
SAUMER: SENTENCE ANALYSIS USING METARULES

Fred Popowich
Natural Language Group

Laboratory for Computer and Communications Research
Department of Computing Science

Simon Fraser Universi ty
Burnaby. B.C.. CANADA V5A 1S6

ABSTRACT

The SAUMER system uses specifications of natural
language grammars, which consist of rules and metarules.
to provide a semantic interpretation of an input sentence.
The SAUMER ' Specification Language (SSL) is a
programming language which combin~ some of the
features of generalised phrase structure grammars (Gazdar.
1981). like the correspondence between syntactic and

semantic rules, with definite clause grammars (DCC-s)
(Pereira and Warren. 1980) to create an executable

grammar specification. SSL rules are similar to DCG rules

except that they contain a semantic component and may

also be left recursive. Metarules are used to generate new

rules t rom existing rules before any parsing is attempted.
A.n implementation is tested which can provide semantic
interpretations for sentences containing tepicalisation,
relative clauses, passivisation, and questions.

1. INTRODUCTION

The SAUMER system al lows the user to specify a
grammar for a natural language using rules and metarules
rhts grammar can then be u¢,ed ~ obtain a semantic
interpretation of an input sentence. The SAUMER
Specification language (SSL). which L~ a variation of
definite clause g r ~ s (DCGs) (Pereira and Warren.
1980). captures some ,ff the festures of generaI£.ted phrase
structure grammar5 (GPSGs) (Gazdax, 1981) (GaTrl~r and
Pullum. 1982). like rule schemata, rule transformations.
s tructured categories, slash categories, and the
correspondence between syntactic and semantic rules. The
semantics currently used in the system are based on
Schubert and Pellet iers description in (Schubert and
Pelletier. 1982). - which adapts the intetmional logic
intervretation associated with GPSGs. into a more
conventional logical no ta t ion

2. THE SEMANTIC LOGICAL NOTATION

The logical notation associated with the gr~mm~r
differs f rom. the usual notation of intensional logic_since it
captures some intmtive aspects of natural language, l

Thus. individuals and objects are treated as entities.
instead of collections of prope'rties, and actions are n-ary
relations between these entities. Many of the problems
that the intensional notation would solve are handled by
allowing ambiguity to be represented in the logical
notation. Consequently. as is common in other approaches.
(e.g.. Gawron. 1982). much of the processing is deferred to
the pragmatic stage. The s tructure of the lexicon, and the
appearance of post processing markers (sharp angle
brackets) are designed to reflect this ambiguity. The
lexicon is organised into two levels. For the semantic
interpretation, the first level gives each word a tentat ive
interpretation. During the pragmatic analysis, more
complete processing information wil l result in the final
interpretation being obtained f rom the second level of the
lexicon. For e ~ m p l e , the sentence John misses John could
be given an initial interpretation of:

(2.1) [Johnl misa2 John3]

wi th Johnl, miss2 and John3 obtained from the f irs t level
of the two level lexicon. T h e pragmatic stage wil l
determine if Joha l and John3 both refer to the same
entry, say JOHN SMITH1. of the second level of the
lexicon, or if they correspond to different entries, say
JOHN_JONES1 and JOHN_EVANS1. During the
pragmatic stage, the ent ry of MISS which is referred to
by miss2 will be determined (if possible). For example,
does John miss John because he has been away for a long
time, or is it because he is a poor shot with a rifle?

Any interpretation contained in sharp angle brackets.
< . . . > . may require post processing. This is apparent in
interpretations containing determiners and co-ordinators.
The proverb:

(2.2) every man loves some woman

could be given the interpretation:

(2.3) [< e v e r y l man2> love3 <some4 w o m a n S >]

wi thout explicitly stating whmh of the two readings is
intended. During pragmatic analysis, the scope of every
and some would presumably be determined.

111 should also be noted that. due Io the separabili'~y of the semantic
component from ",he grammar rule, • different semantic notation could
easily be introduced at long as ~u~ app~priate ~.mantic proce~in8

rou~dne$ were replaced. The use of SAUMER with "an "Al-adap'md"
version of M o n ~ u e ' s Intensional Logic" is being examined by Fawc©It

(1984),

48

The syn tax of this logical nota t ion can be b-~mmav~sed
as fol lows. Sentences and compound predicate fo rmu la s
are contained wi th in square brackets. So. (2.4) s ta tes t ha t
3oim wants to kiss Mary:

(2.4) [Johnl wan t2 [John1 kiss3 Mary4]]

These fo rmulas can also be expressed equiva len t ly in a
more funct ional form according to the equivalence

(2.5) [t n P t I . . . t ad]

--- (• . . ((P t l) t 2) . . . t n)

- - (P t t . t .)

