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This paper Teports a completed stage of

ongoing research at the University of
York. Landsbergen’s advocacy of analyt-~-
ical inverses for compositional syntax

rules encourages the application of Defin-
ite Clause Crammar techniques to the cons-—
truction of a parser returning Montague
analysis trees. A parser MDCC is pres-
ented which implements an augmented
Friedman - Warren algorithm permitting
post referencing, and interfaces with a
language of intensional 1logic translator
LILT so as ¢to display the derivational
history of corresponding reduced IL form-
ulae. Some familiarity with Montague’s
PTG and the basic DCe mechanism is
assumed.
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i Introductio

Consideration is given
{201 to the
of a top down
valent to
that of

by Landsbergen
global algorithmic structure
parser demonstrably equi-
a compositional grammar such as

PTQ@ ([221]. The method is as
follows:
1. Formulate ¢the original grammar in
terms of indexed compositional-M rules of
form:

If syntax trees <Sk..Sn> satisfy
condition C then combine
{Sk..Sn> into Sy

such that the compositional history may be

represented on a3 derivation tree (i, e 3
skeletal analysis ¢tree lacking node
labels). :

2. Subgect to specified restraints evolve
inverse analytical-M Rules of form:

I# S conforms to condition C~’

then analyse S3 into <Sk..Snd.

3. Prove that the compositional and
lytical M rules are equivalent.

ana—
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England.

4. Construct a two stage parser:

(i) Parge a sentence using a context

free grammar (CFC) thus deriving a
syntax tree.
(ii{) Traverse the syntax tree in
postorder [19] wunder the guidance of
the analytical-M rules. constructing
the derivation tree which reflects
the reverse order application of the
inverse rules.

An abstract algorithm describing the

parser is given in the form of procedural
psevdo code, however the problem of
establishing that an implementation con-
forms to the algorithm is deferred, 2
problem perhaps aggravated by the absence
of a formal notation for M rules which
might otherwise have suggested appropriate
data structures.

(ii) of a
a duplication
adopting the

The postorder traverse in
preorder creation involves
which may be avoided by

PROLOGC Definite Clause Grammar {DCG)»
formalism: (L2281 c#. (31, (41, (51, (211),
which, as has been observed [32] virtually

forces the methodology of syntax directed

translation coupled with compositional
semantics. A DCC may be ingenuously
characterised as a CFG having category

symbols augmented by argument places. and
containing supplementary goals not limited
in function to input consumption. - Logical
variables in argument places permit
synthesised and inherited attributes [182
to be handled with equal facility. The
clauses of a DCC may be directly executed
by a PROLOC interpreter, hence if combined
CFG+analytical-M rules are presented in
the form of Definite Clauses., the problem
of mapping algorithm ¢to implementation
does not arise: the algorithm and program
are one and the same.

The parsers of both
and Friedman & Warren [9] generate only
skeletal trees, other details being
recoverable from the leaves and operation
indices: however the tedium of such
recovery @may properly devolve on the comp-—
uter, and for pedagogical purposes at

Landsbergen (2013



least the production of #full analysis
trees would be advantageous. This paper
outlines a DCC implementation of a version
of the compositional syntax of PTG which
returns full Montague analysis trees in
the form of vine diagrams modified at most
by additional feature marking on vari-
ables. Given an input sentence. MDCGC
returns sets of trees. optionally passing
members to a language of intensional logic
translator (LILT) which generates corres-
ponding IL formulae. The indeterminacy aof
PROLOC implies that a DCG written with
circumspection may alseo be vsed in
reverse, but it remains to be investigated
whether the model could be so modified as

to achieve the recent objectives of
Friedman (81]. To handle quantification
MDCG employs ] variation of the
Friedman—Warren algorithm (FWA) [9].

