A PROLOG IMPLEMENTATION OF LEXICAL FUNCTIONAL GRAMMAR
AS" A BASE FOR A NATURAL LANGUAGE PROCESSING SYSTEM

Werner Frey and Uwe Reyle

Department of Linguistics

University of Stuttgart

W-Germany

0. ABSTRACT

The aim of this paper is to present parts of our system [2],
which is to construct a database out of a narrative natural
language text. We think the parts are of interest in their own.
The paper consists of three sections:

(I) We give a detailed description of the PROLOG -
implementation of the parser which is based on the theory of
lexical functional grammar (LFG). ‘The parser covers the
fragment described in [1,$4}. I.e., it is able to analyse
constrictions involving functional control and long distance
deperdencies. We will to show that

- PROLOG provides an efficient tool for LFG~implementation: a
phrase structure rule ammotated with functional schemata likeS+
g;n \VPis to be interpreted as, first, identifying the special
grammatical vrelation of subject position of any sentence
analyzed by this clause to be the NP appearing in it, and
second, as identifying all grammatical relations of the sentence
with those of the VP. This universal interpretation of the
LFG-retavariables 1P and | corresponds to the universal
quantification of variables appearing in PROLOG-clauses. The
procedural semantics of PROLOG is such that the instantiation of
the variables in a clause is inherited from the instantiation
given by its subgoals, if they succeed. Thus there is no need
for a separate component which solves the set of equations
obtained by applying the LFG algorithm,

—-there is a canonical way of translating 1FG into a PROLOG
programme.

(II) Por the semantic representation of texts we use the
Discourse Representation Theory developped by Hans Kamp. At
present the implementation includes the fragment described in
{4l 1In addition it analyses different types of negation and
certain equi- and raising-verbs. We postulate some requirements
a semantic representation has to fulfill in order to bhe able to
analyse whole texts., We show how Kamp's theory meets these
requirements by analyzing sample discourses involving anaphoric
NP’ s,

(III) Finally we sketch how the parser formalism can be
augmented to yleld as output discourse representation
structures. To do this we introduce the new notion of ‘logical
head’ 1in addition to the LFG notion of ‘grammatical head’. The
reason is the wellknown fact that the logical strwture of a
sentence is induced by the determiners and not by the verb which
on the other hand detemmines the thematic structure of the
sentence, However the verb is able to restrict quantifier scope
ambiguities or to induce a preference ordering on the set of
possible quantifier scope relations. Therefore there must be an
interaction between the grammatical head and the logical head of

a phrase.

T. A PROLOG IMPLEMENTATION OF LFG

A main topic in Al research is the interaction between different
components of a system. But insights in this field are
primarily reached by experience in constructing a complex
system. Right from the beginning, however, one should choose
formalisms which are suitable for a simple and transparent

52

transportion of information. We think LFG meets this
requivement, The formalism exhibiting the analysis of a
sentence can be expanded in a simple way to contain entries
which are used during the parse of a whole text, for example
discourse features like topic or domain dependent knowledge
comming from a database assoclated with the lexicon. Since LFG
is a knd of unification grammar it allows for constructing
pattemns which enable the following sentences to refine or to
change the content of these discourse features. Knowledge
gathered by a preceding sentence can be used to lead the search
in the lexicon by demanding that certain feature values match.
In short we hope that the nearly wniform status of the different
description tools allows simple procedures for the expansion and
manipulation by other components of the system.

But this was a look ahead. let us now come to the less
ambitious task of implementing the grammar of {[1,§4].

Lexical functional grammar (LFG) is a theory that extends phrase
structure grammars without using transformations. Tt emphasizes
the role of the grammatical functions and of the lexicon.
Another powerful formalism for describing natural languages -
follows from a method of expressing grammars in Ilogic called
definite clause grammars (DOG). A DXG constitutes a FROLOG
programme.