Consequently. (2.4) could also be represented as:

(2.6) ((w a n t 2 ((k iss3 Mary4) J o h n l) } J o h n l)

However. th is notat ion is usual ly used for incomplete
phrases, w i t h the square brackets used to obta in a
cortvent/ona/ f inal reading Modified predicate fo rmulas
are contained in braces. Thus. a litt le dog likes Fido could
be expressed as:

(2.7) [< a l {little2 dog3}> likes4 FidoS]

The lambda calculus operat ions of lambda abs t rac t ion and
el iminat ion are also allowed. When a var iable is
abstracted f rom an expression as in:

(2.8) kx [• wan t2 [• love3 Mary4]]

application of this new expression to an a rgument , say
dohnl:

(2.9) (kx [• wan t2 [• love3 l~u~J'4]] J o h n l)

wil l resul t in an int~,v,©tation of John wants to love Mary:

(2.10) [J o h n l wan t2 [John l love3 Mary4]]

Fu r the r detai ls on this nota t ion are avai lable in (Schuber t
and Pelletier. 1982).

3. T H E S A U M E R S P E C I F I C A T I O N L A N G U A G E

The SAUMER Specification Language (SSL) is a
programming l a n g u a g e tha t a l lows the user to def ine a

g rammar of a na tura l language "in ~ of rules, and
metarules. Metarules operate on rules to produce new
rules. The language is basical ly a GPSG realised in a
DCG setting. Unl ike GPSGs. the g rammars defined by
this sys tem are not required to be context-f ree since
procedure calls are al lowed wi th in the rules, and since
logic var iables are al lowed in the grammar symbols .

The basic objects of the language are atoms, variables.
terms, and lists. Any word s ta r t ing w i th a lower case
letter, or enclosed in single quotes is an atom. Variables
s ta r t w i th a capital let ter or an underscore. A t e rm is an
atom. opt ional ly followed by a series of objects
(arguments) , which are enclosed in parentheses and
separated by commas. Las t ly . a l ist is a series of one or
more objects, separated by commas, that are enclosed in
square brackets

3.1 R u l e s

The rules are presented in a var ia t ion of the DCG
notat ion, augmented w i th a semant ic ru le corresponding to
each syntact ic rule. Each ru le is of the form
"A - - > B : ~," where A is a t e rm which denotes a
non te rmina l symbol . B is e i ther an a tom list represent ing
a te rmina l symbol or a conjunct ion of t e rms (separated by
commas) corresponding to non te rmina l symbols , and y is a
semant ic ru le which may reference the in terpre ta t ion of
the components of ~ in de te rmining the semantics of A.
The ru le a r row. - - > . separates the two sides of the rule.
w i th the colon. :. separating the syntact ic component f rom
the semant ic component. If the ru le is preceded by the
word add, it can be subjected to the t r ans fo rma t ions
described in section 3.2. The non te rmina l symbols can
possess a rguments , which m a y be used to capture the
f l avour of the s t ruaurad categor/~s of GPSGs. ~ may also
possess a rb i t r a ry procedural restr ic t ions contained in braces.

T consists of expressions in the semantic notat ion.
The d i f fe ren t t e rms of th is semant ic expression are joined
b y the semant ic connector, the ampersand "&'. The
ampersand d i f f e r , f rom the syntact ic connector, the
comma, sinc~ the fo rmer associates to the r ight whi le the
la t ter associates to the left. The /og/col and symbol .
which t rad i t iona l ly may also be denoted by the
ampersand, m u s t be entered as "&&'. Due to cons t ra in ts
imposed by the cu r ren t implementa t ion , "(exFr)" m u s t
be entered as " < [expr]'. "< expr >" as "< <[expr]'.

and "k x expr" as "x lmda expr." An expression may
contain references to the in terpre ta t ions of the e lements of
18 by s ta t ing the appropriate non te rmina l fol lowed by the
left quote, ". To prevent ambigui ty in "these references
t ha t m a y arise when two identical symbols appear in B. a
non te rmina l may be appended wi th a minus sign fol lowed
by a unique integer.

Unl ike s tandard Prolog implementa t ions of DCGs. left
recursion is al lowed in rules, t hus permi t t ing more na tu ra l
descript ions of certain phenomena (l ike co-ordinat ion) .
Since the left recursive rules are interpreted, r a the r than
conver ted into rules tha t are not left recursive, the
n u m b e r of rules in the database wil l not be affected.
However. the efficiency of the sentence analys is may be
affected due to the extra processing required. Rules of
the fo rm "A - - > A. A" are not accepted.

An example of a product ion tha t derives John f rom a
proper noun. npr . is shown in (3.1):

(3.1) np r - - > [' John '] : "John'#

The semantic in terpre ta t ion of th is np r will be John# .
wi th "#" replaced by a unique integer dur ing evaluat ion.
(3.2) i l lus t ra tes a ve rb phrase ru le t ha t could be used in
sentences like John wants to wa/k:

(3.2) v p (N u m) - - >
v(Num.Root) w i th Root in [want. l ike]. v p (i n f)

x # # lmda [x # # & v" & [x # # & vp'])]