The programs are implemented in

University of Edinburgh DEC~10 PROLOG and
Tun on the University of York DEC-10 comp-
vtar

s lmplie

M f

The version of PTG grammar implemented

in MDCC has both significant and cosmetic
changes. As regards the first, Partee
observes ({241, (2%3) ¢that a version of

S1< which inserts labelled bracketing, and
a version of sS4 sensitive to such
bracketing and generalised to add sub ject

- agreement to the first verd in each
conjunct of a conjoined verd phrase, is
needed in order to distinguish (1) from

(2).
(1) John tries to walk and talks.
(2) John trids to walk and talk.
Without labelled bracketing, PTG has dife-

and then constrains the predicate to be a
conjunction of one or more verb phrases
identifiable as commencing with concordant
finite forms. Likewise the procedure
which parses infinitival complements in
accordance with S8 accepts s conjunction
of one or more verb phrases starting with
infinitives. MDCC successfully generates
the ¢trees illustrated in fig 1. thus
tacitly assuming compositional counter-
parts adopting modifications such as
the bracketing of Partee (0243, £2%1),
or the headverb flagging convention of
Bennett [2]. Bennett’s simplified sem-
antic typing, which results from treating
IV and CN as primitive categories, is alsc
exploited in LILT as illustrated in the
appendizx.

The MDCC post referencing
requires the admission of alternative
Copitalised variables, and an amended 10
which undertakes the replacement by term T
of the earlier of:

(a) the first uncapitalised variable

with index n
or (b) the last occurring variable with
index n.
Whether capitalised ! variables would prove
popular with advocates of the "well
formedness constraint” ([27) is uncertain

facility

Feature matching, which is achieved by
PROLOG ‘s cross - goal variable instantiat-
ion conventions. plainly affords a simple
mechanism, from the syntactic viewpoint,
for handling number concord and selection-
al restrictions on the basis of feature
marked lexical entries. Indeed since the
alternative operations licenced by S2 are
also identified in the lexicon, MDCG has
the facility without amendment to produce
analysis trees for plural sentences such

Aada sl il 2l 2222} Addaad 2 8 o 2 4 2 2 g o 12 1T TR TN ARy BB RBS RN SR

* (a) »
* #4:4 john tries to walk and talks *
* #1:= john *
L #12:8 try to walk and talk -
- #8:6 try to walk L
* #1:= try *
» #l:= walk *
* #1l:= talk *
L (b) . *
» #4:4 john tries to walk and talk -
» #1:= john *
* #8:6 try to walk and talk *
* #l:= ¢try *
* #12:8 walk and talk *
» #l:= walk *
* #1:= talk *
* *
* fig 1. *
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iculty identifying head verbs. but since a as:

DCC works top down it encounters no such (3) The men have nat eaten the fishes.

problems. The MDCC analogue of S4 first given & Ffurther determiner clause in the

identifies the features of the sub ject,
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paired with an additional operation number
and marked with the features (deéf,pll.
The principle of compositionality €10]
demands that this syntactical facility
remain officially untriggered pending the
introduction of appropriate plural deter-
miner interpretation clauses in LILT:
however its introduction for experimental
purposes allows MDCG and LILT to provide a

testbed for the investigation of senses
for additional quantifiers.
The cosmetic variation involves the

introduction of further feature marking on
variables, but since variables receive
semantic interpretation only in leat
position where PTG and MDCC are equi-
valent, the change has no semantic
significance. Variables as leaves are in
the range heO.. hepn, but whereas PTO
introduces only accusative marking as a
side effect of combination, MDCG adds
markings for gender (and i needed
number). Amendments to PTQ to reflect
these innovations would be purely
decorative. S2 would mark its output with
@ number feature derived from the
quantifier, while .both S4 and 835 would,
like S2, licence alternative operations
such that £4.0 and 5.0 would be
restricted to cases where the input T were

not a variable, and #4.1..74. 4, £0.1..5. 4
would generate hep IV theyp IV, TV
himp .. TV themp respectively. Since the
translation rules ‘T4 and TS refer to the
value of the jpgut ‘term of & function in
the £4, 9 series these wovld be
unaffected. Rules in the range S3n., 8S1l4n

S16n would apply on condition that the
input sentence did pnot include a variable
with index n having discordant features.

If plural forms became available, ¢the
subject agreement clause of S4 would need
generalising., and S13 would, like S11 and
S12, gain access to £f8, marking its output
with the number of its first argument in
case the operation were £9, or with
L+plurall otherwise.

3 Tree Structu P

Nodes on an analysis tree are Tepres—
ented internally by analogues of the “syn”

structures of McCord L[21], having the
form:
node(N. F, L, D)
where:
N = A rule number in the form #Syn:Fun,

#Syn: (Fun, Inx), or #1i:= such that Syn

and Fun are Montague syntax rule and
structural operation numbers:, Inx is
a variable subscript, and #l=
indicates Jexical insertion.