We want to show first, how LFG can be translated into DOG and
second, that PROLOG provides an efficient tool for
LFG-implementation in that it allows for the construction of
functional structures directly during the parsing process. I.e.
it is rot necessary to have seperate components which first
derive a set of functional equations from the parse tree and
secorydly generate an f-structure by solving these equations.

let us look at an example to see how the LFG machinery works.
We take as the sample sentence ‘a woman expects an american to
win’. The parsing of the sentence proceeds along the following
lines. The phrase structure rules in (1) generate the phrase
structure tree in (2) (without considering the schemata written
bereath the rule elements).

s —> W VP
(MSIBI)=¥ t=¢ TENSE)
VP —> v NP NP PP vp’
t=4{ (@OBN=Y (@TORI2)=Y (4(+PCASE)=y (AXCOMP)
VP’ —> (to) VP
t=¥
N —> IET N
1=} 1=y
(2) /S\
NP VP
N v///m\’; vp! ,
VP
I ET N /\v
a woman expects ahmehcan to win

Then the c-structure will be ammotated with the functional
schemata associated with the rules . The schemata found in the
lexical entries are attached to the leave nodes of the tree.

This is shown in (3).

This work is supported by DFG RO 245/43

&)] S

(’TS[BJ)=‘! 1 =¢
NP VP
| |
+ =J,/¢= v ,4=¢/(romm)=¢
| /NP\ P\

l l t=y f= 1=l
(MSPEC)=A (ANWM)=SG [ET N VP
(ANIM)=SG (FGEN)=FEM l \

(APERS)=3
(APRED)="WMAN’ (4SPEC)=A 4=y
(ANWM)=SG v
(NM)=SG
(APERS)=3
(AFRED)=" AMFRICAN’
(£ PRED)="EXPECIX(SURJ) (XO0MP)>(ORJ)’
(4 TENSE)=PRES
(A SUBJ NIM)=SG (APRED)="WINC(SUBJ)>’
(#SUBJ PERS)=3
(a¥oaP SUBJ)=(OBJ)

(&) (f1 SWRI) = £2 £3 = f6
fl = £3 (£6 PRED) = ‘EXPECTK(SURJ)(XCMP)>(0BJ)”
£2 = £4 (£6 TENSE)= PRES
f2 = £5 (f6 XOMP SUBJ) = (f6 ORJ)
(£5 N80 = SG (£5 PRED) = “WMAN'

Then the tree will be indexed. The indices instantiate the wup-
and down-arrows. An up-arrow refers to the node dominating the
node the schema is attached to. A down—arrow refers to the node
which carries the functional schema.

The result of the instantiation process is a set of functional

equations. We have listed part of them in (4). The solving of
these equations yields the functional structure in (5).
(5) |sws SPEC A GEND FEM
FRED ‘WOMAN' PERS 3
NWM SG
TENSE PRES
PRED EXPECIK(SURT)(XOMP)>(ORJ)”
OBJ [SPEC A PERS 3
lLRED ‘AMERICAN' NIM SG
Xae (o
L PRED 'WD\K(SUBJ))Z[

It is composed of grammatical function names, semantic forms and
feature symbols. The crucial elements of LFG (in contrast to
transformational grammar) are the grammatical functions like
SUBJ, ORJ, XOMP and so on. The functional structure is to be
read as containing pointers from the functionnames appearing in
the semantic forms to the corresponding f-structures.

The grammatical functions assumed by LFG are classified in
subcategorizable (or governable) and nonsubcategorizable
functions. The subcategorizable ones are those to which lexical
items can make reference. The item ‘expects’ for example
subcategorizes three functions, but only the material inside the
angled brackets list the predicate’s semantic arguments. XOMP
and XADJ are the only open grammatical functions, i.e.,they can
denote functionally controlled clauses. In our example this
phenomena is lexically induced by the verb ‘expects’. This is
expressed by its.last schema "(#XOMP SURJ)=({0BJ)". It has the
effect that the QBJof the sentence will become the SUBJ of the
X0Mp, that means in our example it becomes the argument of the
predicate ‘win’.

Note that the analysis of the sentence ‘a woman promises an
American to win’ would differ in two respects. First the verb
‘promises’ lists all the three functions subcategorized by it in

53

its semantic argument structure, And second ‘promises’ differs
from ‘expects’ just in its functional control schema, i.e., here
we find the equation "(#XOMP SUBJI)=(ASIRJ)" yielding an arrow
from the SUBJ of the XOMP to the SURJ of the sentence in the
final f-structure.