4 9

First nottce tha t a restr ict ion on the ve rb appears w i th in
the w/th s ta tement . In the GPSG formal i sm, th is type of
res t r ic t ion would be obtained by naming the rules and
associating a list of val id ru le names w i t h each lexical
en t ry . Al though the w/~h rest r ic t ion m a y contain any
val id in-ocedure, typ ica l ly the in operat ion (for de te rmin ing
list membersh ip) is used. The double pound. # # . is
replaced by the same unique integer in the ent i re
expression when the expression is evaluated. I f "#" were
used instead, each instance of x # would be di f ferent . For
the above example, if v' is want2 and vp' is runJ. then
the semant ic expression could evalua te to:

(3.3) x4 lmda [x4 & wan t2 & [x4 & run3]]

Fur thermore . if np" is Johrtl. then:

(3.4) [np" & vp ']

could resul t in:

(3.5) [Johnl & want2 & [Johnl & run3]]

3.2 The Metarules

Tradi t ional t r ans fo rmat iona l g rammars provide
t r ans fo rma t ions t ha t operate on parse trees, or s imi lar
s t ruc tures , and often require the t r ans fo rma t ions to be
used in sentence recognition ra the r t han in generation
(Radford. 1981). However. the approach suggested by
(GaT~2r. 1981) uses the t r ans fo rma t ions generat ively and
applies them to the grammar . Thus. the g rammar can
remain contex:-free by compil ing this t r ans fo rma t iona l
knowledge into the grammar . T rans fo rma t ions and ru le

schemata fo rm the maazu/~s of SSI- 2

Rule schemata a l low the user to specify ent i re classes
of rules by permi t t ing var iables which range over a
selection of categories to appear in the rule. To control
the values of the variables, the fora/ / control s t ruc tu re can
be used in the schema declaration. The schema
fora/ / X ~n List , Body wil l execute Body for each e lement
of L i ~ . w i th X ins tant ia ted to the cu r ren t element. The
use of this statement is illustrated in the following
metaru le t ha t generates the te rminal product ions for proper
nouns."

(3.6) foral l Terminal in ['Bob ' . 'Carol ' . ' red ' . 'Al ice '] ,
(np r - - > [Terminal] : T e r m i n a l #) .

T rans fo rma t ions match w i th g rammar rules in the
database, using a rule pa t t e rn t ha t m ay be augmented
w i t h a r b i t r a r y procedures, and produce new rules f rom
the old rules. A t r ans fo rma t ion is of the form:

(3.7) a - - > /i : y - - - > a' - - > B" : 7"

The me ta ru le ar row. - - > , separates the pa t te rn ,
a - - > ~ : T. f rom the template , a" - - > /i" : T'-

2Oflen . metarule~ are considered 1o consisl of t r ans fo rma t ions on ly ,
whi le schemata are pu l inlo a ca tegory of their own . However . sinoe
they can both be considered i~ pa r t of • me tag ramma~, they are called

me~trule~ in th l , distna~inn.

The ~ n ~ a ~ pat tern , Q - - > /i. conta ins non te rmina l s .
which correspond to symbols tha t m u s t appear in the
matched rule, and free variables, which represent don't
~ r ~ r e g i o n s of zero or more nontermina ls . The pa t t e rn

n o n t e r m m a l s may also possess arguments . For each rule
symbol , a matching pa t te rn symbol describes propert ies
t ha t must exist, bu t not all the propert ies t ha t may exist.
Thus . if vp appeared in the pa t te rn , it would match any
of vp. vp(Num), or vp(Nura2"ype) with Type in /transl.
However . pp(to) would not ma tch pp or pp(frora), bu t it
wou ld ma tch plMto,_). The matching condi t ions are
summar i sed in Figures 3-1 and 3-2. In Figure 3-1. A and
B are non te rmina l s . X is a free variable, and a and /i are
conjunct ions of one or more symbols , y and 8 of Figure
3-2 are also conjunct ions of one or more symbols . "=" is
def ined as uni f ica t ion (Clocksin and Mellish, 1981). Par ts
of the ru le contained in braces are ignored by the pa t t e rn
matcher . The syntact ic pa t t e rn may also contain a rb i t r a ry

restr ict ions. 3 enclosed in braces, t ha t are eva lua ted dur ing
the pa t te rn match. The semant/c pat tern, y, is ve ry
pr imit ive, h may contain a free variable, which wi l l
b ind to the ent i re semant ics field of the matched rule , or
it may contain the s t ruc tu r e < [? ~]. which wi l l b ind to
the ent i re s t r uc tu r e containing the symbol x. If < [? y]
then appears in y ' , the resu l t wil l be the semant ic
component of the matched ru le w i th x replaced by y.

Pa t te rn

Rule
(B. /3) B

(A. a)

(X. a)

A

X

A matches B A matches B and
and a matches ~ a is a free var iab le

(X. a) matches /i a matches B
or a matches (B. ~)

No A matches B

y e s Yes

F i g u r e 3-1: Pa t t e rn Matching for Conjunc t ions

Pa t te rn

Rule
b(/i[.... /I n) b(,/i I /in) with 8

a(a I a m)

a (a I a =)
wi th

a=b. m ~ < n .

ati=/i i, 1~<i~<m

No

a - - b . m ~ n .

a i = / i i, l ~ i ~ m

a = b . m ~ n .

a i = / i i. l ~ < i ~ < m . "

matches 8

F i g u r e 3-2: Pat tern Matching for Non te rmina l s

3Apparently no1 present in the Hewle1"t Packard system (Gawron,
1982) or the ProGram system (Evans and Ga~l~r, 1984)

5 0

The behaviour of patterns can be seen in the fol lowing
examples. Consider the sentence rule:

(3.8) s(decl) --> np(nom.Numb).

v p (_ J q u m b) wi th agreement(Numb)
: [rip" & vp"]

The patterns shown in (3.9a) wi l l match (3.8). while
those of (3.9b) will not match it.