F = A list of festures intrinsic ¢to the
node.

L = A node label in list form.

D = In the case of a non—terminal node o
binary 1list of daughters both of
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which are nodes,

ture of form:
sense(Item, Category)

used by LILT in the generation of IL

formulae.

otherwise a struc-

Procedures which parse grammatical cat-

egories normally have ten arguments the
nature of which will where necessary be
explained in subsequent sections. The

general form is as follows:
category(N, F,E, L, 1a, 12, FVB, SA, SRa, SR2)
where

N = A node structure as described.

F = The features of the category - in
context which may exceed the node
festures. For example case is not an
intrinsic noun phrase leaf feature,
but it constrains adoption to specif-
ied configurations.
= The environaent (preorder
predecessors) of the category relat-
ive to which the parse is aborted if
N is non unique.

L = The transmission label.

1a, Iz = String buffers before
parsing.

FVB = Free variables below list

SA = Substitutions above list.

SRa, SRz = Substituens,K required
before and after patsing.

and after

lists

4 Implementing FWA in PROLOG

The FWA handles the introduction and
subsequent binding of indexed variables on
n—ary substitutes +for skeletal analysis
trees by the manipulation of two lists,
FVB (free variables below) and SA (sub-
stitutions above). In order to implement
the algorithm in a PROLOG DCC directed
towards the produyction of strictly
Montagovian trees, each clause responsible
for creating » node requires both FVB and
SA argument places, the first to act as an

output and the second as in input
parameter, with the proviso that the top
level "sentence” call set both to the
empty list,

A clause charged with the construction
of a T (=NP) node, provided that it does
more than read & surface pronoun. must be

given the gption of returning a default
node, or alternatively of binding the noun
phrase discovered to the next available
variable, adding the. binding to the FVB
set, and returning " a variable node
instead. In MDCC a binding takes the form
not of a <variable, noun—phrased> pair but

of a structure:
bind(Var, Inx, Node)

where:

Var = The indexed variable.

Inx = The subscript.

Node - The complete structure
node(N.F,L.D) for a T or, in case the
binding is perfarmed vunder the S3



analogue, for a CN. The feature requirement that in  the top level
field includes both gender and number “sentence" call FVBE must be [1. The
although presently available deter- latter requirement constitutes a final
miners constrain number to be filter as suggested, albeit with
singular. reservation, by Janssen [16] as a means of
ensuring syntactic conformity to the
Clauses responsible for returning "variable principle”.
sentence and verd phrase nodes must like-
wise construct a default node, but must be When a parsing procedure is called
permitted to substitute for it a node other than at top level., the SA is
having this defatlt as younger daughter, a initialised as the union of the SA of the
T node from a binding extracted from the head goal and the FVB of any goal
zurrent FVB as elder daughter, and the constructing an elder sister. A noun
structural ' operation flagged with the phrase parsing clause which reads a
binding index. surface pronoun may Teference any binding
in the SA such that, where Node =
In all cases the FVB returned ¢to the node(N,F,.L,D), the features in F conform
head goal must represent the union of the with the pronoun in number and gender. A
FVBs of those sub-goals which construct variable node having the indexed variable
davghters (preorder successors), plus any from the binding in its L field is
additions resulting from a specific call returned, thus achieving an antecedent
to option, or less any extractions Teference.
accomplished by & specific call ¢to sub-
stitute. The FVB of a given node may Neither LIFO nor FIFO lists suffice to
nevertheless contain bindings apparently generate all permitted quantifier scope
introduced by a preorder predecessor varistions. I# FVB and SA are formed by
Decause the effect of substjtute is ¢to simple concatenation then substitute must
adopt elder sisters. Accordingly ¢the be capable of extracting members randomly.
published constraints £91 on Alternatively may safely select
quantification over variables remaining the next available item provided that the
free in preorder predecessors must be lists are formed in such a way that all
preserved. Prior to extraction MDCO permutations emerge in due course. MDCG
verifies that the Var field of a binding adopts the latter choice, employing a
does not appear as a label dominated by predicate:
the Node field of any other binding mix(L1,LR2,L3)
available in the current FVB. which, given successive calls, simulates
. the scattering of the members of L1 within
Vacuously quantified relative clauses L2 in a random pattern on the assumption
("not there" cases [146]1) are, surpris- that L2 is already random.
ingly, tolerated by the original FUWA,
pa tfa sl a2ttt a2l 2T T LY Rt Yy ey Y Y
* *
* #14:10:2 the man such that he loves her finds mary »
* #1= mary »
* #4: 4 the man such that he loves HERZ2 finds her2 *
* #2:1 the man such that he loves HER2 *
* #1:= the *
* #3:3:1 man such that he loves HER2 *
2 *
»* »*
* fig 2. »
SIS A3 I AR S A0 S0 2 A0 306 30 35 A AU A0 A0 A48 33 SR S 2 1 B
although a paralle]l test for verisble
eligibility is plainly needed. In MDCOC S _Augmenting FWA
the eligibility procedure includes ]

