 
buildin~ derived elements. This 
combinatorial point of view is implicit, 

for example, in Allen's model (Allen 83), 
where a set of "intervals" is abstractly 
characterized by the relations holdin~ 
between its elements. It can be shown 
(Bestou~eff and Li~ozat ,1984) that any 
set theoritic model of Allen's axioms is 
equivalent to (a subset) of the intervals 
(that is, couples of points) on a totally 
ordered set. 

In our model,the basic elements are 
typed boundaries, with a (partial) order 

defined on them. As shown in (Bestougeff 
and Li~ozat, 1984) an alternative way of 
considerin~ the same abstraction would be 
in terms of "intervals", where an 
interval is a couple (bl, b2) of 
boundaries with bl <b2 . In other words, 
the term "interval" has only the notions 
of a be~innina and an end associated with 
it, and it is immaterial whether one or 
the other terminology is used. No 

topolowical p~operties are implied , only 

combinatorial properties (in terms of the 
types of boundaries ) are retained in the 
abstraction. Boundary types are 
introduced in the model in order to 
represent aspectual properties of the 
data. 

As an example, consider again 
sentences (1) to (12). 

The state be ill in (i) holds upon an 

interval whose left and right boundaries 
are "closing" and "opening", 
respectively. This is a general situation 
for states in an enunciative setting. 

The event John repair my ca.._~ in (5), 

conversely, holds upon an interval with 
resp. "opening" and "closina" left and 

right boundaries. Consequently, the 
adjacent resultin~ state "my car is 

repaired" holds on an interval with a 
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"closing" left boundary, as a state 
should. The combination in (5) of a verb 
of accomplishment with a "closing" risht 
boundary insures that such a resulting 
state does indeed exist. This is to be 
contrasted with the situation in ( 6 ) .  
There, the right boundary is an "opening 
one", which prevents the inference of a 
completed action from bein8 made• 

It seems that the introduction of 
such typed boundaries is enough t o  
capture the intuition behind the use of 
topological intervals in systems 
representing tense and time. The approach 
chosen here prevents the overloading of 
the objects with unnecessary or 
undesirable properties, as is the case 
when a concrete model like the real line 
i s  a d o p t e d .  

I n  t e r m s  o f  i m p l e m e n t e d  o b j e c t s ,  t h i s  
c o r r e s p o n d s  t o  t h e  d e f i n i t i o n  o f  a b s t r a c t  
intervals from typed boundaries and 
predicate information (the latter can be 
e m p t y ) .  

AS an example , the explicit 
definition of an interval is as follows : 

abstype intv =boundary # pred# boundary 

with make_intv (11,12,13)= 
abs_intv (11,12,13) 

and left I =fst (rep intv i) 
and right 1 = snd (snd (rep_intv i)) 
and 8etp 1 =fst (snd (rep_Intv l)) 
and purl (b,i)= 

if fst (rep_intv i) =U 
then abs_intv ( b , f s t ( s n d ( r e p _ i n t v ) ) ,  

snd(snd (rep_intv i ) ) )  
else i 

and putr(b,i)= 
if snd(snd(rep_intv i)) = U 
then abs_intv(fst(rep_intv i), 

fst(snd(rep_intv i)),b) 
else i 

and show_intv 1 =rep_intv i;; 

The signature of this object is the 
set of typed operators: 

make_in#v=-: 
(boundary # pred# boundary) -> intv 

le~t=-: intv -> boundary 
right=-: intv -> boundary 
getp =-: intv -> pred 
purl =-: (boundary#in#v) -> intv 
purr =-: (boundary # intv ) -> intv 
show intv =-: 

intv ->(intv + (intv # nseq)) 

It seems intuitively satisfying to 
consider the stretch of time involved in 
a simple clause as totally ordered. The 
local inferences operate on this 
restricted scope. 

To abstract this phenomenon we 

introduce interval sequences with 
constraints on the boundary types of 
adjacent intervals: 

a b s r e c t y p e  nseq= intv + in# # n s e q  

force=-: intv -> nseq 
ncons=-:(intv#nseq) -> nseq 
make tnseq=-:(intv # nseq) -> nseq 
show nseq=-: 

nseq -> (intv + (intv # nseq)) 

The central object in the model 
corresponds to a simple clause. It is 
called a polytyped stt-ing (or PTS). It is 
obtained from an interval sequence by 
addin~ the information about temporal 
indexes a la Reichenbach: 

a b s t y p e  p t s  = n s e q  # i n d e x  

make_pts=-:((nseq #index) -> pts) 
fl=-: pred -> pts 
f2=-: pred -> pts 

f n = - :  p r e d  - >  p t s  
rules:-: 
(status # tense # vendler # adverbial) 

-> pred -> pts) 
apply rules =-: 

( p r e d  # status) -> p t s  

where the functional type "pred-> pts" 
denotes the set of functions which build 
PTS's from predicate information. 
The predicate information is given 
through the " rules" where "status" is 
the information relative to the 
enunciative vs. aoristic status; "tense" 
denotes the morphological tense of the 
clause, "vendler" , the Vendler class 
(i.e. state, activity, accomplishement 
or achievement ) computed from classe(s) 
assigned to verbs in the dictionary and 
the syntactical configurations ; finally 
"adverbial" corresponds to information 
attached to the time adverbials. 

Up to this point , we have described 
the fundamentals of the system of 
representation. Of course, the actual 
construction of the representative 
temporal object for a text in a given 
language is highly language dependent. 
For instaxlce, the present tense in French 
(which is the language we are working on) 
is not in a simple correspondance with 
the "corresponding" simple present in 
English. Consequently , referrin~ to the 
objects described above, the functions 
"fi", and "rules" are quite specific to 
the structure of the language 
represented. 