(3.9) (a) s(A) - - > {not element(A,[foo])L X. vp : Sere
s - - > np(nom), X. vp(pass). Y : Sere

(b) s(inter) - - > np. vp : Seam
s - - > vp : Sere

For the verb phrase rule shown in (3.10):

(3.10) vp(active.[MIN]) - - >
v([MIN],Root,Type,_) wi th (intrans in Type)
: v"

the patterns of (3.11a) will result in a successful match.
will those of (3.11b) wil l not:

With external modification, any nonterminal , or
variable instantiated to a nonterminal, may be fol lowed
by the sequence @rood. This wi l l result in rood being
inserted i n to the argument list fol lowing the specified
arguments. Thus, mf N@junk appeared in a rule when N
was instantiated to np(more), it would be expanded as
rip(more,junk }. Similarly, if the pattern symbol vp
matched v,v{NumS) in a rule, then the appearance of
vp@foo in the template would result in vp(foo~Vumb)
appearing in the new rule. This extra argument.
introduced by the modifier, can be useful when dealing
with the missing components of slash or derived categories
(Gazdar, 1981).

Internal modification al lows the modif ier to be put
directly into the argument list. If an argument is
fol lowed by @rood. it wil l be replaced by rood. In the
case where @rood appears as an argument by itself, rood is
added as a new argument. For example, if
v(Numb@pastpart) were contained in a template, it would
IT-match v(Numb) in the pattern, and would result in the
appearance of v(pastpart) in the new rule.

(3.11) (a) v p - > v : <[?v]
vp - - > v(. . . . Type ._)

with (X, intrans in Type. Y).
Z : S e m

(b) vp - - > v (. . . _ . T y p e . _)
wi th (X. trans in Type)
: S e m

vp -> v(_~oot)
wi th (Root in [fool. X)
:Sem

For every rule that matches the pattern, the template
of the transformation is executed, resulting the creation of
a new rule. Any nonterminal. N, that matches a symbol
8 i on the left side of the transformation, will appear in

the new rule if there is a symbol ~i" in 8" that

irura-transformation (IT) matches with ~i" If there are

several symbols in 8" that IT-match ~i" the leftmost

symbol wi l l be selected. No symbol on one side of the
transformation may IT-match with more than one symbol
on the other side. Two symbols will IT-match only if
they have the same number of arguments, and those
arguments are identical. Any w/th expressions and
modifiers associated with symbols are ignored during IT-
matching. 8" may also contain extra symbols that do not
correspond to anything in 8. In this case. they are
inserted directly into the new rule. Once again, if the
transformation is preceded by the command add. then the
resulting r u l ~ can be subjected to subsequent
transformations.

3.3 Modif iers

Both rules and metarules may conta ins modifiers that
al ter the ~tructure of the nonterminal symbols. There are
two types of modification, which have been dubbed
external and /nzerrud modification.

4. IMPLEMENTATION

The SAUMER system is currently implemented in
highly portable C-Prolog (Pereira. 1984). and runs on a

Motorola 68000 based SUN Workstation supporting UNIX 4.
Calls to Prolog are allowed by the system, thus providing
useful tools for debugging grsmmars, and tracing
derivations. However. due to the highly declarative
nature of SSL, it is not restricted to a Prolog

....... implementation. Implementations in other languages would
dif fer external ly only in the syntax of the procedure calls
that may appear in each rule. Use of the system is
described in detail in (Popowich, 1985).

The current implementation converts the grammar as
specified by the rules and metarules into Prolog clauses.
This conversion can be examined in terms of how rules
are processecl, and how the schemata and transformations
are processed.

4.1 Rule Processing

The syntactic component of the rule processor is based
on Clocksin and Mellish's definite clause grammar
processor (Clocksin and Mellish. 1981) which has been
implemented in C-Prolog. For a DCG rule. each
nonterminal is converted into a Prolog predicate, with two
additional arguments, that can be processed by a top-down
parser. These ~tn arguments correspond to the list to be
parsed, and the remainder of the list after the predicate
has parsed the desired category. With the addition of
semantics to each rule, another argument is required to
represent the semantic interpretation of the current
symbol. Thus. whenever a left quoted category name. x ' .