mechanism suitable for eliminating vacuous
applications of S3: the selected variabdle
may not be dominated by any node in
another FVYB binding., but it must be
dominated by the embedded sentence nade.

The elimination of "left
indexed variables remaining
top node of an analysis tree, is achieved
partly by the constraints on substitution
which prevent appearances outside the
scope of gquantification, and partly by the

overs”, ie.

free on the
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Since the grammar of PTG doec not
generate post referencing pronouns, FWA is
not designed to accommodate them. In MDCG

an augmented FWA {s introduced to handle
post referencing via capitalised variables

which are always realised as surface
‘pronouns. For example in response to the
input:

(4) The man such that he
loves her finds Mary.
the output includes a tree
in fig 2.

commencing as



The auvgment requires parsing procedures

to accept two additional list holding
argument places, SRa and SRz (SBubstituens
Required at start and at end). When a

surface pronoun is encountered,
first made both in SA (for
referent) and in SRa (in case
post reference has been
binding with matching number and gender.
If none is found then a dummy binding,
with only the F field of the node struc-
ture set. is created. The union of this
item and SRa becomes SRz, whilst the dummy
is added to FVB. The SRa of an elder
daughter is the SRa of its parent. the SRa
of a younger daughter is the SRz of its
elder sister, and the SRz of the gyounger
daughter becomes the SRz of the parent.

8 check is
an antecedent

a previous
made) #for a

It is now required that whenever a noun
phrase making clause exercises its ogption
to introduce' a variable., & check must
first be made of the SR 1list, and |if
possible a suitable dummy binding ex-

tracted and completed with no addition to
the FVYB 1ist, The behaviour of PROLOG
ensures that completion effects all
existing occurrences of the dummy. A con-

straint on substitution must now prohibit
the extraction from the FVB of any binding
appearing in the SRz list returned to the
head goal. In this way not only may no
younger sister dominate quantification
over a variable remaining free in the
family of an elder sister (the original
constraint), but the elder sister must
extend the same courtesy to her sibling.

6 The Mechanics of MDC@

b. Handlin Re

Fig 3 illustrates the MDCG equivalent

is essentially left recursive, which pres-~

ents problems for a top-doun, left-right,
depth first DCE technigue. Standard
methods [34)] for eliminating left
recursion from @& CF@ would be inapprop-—

riate as they result in only weakly equi-
valent grammars. The MDCC solution is to
employ a well formed substring table
(WFST), (vide (171, C3131., (331, (351) and
assume that the recurring item has already
been found, adding to the table the result
of subsequent parsing given that it s
unique relative to its environment.

Since the WFST must record the relative
position of entries, grammar rule notation
(GRN) which insulates the programmer from
lexica)l decomposition must be proscribed:
accordingly MDCO is written in raw PROLOG,

pairs of variables in the range Ia.. Iz
representing string buffers before and
after parsing.