An f-structure must fulfill the following conditions in order to
be a solution

-uniqueness: every f-name which has a value has a unique value

—completeness:the f-structure must contain f-values for all the
f-names subcategorized by its predicate

~coherence: all the subcategorizable functions the f-structure
contains must be subcategorized by its predicate

The ability of lexical items to determine the features of other
items is captured by the trivial equations. They propagate the
feature set which is inserted by the lexical item up the tree.
For example the features of the verb become features of the VP
and the features of the VP become features of S. The uniqueness
principle guarantees that any subject that the clause contains
will have the features required by the verb. The trivial
equation makes it also possible that a lexical item, here the
verb, can induwe a functional control relationship between
different f-structures of the sentence. An important constraint
for all references to functions and functional features is the
principle of functional locality: designators in lexical and
grammatical schemata can specify no more than two iterated
function applications.

Our claim is that using DOG as a PROLOG programme the parsing
process of a sentence according to the LFG-theory can be done
more efficiently by doing all the three steps described above
simultaneously.

Wwhy is especially PROLOG useful for doing this?

In the amotated c-structure of the LFG theory the content of
the functional equations is only "known' by the node the
equation is ammotated to and by the immediately dominating node.
The memory is so to speak locally restricted. Thus during the
parse all those bits of information have to be protocolled for
sare other nodes. This {s done by means of the equations. In a
PROLOG programme however the nodes turn into predicates with
argunents. The arguments could be the same for different
predicates within a clause. Therefore the memory is
"horizontally' mot restricted at all., Furthermore by sharing of
variables the predicates which are goals can give information to
their subgoals. In short, once a phrase structure grammar has
been translated into a PROLOG pragramme every node is
potentially able to grasp information fram any other node.
Nonetheless the parser we get by embedding the restricted LFG
formalism into the highly flexible DOG formalism respects the
constraints of Lexical functional grammar.

Another important fact is that LFG tells the PROLOG programmer
in an exact mammer what information the parser needs at which
node and just because this iInformation is purely locally
represented in the LFG formalism it leads to the possibility of
translating LFG into a PROLOG programme in a canonical way.

We have said that in solving the equations LFG sticks together
informations caning fram different nodes to build up the final
output. To mirror this the following PROLOG feature 1is of
greatest importance. For the construction of the wanted output
during the parsing process structures can be built up piecemeal,
leaving unspecified parts as variables. The construction of the
output need not be strictly parallel to the application of the
corresponding rules. Variables play the role of placeholders
for structures which are found possibly later in the parsing
process. A closer look at the verb entries as formulated by 'LFG
reveals that the role of the function names appearing there is
to function as placeholders too.

To sumarize: By embedding the restricted LFG formalism into
the higly flexible definite clause grammar formalism we make
life easier. Nonetheless the parser we get respects the
constraints which are formilated by the LFG theory.

Let us now consider some of the details, The rules under (1)