4UNIX is • Inulemark of Bell Laboralories

51

appears in the semantics of the rule. it'is'repla~gl by a
variable bound to the semantic argument of the
corresponding symbol, x. in the rule. The semantic
expression is then evaluated by the eva/ routine wi th the
result bound to the semantic argument of the nonterminal
on the left hand side of the production. For ~ffiample. the
sentence /ule:

(4.1) add s(decl) - >

np(nom.Numb).
vp (_2qumb) with agreement(Numb)
: [np" & vp"]

will result in a Prolog expression of the form:

(4.2) s(SemS.decl ._l . 3) :-
nlKSemNP.nom2qumb. 1 . 2) .
vp(SemVP, 2qumb. 2. 3).
agreement(Numb).
eval([SemNP & SemVP],SemS).

Consequently. to process the sentence John runs. one
would try to satisfy:

(4.3) :- s(Sem, Type. ['John'.runs]. []).

The f irs t argument returns the interpretation, the second
argument returns the type of sentence, the third is the
initial input list. and the final argument corresponds to
the list rPmaining after finding a sentence. Any rule R,
that is preceded by add wil l have the axiom r'ul~(R)
inserted into the database. These axioms are used by the
t ransformations during pattern matching.

The eva/ routine processes the suff ix symbols, # and
along wlth the lambda .expressions, and may perform
some- reorganisation of the given expression-- before
returning a new semantic form. For each expression of
the form name#, a unique integer N is ca-eared and
nan~-N is returned. With "## ' . the procedure is the
same except that the f irs t occurrence of "##" wil l generate
a unique integer that wi l l be saved for all subsequent
occurrences. To evaluate an expression of the form:

(4.4) (expr i Lmda e ~ F j & X)

every subexpression of exprj is recursively searched for an

occurrence of expr i. which is then replaced by X.

Left recursion is removed with the aid of a gap
predicate identical to the one defined to process gapping
g r - a m m a r S (Dahl and Abramson. 1984) and unre~Lricte~
gapping grammars (Popowich. forthcoming). For any rule
of the form:

(4.5) A - - > A. B. a

where A does not equal B. the result of the translation is:

(4.6) A f _ I . N n) :- gap(G._l . 2). B (2 . N o) . A(G,[]).

<Xl (No,N 1) tXn(Na_l.Nn),

According to (4.6). a phrase is processed by skipping over
a region to find a B - - the first non-terminal that does
not equal A. The skipped region is then examined to

ensure that it corresponds to an A before the rest of the
phrase is processed.

4.2 Schema Processing

To process the metarule control s tructures used by
schemata, a fm l predicate is inserted to force Prolog to t ry
all possible alternatives. T h e simple recursive definition
of /ore/ / X / ~ / . /rt :

(4.7) foral l (X in [], Body).
foral l (X in [YIRest]~xty) :-

(X=Y. cal l l (Body) , fail) :
foral l(X. Rest. Body).

uses fa / / to undo the binding of Y, the f irs t element of
the list. to X before calling fore// wi th the remainder of
the list. The predicate ¢.<d/l is used to evaluate Body
since it wi l l prevent the fa/ / predicate f rom causing
backtracking into Body.

4.3 Transformation Processing

Execution of t ransformations requires the most
complex processing of all of the metagrammatical
operations. This processing can be divided into the three
stages of transformation crY. pattern matching, and rule
crem,/on. 5

During the rrar~fornuU/~n trot/on phase, the predicate
rrarts(M,X,Y) is created for the metarule. M. This
predicate will transform a list of elements. X: into
another ILSL Y, according to the syntax specification of the
metarule. Elements that IT-match will be represented by
the same free variable in both lists. This binding will be
one to one. since an element cannot match with more than
one element on the other side. Symbols that appear on
only one side will not have their free variable appearing

on the opposite side. Expressions in braces are ignored
during this stage. If a transformation like:

(4 .8) a - - > b, c. X - - > a@foo - - > b. X. c(foo)

appears, then a predicate of the form:

(4.9) t r ~ s (M . L 1 . _ 2 . _ 3 . X] . L 1 . _ 2 . X . _ 4])

will be created. Notice that the appearance of a modifier
does not cause a@/oo to be distinguished from a. since all
modifiers are removed before the pat tern- template match is
attempted. However. c and c(foo) are considered to be
different symbols. M is a unique integer associated with
the transformation.

The pattern match phase determines if a rule matches
the pattern, and produces a list for each successful match
which wil l be transformed by the trans predicate. Each
element of the list is either one of the matched symbols
f rom the rule. or a list of symbols corresponding to the
don't care region of the pattern. Any predicates that

5(Popowich, forthcoming) examines a method of t ransformalion
~ i n g tha t uses the t ransformations during ~3~e par~e, instead of Using
them m L~me~te new ~.fle~.

52

appear in braces in the pattern a r e evaluated during t h e
pattern match. Consider the operation of an active-passive
verb phrase transformation:

(4.10) vp(active~Numb) - - >
v(Numb.R.Type.SType)
with (X.trans in Type.Y).
np. Z

<[? np']

v~pass .Numb) - - >
v(Numb.be.T.S)-I wi th auz in T.
v(Numb@pastpart .R.Type.SType)
with (X.trans in Type.Y).
z. pp(by._)
: x # # Imda [pp(by)" & <[7 x##]]

on the following verb phrase:

(4.11) vp(act ive.Numb) - - >
v(Numb~R.Type._) wi th trans in Type.
n~[x.A.x])
: < [v" & np"] .