2 stor v i

Reflection on the behaviour of the

clause in fig 3 during the parsing of

(%) Woman such that a man loves her.
reveals that prior to parsing the embedded
sentence, the kth variable (k=Inx) 'in the
range heO..  henp is generated and its
binding to CN passed on in a new SA list.
When the pronoun is encountered, the
binding with index &k may be extracted, a
leaf node with hek as label created, and a
form marked for number, gender and case
returned as transmission label to the
immediately dominating node. The value of
Lb (the embedded sentence label) will in
due course be returned as:

(6) a man loves herk.
Before this may be prefixed with the
common noun plus "suych that” to become the

WAL I A I B T AP 1 A A R B R RN R RSN

scan(Csvuch, thatl. Ib, Ic
gensymche, He, Inx, Suffi
Join(E, CN. E1),

dominated(He, S),

mix (FVBa, FVBb, FVBc),

PREIE IR IR B 2 B I IR B R IR 3 B IR K BN B N J

common(Node, Ft.E, L, Ia, Iz, FVB, SA, SRa, SRz)
wfst(common(CN, Ft,E, La, Ia., Ib, FVBa, SA, SRa, SRb)),

),
x),

Join(Lbind(He, Inx, CN) {FVBal, SA, SAa),

sentence(S, Ldcll,El.Lb, Ic, Iz, FVBb. SAa, SRb. SRz2),
eligible(bind (He, Inx,CN),FVBb, [1,[]),

makevars(Nom, _, Acc, _, Suffix,Suby,0bj.Ft), .
editline(Nom, Acc,Subj,Obyj,Lb,Lc), .
join{La, [such, thatilLcl,Ld),

substitute(cn, node(#3: (3: Inx),Ft.,Ld, [CN,S1),
Node, Ld, L, €1, [1,FVBc,FVB, (], SR2),
recordz{wfst(common(Node.,
Ft.E, L, Ia, 12,FVB, SA, SRa. SRz))).

fig
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of Montague’s rule S3. The inverse of S3
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default label Ld it must be edited so as



to restore all variables with index k to
appropriate surface forms. Samples of
eligible variables (i.e. k~variables of
appropriate number and gender) are created

by makevars, whereafter gditline achieves
the required restoration.

6. 3 Node and Transmission Labels

The label of a leaf node is
a root form,

invariably
but a morphological variation
is very often required as t¢transmission
label Non~leaf nodes may alsc bde so
characterised. When a verbphrase is ex-
tracted from the WFST in fig 4, which 111~

4 s to " jtut "option’

Fig 4 includes a call +to substitute
while a call ¢to gption occurs in fig 5
which illustrates the MDCC clause

responsible for parsing proper names. The
form of a ub call is as follows:
substitute(T. Node, Nodel, T1, T11,N1.
NL.1, FVB, FVB1, Sk, SR)

where:

T = The type of node involved (s=SEN,
vp=1V, cn=CN),

Node = The default node constructed.

Nodel = The replacement node (Nodel=Node
if no substitution is made).

T1,Tll = Defavlt and replacement trans-

R s s il 2l ot s add st a2 ot TS IS 2Ty

mix (FVBa, SA, SAa),

Join(La,Lb,Lc),
Join{(L1,Lb,L2),
mix (FVBa, FVBb, FVBc),

* % x % %k % %k %k * Kk %k K X % %k & &k

verbphrase(node(NO, FO, LO, DO), VF,E, L, 1a, 12, FVB, SA: SRa, SRz)
wfst(verbphrase(node(N1,F1,L1,D1),VF,E,La, Ia,: Ib,
FVBa, SA, SRa, SRb)),

Join(E, node(N1,F1,L1,D1),E1),
vpadverbd (VPADV, AV, EL1, Lb, Ib, 12, FVBb, SAa, SRa, SRz),

substitute(vp, node(#10: 7, VF, L2,
LVPADV. node(N1,F1,L1,D1)1);
node(NO, FO, LO, DO),
Le,. L. L2, L0, FVBc, FVB, SA, L1, SRa).,
recordz{wfst(verbphrase(node{(NO, FO, LO, DO), VF, E, L,
la. 12, FVB, SA, SRa, SR2))).

fig

B OK Ok Kk Kk % Kk Kk %k K X X F ¥ %k %k %k &K

4.
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ustrates the MDCC equivalent of S10, the mission labels (T11=T1 if no substit-
node label L1 must contain the bare ution made).
infinitive of <¢the head verb while La N1,N1i = Defavlt and replacement node
contains a finite form. Having processed labels (Nli=mNl if no substitution
the adverd, a pair of new labels must made, and N1, NL1=C] if T=s or T=cn