are transformed into the PROLOG programme in (6).
the variables.)
(6) S (*cl0 *cll *outps) <—
NP (*cl0 *cl12 *featnp *outpnp)
VP (*c12 *cll (SUBJ (*outpnp *featnp)) TEN *outps)
VP (*cl0 *cll *outpsubj *featv *outps) <—
V (*cont (*out . *¥10) *featv *outps)
FACNP (*cl0 *c12 ORJ *10 *11)
|functional FAQNP (*cl2 *cl3 ORJ2 *11 *12)
control | FACPP (*cl13 *cl4 OBL *12 *]3)
FAOVP’ (*cl4 *cll *cont X(XMP *13 nil)
FAQVP’ (*cl0 *cll (*gf *cont) *gf *out)_. *10) *10)
VP’ (*c10 *cll *cont *outpxccmp) .
NP (*cl0 *cll *outpnp) <—
IET (*c10 *cll *cutpdet)
N (*outpdet *outpnp)
We use the content of the function assigning equations to build
up parts of the whole f-structure during the parsing process.
Crucial for this is the fact that every phrase has a unique
category, called its head, with the property that the functional
features of each phrase are identified with those of its head.
The head category of a phrase is characterized by the assignment
of the trivial functional-equation and by the property of being
a major category. The output of each procedure is constructed
by the subprocedure corresponding to the head. This means that
all information resulting from the other subprocedures is given
to that goal. This is done by the ‘outp” wvariables in the
programe. Thus the V procedure builds up the f-structure of
the sentence. Since VP is the head of the S rule the VP
procedure has an argument variable for the SUBJ f-structure.
Since V is the head of the VP rule this variable together with
the structures coming fom the sister nodes are given to V for
the construction of the final output. As a consequence our
output does not contain pointers in contrast to Bresnan’s
output. Rather the argument positions of the predicates are
instantiated by the indicated f-structures. For each category
there {s a fixed set of features. The head category is able to
impose restrictions on a fixed subset of that feature set. This
subset is placed on a prominent position. The corresponding
feature values percolating up towards the head category will end
up in the same position demanding that their values agree. This
is done by the ‘feat’ variables. The uniqueness condition is
trivially fulfilled since the passing around of parts of the
f-structure is done by variables, and PROLOG instantiates a
variable with at most one value.
(7) v ((veMP (SUBJ (*outpobj *featobj))) |functional control|
((SUBJ (*outpsubj (SG 3))) €z |check list|
(ORJ (*outpobj *featobj)) (XCOMP *outpxcamp))
TEN {output|
((TENSE PRES) (PRED ‘EXPECT (*outpsubj *outpxcomp)’)))
The checking of the campleteness and coherence condition is done
by the Verb procedure. (7) shows the PROLOG assertion
corresponding to the lexical entry for ‘expects’. 1In every
assertion for verbs there is a list containing the grammatical
functions subcategorized by the verb. This is the second
argutent in (7), called ‘check list’. This list is passed
around during the parse. This is done by the 1list underlined
with waves in (h). Every subcategorizable function appearing in
the sentence must be able to shorten the list. This guarantees
coherence, In the end the list must have diminished to NIL.
This guarantees completeness.
As can be seen in (7) a by-product of this passing around the
check 1list {s to bring the values of the grammatical functions
" subcategorized by the verb down to the verb’s predicate argument
structure.
To handle functional control the verb entry contains an argument
to encode the controller. This is the first argument in (7).
The procedure which delivers XOMP (here the VP’ procedure)
receives this variable (the underlined variable *cont in (6))
since verbs can induce functional control only upon the open

(* indicates

|checklist|

54

grammatical function XCMP. For tough-movement constructions
the s-prime procedure receives the controller variable too. But
inside this clause the controller must be put onto the long
distance controller list, since SCOMP is not an open grammatical
function.

That leads us to the long distance dependencies

(8) The girl wonders whose playmate’s murse the baby saw ___ .

9 , s —> W [s1
Q= J&:mu 4-{
(fFocus)—

(10)

bounding

nodes

,~tp
e s e

n se playmate s murse the baby
In Fnglish questlons and relatives an element at the front of
the clause is understood as filling a particular grammatical

role within the clause, determined by the position of a
c-structure gap. Consider sentence (8). ‘This kind of
dependency is called constituent control, because in contrast to
functional control the constituent structure configurations are
the primary conditioning factors and not lexical items.
Bresnan/kaplan introduce a new formal mechanism for representing
long- distance dependencies. To handle the embedded question
sentence they use the rule in (9). The double arrow downwards
represents the controller of the constituent control
relationship, To this arrow corresponds another double arrow
which points upwards and represents the controlee. This one is
attached for example to the empty string NP —Dpeqe But as the
arrow indexed with [4wh] shows the controller may affect also a
designated set of lexical items which includes interrogative
pronouns , determiners and adverbs. ‘whose’ for example has the
lexical entry: whose N, (APRED) = ‘who’, CASE = GEN 1}(MT
(This kind of control relationship is needed to analyse the
complex NP 'whose playmate’s murse" in sentence (8))

The control relationships are illustrated in (10).
Corresponding controllers and controlees must have compatible
subscripts. The subscripts indicate the category of the
controllee. The superscript S of the one controller indicates
that the corresponding controlee has to be found in a S-rooted
control domain whereas the [+wh] controlee for the other
controller has to be found beneath a NP node.