The list produced by the pattern match would resemble:

'.12) [vp(active.Numb).
v(Numb.R.Type._) wi th [[].trans in Type~]].
nr([x.A.~]).
[]]

Notice that there was nothing in the rule to bind with X.

Y or Z. Consequently. these variables were assigned the

null list. []. The pattern match of the semantics of the

rule will result in an expression which lambda abswacts
np" out the of semantics:

(4.13) <[np" lmda <[v" & np"]]

Finally. the ru/~ crea¢/on phase applies the
transformation to the list produced by the pattern match.
and then uses the new list and the template to obtain a
new rule. This phase includes conversion of the new list
back into rule form. the application of modifiers, and the
addition of any extra symbols that appear on the right
hand side only. To continue with our *Tample. the trans
predicate a.~ociated with (4.10) would be:

(4.14) trans(N. [_1._2._3.Z] . [_ . 3 . 4 . _ 2 1 . . 5])

Notice that the two vp 's on opposite sides of the metarule
do not match. So the transformed list would resemble:

(4.15) [_3 .
4 ,
v(Numb.R.Type._) wi th [[].trans in Type,[]].

[3.
_ 5 1

The rule generated by the rule creation phase would be:

(4.16) vp(pass~lumb) - - >
v(Numb.be .T~)- I with aux in T.
v(pastpart .R,Type._) wi th t n n s in Type.
pp(by._)
: x # # lmda [pp(by)" & <[v" & x # #]]

• Notice that the expression "< [v" & x # #]'. which is
• contained in the semantics of (4.16) was obtained by the

application of (4.13) to x # # .

5. APPLICATIONS

To examine the usefulness of this type of grammar
specification, as wel l as the adequacy of the
implementation, a grammar was developed that uses the

domain of the Automated Academic Advisor (AAA)
(Cercone et.al.. 1984). The AAA is an interactive
information system under development at Simon Fraser
Universi ty. It is intended to act as an aid in "curriculum
planning and management ' , that accepts natural language
queries and generates the appropriate responses. Routines
for performing some morphological analysis, and for
retrieving lexical information were also provided.

The SSL grammar allows questions to be posed.
permits some possessive forms, and al lows auxiliaries to
appear in the sentences. From the base of twenty six
rules, eighty additional rules were produced by three
metarules in about eighty-f ive seconds. Ten more rules
were needed to link the lexicon and the grammar. A
selection of the rules and metarules appears in Figure 5-1.
The complete grammar and lexicon is provided in
(Popowich. 1985).

In the interpretations of some ~ m p l e sentences, which
can be found in Figure 5-2, some liberties are taken with
the semantic notation. Variables of the form wN. where
N is any integer, represent entities that are to be
instantiated f rom some database. Thus. any interpretation
containing wN wil l be a question. Possessives. like John's
tab/e are represented as:

(5.1) < tab le & [John poss table]>

Although mul t ip le possessives which associate from left to
right are allowed, group possessives as seen in:

(5.2) the man who passed the course's book

and in phrases like:

(5.3) John's driver's lice.ace

can not be interpreted correctly by the grammar.
Inverted sentences are preceded by the word Q u e r y in the
output. Also. proper nouns are assumed to unambiguously
refer to some object, and thus are no longer fol lowed by
a unique integer. Analysis t imes for obtaining an
interpretation are give 9 in CPU seconds. The total t ime
includes the t ime spent looking for all other possible
parses.

Results obtained with SAUMER compare favourably to
those obtained from the ProGram system (Evans and
Gazdar. 1984). ProGram operates on grammars defined

according to the current GPSG formalism (Ga2dar and
Pullum. 1982). but was not developed with efficiency as a
major consideration. The grammar used with ProGram.
which is given in (Popowich. 1985). is similar to the AAA

5 3

/ - Case ,s descr ibed by a mask. [N.A,G], wi th f ree va r i ab les for Ham., Ace. and Gen. * /

add vp(oct ive.Numb) ~ > v(Numb. Root. T, _) wi th (Root in [p a s s . g i v e , t e a c h , o f f e r] , indabj in T. t rees in T) ,
np([x .D.x] ) . n p ([x . * . x] )-1 : <[v' a np' a np- t ']

Je WH--<lueetions in inver ted sentences * / evc l (y~ , Var) , NP - np(Case.Numb,Feat)

• (NPONP ~ > [] . |agreement(Case)| : Var)
, (e (i n v) ~ > np([x ,A,x] ,Nomb,Feat) w i th Clword in Feat, e (inv)Onp([x ,A ,x] ,Numb,Feat)

: <[(Vat lads s ') • np']) .

/* passive t rene fa rnmt ion e /

add vp(oct ive.Numb) - - > v(Numb.R.Type.Subtype) w i th (X. t rees in Type0 Y). npo Z : <[? np °]
mE> vp(poss,Humb) ~ > v(Numb,be,T,S)--I w i th aux in T,

v(Numi:gpaetpart, R. Type, Subtype) w i th (X, t rees in Type, Y),
Z. o p t i a n a l (p p (b y . _)) : x ~ Imda [opt ional" k <[? x ~]] .