e T2 S ST YA ET T TR LTI LT T T E T T T T R R e e R T T T T R AT

» *

# nounphrase(Node, [@, (C,Num)1,E,L, la, Iz, FVB, SA, SRa: SRz) : - *

* scan(Pn, Ia, 11), . #

* proper(Pn, [C, (Num)], ™

* option(node(#1l: ‘=, [3, (Num) ], [Pn), [sense(Pn, [pnl)l), *

* " [@, (C,Num)l, Node, [Pnl, L, L], FVB, SRa, SR2), *

* recordz(wfst(nounphrase(Node, [G, (C.Num) 1, E, *

* L,Ia, 12,FVB, SA, SRa, SR2))). *

* *

» fig S. *

AT I AL 0L AR A S I IS AR A0 4 S0 A0 0300 3540418 300 20430 4040 4 98 46 95 38 48 390 495 08 3 4 9
accordingly be constructed, one for the since the new:- node 1label is taken
default node and one for its transmission to be T11).
label. Should a substitution then be FVB,FVB1l = The free variable below lists
made, twin labels for the introduced before and after any extraction.

higher node must likewise be maitained by

the sybstjtyte procedure.

30

Sk = Those bindings bipassed in ancestor
calls to gsubstitute (At top level
Sk=f]). ’

SR = The substituens required list
containing the constraints on sub-
stitution.



Similarly a call to gption appears in
the form:
option(Node, F, Nodel, T1, T11, FVB, FVB1,
SR, SR1)
where:
Node. Nodel = The default and replacement
nodes.
F = The features (gender and number) of
the node.
T1,Tlt = The default and transmission
ladels.
FVB, FVBY = The free variables below lists
before and after any addition.
SR, SR! = The substituens required lists

before and after any subtraction.

7 A Foretaste of LILT

Warren [32) suggests two
for encoding

possibilities
lambda terms in PROLOGC given
the desitTe to represent a full typed
lambda calculus, the first portraying
lambda variables as PROLOG structures and
the second equating them with PROLOG vari-

descriptive commentary similar to
given by Partee (2351 and Dowty (7] This
is accomplished during a traverse in
"galilean” postorder of the analysis tree,
producing output of the form illustrated
in the appendix., from which it will be
apparent that., since PROLOG does not
recognise a lambda expression formed by
Juxtaposition, the initial pairing of
operator and operand is achieved via a
convenience predicate "eval" and
subsquently evaluated.

that

(L1141,
by a
localised tree
simplification
advantage of PROLOG’s list
capabilities to undertake
transformations whenever

Whereas Janssen
lishes reduction
essentially
ations, the
LILT takes
processing
global 1list

£153) accomp-
process of

transform-—
algorithm of

696 33 3 203 2 A A T I b 3 S TR 33 A A I T T2 I 3 I A I 2 A3 b4

x % % % %

sense(the, [d(sg)], lambda(p: lambda(q: exists(Y: all(X:

29623 36 I I3 4b T3 U A A A0 I Ak 23 A S A A I W A A B2 b I 3 A I I 2 A B

fa 2222 YL 22 L2 222t Rl St el i el lss ]

translate(Tree, IL)

formulate(Treel, IL1
message(N, IL1),
simplifycCILl, IL).

Kk % 2 &k & KX &R

translate(node(N,F,L, (sense(R.T)1),S)
', sense(R,T,S), message(0, (L., S)).

structure(Tree, node(N,F, L., _),Lsub,Rsub),
translate(Rsub, Rnew), translate(Lsub, Lnew),
construct(node(N,F,L, _): Lnew, Rnew, Treel),

),

4040 3 3 3 A Sk A S A 1 4 A3 A B I I b I 3 4 I A A A IS A A A

ables. Since LILT is concerned only with
that subset of lamda calculus
representing Montague’s language
simpler scheme becomes possible.

predicate variables are Trepresented
PROLOG atoms while PROLOG variables are
used directly for individual variables
introduced by "sense” clauses (other than
those anaphoric references already con-
strained to be in the range x0 .. xn).

needed for
1L, a
LILT

by

In

The essence of this scheme may be ex—
tracted from fig & which illustrates the
clause correlating singular definite art-
icle with its sense. The top level trans—
lation clauses are illustrated in fig 7.
These constitute a recursive procedure
which generates rteduced IL formulae with

31

necessary. MDCG -~ LILT exemplifies the
reorganised directed process approach
discussed by Warren and Friedman {331, ie.
LILT is <(optionally) called after each
parse. The present objective of display-

*

*

(*p(X)<=Dequals(X, ¥))&(*q(Y))))))) = ! *

. *

fig 6. *

*

- *

»

*

*

*

*

*

*

»

*

*

fig 7. *
ing a conventional derivational Ahistory
makes the immediate return of logical
representations rather than syntactic sub
trees inappropriate. Were all parsing
procedures to call a mute version of

translate locally, it is predicted that
semantic equivalence parse (op cit)
result. .

a
would
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Appendix : Sample OQutput

| : mary believes that john is a man.