The temporal relations in longer units 
of discourse are comparatively much more 
loosely specified. Consider the following 
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example: 
(15) Shakespeare is dead. John is ili. 
And I am not feelin~ well either. 

Apart from considerations pertainin~ 
to real-world knowledge, no information 
is given about the relative order of the 
beginnings of the three situations 
considered. So the representation should 
allow for indeterminacy, either in 
listin~ all possible alternatives (this 
would be the case in Allen's model), or 
in leaving the order unspecified. This 
more economical solution is chosen here. 

Compare (15) to the followin@: 

(16) Mary ~ot pregnant. She married John. 
(17) Mary married John. She got pregnant. 

Here, the order of discourse seems 
pertinent and should be represented. 

More complex examples in this respect 
are: 

( 1 8 )  J o h n  was  angry when  M a r y  d r o p p e d  t h e  
V as e . 
(19) Mary dropped the vaue. John was 
ansry. 
(20) John was angry. Mary dropped the 
vas e. 
where (19) or alternatively (20) can be a 
paraphrase of (18). 

The precedin~ discussion shows that 
the total ordering at the sentence level 
cannot in ~eneral be extended to lar~er 
units in a simple way. The eventual 
relations between different simple 
sentences are a result of a computation 
makin~ use of the temporal structure of 
those sentences and the order of 

discourse. 

This fact is captured as follows: The 

structure representin~ a text is 
constructed stepwise. At each step of the 
construction, the exlstin~ structure 
provides a context, in which the order of 
discourse, in particular, is represented. 
In technical terms, the corresponding 

object is called "temporal site". It is 

composed of a sequence of PTS's together 
with a set of relations on the boundaries 
of the constituent PTS's.So the next 
sentence to be examined, taken in 
isolation, is represented by a possibly 
incomplete structure (a polytyped string) 

with a total order on it, but with 

possible indeterminacies (for example, in 
the assignment of time indexes). This new 
structure is inserted into the old one, 
(already constructed temporal site ) 
thereby creatin~ new constraints 
resulting in the evaluation of some 
undetermined parameters in both 
structures. 

Here a~ain, the precise combination 
rules are lanKua~e specific, as they 
depend on the semantic properties of the 
time relations in the lan~uaae. 

It is beyond the scope of this paper 
¢o give the rules used for French. 
However ¢o ~ive an indication of what the 
construction amounts to , consider the 
following english sentences: 

(21) John was in love with Nary; 
(22) John has built his house; 
(23) John was building his house when I 
left for Rome. 

The analysis of (21) yields: 
tense : simple past; 
status : enunciative (by default); 
vendler :state; 
adverbial :none. 

Denoting by "p" the predication: John 

is in love with Mary, the structure of 

the representing PTS can be Symbolized by 
the formula : 

C1 p O2 ~ 03 ($3 R2) 

where the C's and O's denote closin8 and 
opening boundaries and S and R,points of 
speech and reference respectively . These 
are indexed by the order of occurrence of 
the correspondin~ boundaries. ~ denotes a 

dummy predication. 

Consider sentence ( 2 2 )  Here 
tense : present perfect; 
status : enunciative (because of the 
present perfect tense); 
vendler : accomplishment (perfect form); 
adverbial : none. 
The formula : 

01 p C2 reslt(p) 03 ($3 R3) 
describes the associated 9TS, where p is 
John builds his house and reslt(p) is a 

resultin~ state, obtained by local 

inference, which expresses : the house is 

built . 

Finally, consider sentence ( 2 3 ) .  The 
associated temporal site can be 
symbolized by: 

1: O1 p 02 ~ 03 

2:01 q C2 ~ 03 

($3,R2) 

(S3,R2) 

REL: 01:1 < 01:2 
02:1 >= 01:2 

This temporal site contains two FTS's, 
with p = John builds his house and q= 

I leave for Rome .q is an achievement in 

Vendler's classification. The additional 
information concerns the ordering 
relations between the boundaries of the 
PTS's, numbered 1 and 2. 

Ue have been mainly concerned with 
the representation of what we have termed 
enunciative situations (as opposed to 
aoristic ones). This is justified , as 
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s u c h  situations p l a y  a central role in 
discourse. Concerning aoristic 
situations, similar representative 
s~ructures are used, which are in fact 
more strictly constrained. 

Habitual situations (e.g. sentence 
(2)) involve a particular treatment of 
the predicative component, but otherwise 
fit into the general scheme described 
above. From this point of view, they are 
no different from factual situations. 

Dispositional sentences, on the other 
hand, cannot be discussed without 
entering the domain of modalit¥. Although 
this may seem a serious limitation 
(especially for English, where modality 
is all pervasive ), we leave it aside in 
the present consideration of tense and 
time. 

The preceding discussion illustrates 
the use of linguistic inference at three 
distinct levels: 

a) At the simple sentence level, 
building a representation involves a 
first type of inference, which makes use 
of morpho-syntactic and lexico-semantic 
information . 

b) At the next higher level, as 
illustrated b y  examples (15-20), another 
type of inference is used to specify and 
build the correspondln~ structures 
(temporal sites). 

c) Still another kind of lln~uistic 
inference should account for the possible 
derivabilities Or paraphrasings mentioned 

pr0pos examples (1-12). Its 
formalization should make it possible to 
describe this inference which, starting 
from a ~iven temporal site allows to 
deduce new sites from it. 

Whereas the first two types of 
inference a r e  constitutive of the 
derivation of temporal structures and are 
central to our activity, the last type 
has still to be defined and examined in a 
systematic way i.e. defined explicitely 
as derivation rules. In this context, the 
facilities for self-reference and 
structural inference in the software 
environment are of primary relevance. 
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