/ * sentence invers ion */

add vp(T . [MiN]) ~ > v([MJN],R,Type,S) w i th (X, aux in Type, Y) , Z : $em
m > s (i n v) - - > v([UIN] ,R,Type,S) w i th (X.aux in Type,Y), n p ([N l , x , x] , [M l N] , _) , Z : [np ' a Semi.

/ , metaru le f o r the propagat ion of "ho les" in the "s losh" ca tegor ies e/

f a r a i l Hole in [pp(Prep,Feat) ,np(Case,Nomb,Foot)]
. (f o r a l l Cat1 in [s (T y p e) , v p . p p (P r e p , F e a t) , o p t i o n a l]

• (f o r a l l Cat2 in [vp ,pp(Prep ,Feat) ,np(Caae,Numb,Foat) ,op t iona l]
, (Cat1 m > X. Cot2, Y : Sem m > Ce t l IHo ie m > X, Cat2OHalo, Y : Sen))) .

Figure 5-1: Excerpt from Grammar

Sentence
Query:
Ana l yo ,e : .

d id Fred take ompt le l .
[Fred takes cmpt le l]
2.25 eec. To ta l : 4. 28334 sea.

Sentence: who wonts to teach Fred 's p r o f e s s o r ' s course.
Semantics: [<wl • [wl onlmgte]>

wont4
[<wl • [wl animate]>

teach13
<course14 k [<pro fessar IS • [Fred pace p ro fosea r lS]> poes course14]>

]
]

Ana lys is : 6.58337 eec. To ta l : 18.9834 ee¢.

Sentence'
Query"

Ana lys is :

whose course does the student whom John l i ken want to be tak ing .
[<<the38 student39> • [John l ike4S <the38 student39>]>

wont46
[<<the38 student39> • [John l ike4S <the38 student39>]>

takeS6
<course29 • [<w3e • [w3e animate]> pose caurwe29]>

]
]
21.9999 eec. To ta l : 39.4 sac.

Sentence:
Query:

Ana lys is :

to whom daee the p ro fessor want which paper to be g iven.
[<the14 pro fessor lS>

want17
[x39 givo3S <w7 k [w7 aninmte]> <w21 k [w21 paper22]>]

]
14.3167 sec. To ta l : 29.5167 sec.

Figure 5-2: Summary of Test Results

5 4

grammar u s e d by SAUMER. except that it has a much
smaller lexicon, and al lows neither relat ive clauses nor
possessive forms. Running on the same machine as
SAUMER. ProGram required about 35 seconds to parse the
sentence does John take cmpelOl, with a total processing
time of abo,.u 140 second.~ SAUMER required just over 2
seconds to parse this phrase, and had a total processing
t ime of about 4 seconds.

As it stands, the semantic notation used by SAUMER
does "not contain much of the relevant information that

"would be required by a real system. Tense. number and
adverbial information, including concepts like location and
time. would be required in the AAA. If the SSL
description were to be extended, wi th the resulting system
behaving as a natural language interface of the AAA. a
more database directed semantic notation would prove
invaluable.

6. PRESENT IXMITATIONS

Although this application of metarules al lows succinct
descriptions of a grammar, several problems have been
observed.

Since each metarule is applied to the rule base only
once. the order of the metarules is very important. In
our sample grammar, the passive verb phrases were
generated before the sentence inversion t ransformation was
processed, and then the slash category propagation
transformations were executed. For the curreat
implementation, if a rule generated by t ransformation T1
is to be subjected to transformation T2. then T1 must
appear before T2. Moreover. no rule that is the result of

.... T2-can be operated on by TI . It would be preferable to
remove this restriction and impose one. that is less severe.
such as the finite closure restriction which is described in
(Thompson. 1982) and used by ProGram. With this
improvement, the only restriction would be that a
transformation could only be applied once in the
derivation of a rule.

The system can not current ly process rules expressed

in the Immediate Dominance/ Linear Precedence (ID/LP)
format. (Gazdar and Pullum. 1982). With this format, a
production rule is expressed with an unordered right hand
side with the ordering determined by a separate
declaration of //near precedence. For example, a passive
verb phrase rule could appear something like"

(6.1) vp(pass.[MIN]) - - >

v([MIN], be).

v(_ . Root. Type. _) with
(Root in [pass.carry.give].
indobj in Type.
trans in Type).

pp(to).

optional(pp(by))
: x # # Imda

[optional" & <[v" & pp(to)" & x##]]

wi th the components having a linear precedence of:

(6.2) v(_.be) < v < pp

The result would be that the pp(by) could appear before
or af ter the pp(to), since there is no restriction on ' thei r
relative positions. I f this format were implemented, only
one passive metarule would have to be explicitly stated.
The direct processing of ID/LP gremm~rs is discussed in
(Shieber. 1982). (Evans and Gazdar. 1984). and (Popowich.
forthcoming).