Parse No. 1
12233323221 2

#4:4 mary believes that john is a man
#1: = mary
#7:6 believe that john is a man
#1: = believe
#4:4 joha is a man
#1: = john
#5:5 be a man
#l1: = be
#2:2 a man
#1: = a
#1: =» man

1? yes.

Compogition & Simplification
RRARRRRRRARRKRRRRARERRARRRRE

{0] from Lexicon: Bagsic expression [man] =>
man

[l] from Lexicon: Basic expression [a] =>
lambda(p:lambda(q:exists(_3423:("p(_3423)& ‘q(_3423)))))

(2] from [0,1]: Construction by T2 =>
eval(lambda(p:lambda(q:exists(_3423:( p(_3423)&
'q(_3423))))), "man)

[3] from {2): Inscantiate variable
eval(® “man,_3423)

{4] from (3]: Relational notation
' “man(_3423)

{5] from [4]): Down=up conversion
nan(_}423)

{6] from {2]: Lambda conversion
lambda(q:exists(_3423:(man(_3423)& *q(_3423))))

(7] from Lexicon: Basic expression [be] =
lambda(sub:lambda(_4607:  “sub("lambda(_6608:
equals(_4607, 4608)))))

(8} from [6,7): Construction by TS =
eval(lambda(sub:lambda(_4607: ‘sub("lambda(_4608:
equals( 4607, 4608))))),‘lambda(q.exists( 3423:
man(_3423)& ‘q(_3423)))))

(9] from (8): Instantiate variable
eval(' “lambda(q:exists(_3423:(man(_3423)& “q(_3423)))),
“lambda(_4608:equals(_4607, 4608)))"

[{10]) from [9]: Down-up conversion
eval(lambda(q:exists(_3423:(man(_3423)& “q(_3423)))),
“lambda(_4608:equals( 4607, 4608)))
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(11)
(12]
(13]
(14]
(15]
(16]
(17]
(18]
[19]
{20]
(21)
(22])
(23]
(24]
[25]
(26]
(27]
[28])
[29]
{30]
(31)

from
from
from
fronm
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

from

{10): Instantiate variable
eval(® “lambda(_4608:equals(_4607, 4608)),_3423)
[11]): Down-up conversion
eval(lambda(_4608:equals(_4607,_ 4608)), 3423)
(12}: Lambda conversion
equals(_ 4607, 3423)
(10]: Substitute identicals
man(_4607)
[101: Lambda conversion
man(_4607)
[8): Lambda conversion
lambda(_ﬁ607:nan(_}607))
Lexicon: Basic expression [john] =>
lambda(p: ‘p(john))
{16,17]: Construction by T& =>
eval(lambda(p: ‘p(john)),“lambda(_4607:man(_64607)))
(18]: Instantiate variable
eval(' “lambda(_4607:man(_4607)), john)
[19]): Down=up conversion
eval(lambda(_4607 :man(_4607)), john)
{20}: Lambda conversion
man( john)
[{18]: Lambda conversion
man( john)
Lexicon: Bagic expression [believe] =>
believe
[22,23]: Construction by T7 =>
eval(believe, “man( john))
[24]: Relational notation
believe(“man( john))
Lexicon: Basic expression [mary] =>
lambda(p: ‘p(mary))
[25,26]: Construction by T4 =>
eval(lambda(p: ‘p(mary)),“believe(“man(john)))
{27): Instantiate variable
eval(® “believe(“man(john)),mary)
[28]: Relational notation
* “believe(mary, “man( john))
{29]): Down=up conversion
believe(mary, “man( john))
[27}): Lambda conversion
believe(mary, “man( john))

Logical Form
RARARAkkRbkdR

believe(mary, “man( john))
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