7. CONCLUSIONS

SSL appears to adequately capture the f lavour of
GPSG descriptions while allowing more procedural control.
Investigation into a relationship between SSL and GPSG
grammars could result in a method for translating GPSG
grammars into SSL for execution by SAUMER. Fur ther
research could also provide a relationship between SSL and
other grammar formalisms, such as /ex/c~-funct/on,d
granmu~$ (Kaplan and Bresnan. 1982). The prolog
implementation of SAUMER. allowing left recursion in
rules, should facilitate a more detailed s tudy of the
specification language, and of some problems associated
with metarule specifications. Due to the easy separabili ty
of the semantic rules, one could at tempt to introduce a
more database oriented semantic notation and develop an
interface to a real database. One could then examine
system behaviour wi th a larger rule base and more
involved transi 'ormations in an applications environment

like that of the AAA. However. as is apparent from the
application presented here and f rom prel iminary
experimentation (Popowich. 1984) (Popowich. 1985),
fur ther investigation of the efficient operation of this
Prolog implementation with large grammars wil l be
required.

ACKNOWLEDGEMENTS

l would like to thank Nick Cercone for reading an
earlier version of this paper and providing some useful
suggestions. The comments of the referees were also
helpful. Facilities for this research were provided by the
Laboratory for Computer and Communications Research.
This work Was supported by the Natural Sciences and
Engineering Research Council of Canada under Operating
Grant no. A4309. Installation Grant no. SMI-74 and
Postgraduate Scholarship #800.

REFERENCES

Cercone. N.. Hadley. R.. Martin F.. McFetridge P. and
Strzaikowski. T. D e a i ~ i n ~ and a u t o m a t i n g the
q u a l i t y mmesmment o f a knowledge-ba.m~ sys tem: t h e
i n i t i a l a u t o m a t e d academic adv i so r exper ience , pages
193-205. IEEE Principles of Knowledge-Based Systems
Proceedings. Denver. Colorado. 1984.

Clocksin. W.F. and Mellish. C.S. P r o g r n m m l n g in Prolog.
Berlin-Heidelberg-NewYork:Springer-Verlag. 1981.

55

Dahl. V. and Abramson. H. On Gapping G r ~ m m ~ .
Proceedings of the Second International Joint Conference
on Logic. University of Uppsala. Sweden. 1984.

Evans. R. and Gazdar. G. The ProGram Manual .
Cognitive Science Programme. University of Sussex,
1984.

Fawcett. B. personal commnnicat ion. Dept. of
Computing Science. University of Toronto. 1984.

Gawron. J.M. et.aL Procemiag English w i t h a
GenersliT~d Phrase St ruc ture Grammar . pages 74-81.
Proceedings of the 2Oth Annual Meeting of the
Association for Computational Linguistics, June. 1982.

Gazdar. G. Phrase Structure Grammar. In Po Jacobson
and G.K. Pullum (Ed.). The Nature of Syn~cx.ic
Representat ion, D.Reidel. Dortrecht, 1981.

Gazdar. G. and Pullum. G.K. General ized Phrase
S t ruc ture Gr~mm,~r:. A Theore t ica l Synopsis.
Technical Report. Indiana University Linguistics Club.
Bloomington Indiana. August 1982.

Kaplan. R. and Bresnan. J. Lexical-Functional Grarnmar:
A Formal System for Grammatical Representation. I n
J. Bresnan (Ed.). Menta l Representat ion of
Grammat i ca l Relation& Mrr Press. 1982.

Pereira. F.C.N.(ed). C-Prolog User's Manual . Technical
Report. SRI International. Menlo Park. California. 1984.

Pereira. F.C.N. and Warren, D.H.D. Definite Clause
Grammars for Language Analysis. A r t i f i c i a l
Intel l igence. 1980. 13, 231-278.

Popowich. F. S A ~ Sentence , t~nlysi~ Using
]~ETaJ~lL].es (]Pl-el iminal-y Report). Technical
Report TR-84-10 and LCCR TR-84-2. Department of
Computing Science. Simon Fraser University. August
1984.

Popowich. F. The SAUMER User's Manual. Technical
Report TR-85-3 and LCCR TR-85-4. Department of
Computing Science. Simon Fraser University, 1985.

Popowich. F. Effec t ive Implementa t ion and Appl ica t ion
of Ulxrestricted Gapping GrammArS. Master's thesis.
Department of Computing Science. Simon Fraser
University. forthcoming.

Radford. A. Tr,~-~t 'ormational Syn tax . Cambridge
University Press. 1981.

Schubert. L.K. and Pelletier. F J . From English to Logic:
Context-Free Computation of "Conventional" Logical
Translation. Amer ican Journal of Computa t ional
1=i~nfi,~tics. January-March 1982. 8(1). 26-44.

Shieber. S.M. Direct Parsing of ID/LP G r a m m a r .
draft. 1982.

Thompson. H. I-Ia~dlin~ Metarules in a Parser fo r
GPSG. Technical Report D.A.I. No. 175. Department
of Artificial Intelligence. University of Edinburgh.
1982.

56