Finally the box aroud the S-node needs to be explained. It
indicates the fact that the node 1s a bounding node.
Kaplan/Bresnan state the following convention

A node M belongs to a control damain with root node R if and
only if R dominates M and there are no bounding nodes on the
path from M up to but not including R.

This convention prevents constructions like the one in (11).
(11) The girl wondered what the murse asked who saw

Long distance control is handle by the programme using a long
distance controller 1list, enriched at some special nodes with
new controllers, passed down the tree and mot allowed to go
further at the bounding nodes.

(12) S (*cl0_ *cl] *outpsc) <—
11ong NP (((NP_[wh]) , *c10) *c1l *featnp *outpnp)
distance
controller rest (*cll *cl0)
1list) S ((*outpnp *featnp (S _NP)) nil *outpsc)

Every time a controlee is found its subscript has to match the
corresponding entry of the first member of the controller list.
If this happens the first element will be deleted from the list,
The fact that a controlee can only match the first element
reflects the crossed dependency constraint. *cl0 is the input

controller variable of the S’ procedure in (12). *clli is the
output variable. *cl0 is expanded by the [4wh] controller
within the NP subgoal., This controller must find its controllee
during the execution of the NP goal. Note that the output
variable of the NP subgoal is identical with the output variable
of the main goal and that the subgoal S’ does have different
controller lists. This reflects the effect of the box around
the S-node, i.e. o controller coming dowrwards can find its
controlee inside the S-procedure. The only controller going
into the S goal is the one introduced below the NP node with
damain root S. Clearly the output variable of S has to be nil.
There are rules which allow for certain controllers to pass a
boxed node Bresnan/Kaplan state for example the rule in (13).
(13) §° —> (that) S

t =y

P=y°
This rule has the effect that S-rooted contollers are allowed to
pass the box. Here we use a test procedure which puts only the
contollers indexed by S onto the controller list going to the $S
goal, Thereby we obtain the right treatment of sentence (14).
(14) The girl wondered who John believed that Mary claimed that
the baby saw .
In a corresponding manner the complex NP ‘whose playmate’s
mrrse’ of sentence (8) is analysed.

IT. SEMANTIC REPRESENTATION

As semantic representation we use the I iscourse)
R(epresentation) T(heory) developped by Hans Kamp [4]. I.e. we
do not adopt the semantic theory for IL{exical) F(unctional)
G(rammar) proposed by Per-Kristian Halverson [2]. Halverson
translates the functional structures of LFG into so-called
semantic structures being of the same structural nature, namely
acyclic graphs. The semantic structures are the result of a
translation procedure which 1{s based on the association of
formulas of intensional logic to the semantic forms appearing in
the functionmal structure. The reason not to take this approach
will be explained by postulating same requirements a semantic
representation has to fulfill in order to account for a
processing of texts. Then we will show that these requirements
are really necessary by analysing some sample sentences and
discourses. It will tumn out that IRT accounts for them in an
intuitively fully satisfactory way.

Because we cannot review IRT in detail here the reader should
consult one of the papers explaining the fundamentals of the
theory (e.g. [#]), or he should first look at the last
paragraph in which an outline is given of how our parser is to
be extended in order to yield an IRS-typed output - instead of
the ‘traditional’ (semantic) functional structures.

The basic building principle of a semantic representation is to
associate with every significant lexical entry (i.e., every
entry which does contribute to the truthcondidtional aspect of
the meaning of a sentence) a semantic structure. Compositional
principles, then, will construct the semantic representation of
a sentence by cambining these semantic structures according to
their syntactic relations. The desired underlying principle is
that the semantic structures associated with the semantic forms
should not be changed during the camposition process. To put it
differently: one wants the assoclation of the semantic
structures to be independent of the syntactic context in which
the semantic form appears. This requirement leads to
difficulties in the tradition of translating sentences into
formulas of e.g. predicate or intentional logic.

Consider sentences

(1) If John admires a woman then he kisses her

and

(2) Every man who admires a woman kisses her

the truth conditions of which are detemmined by the first order
formulae

(3) ¥x (woman(x) & admire(John,x) —> kiss(Jotm,x))

55

and

(4) ¥x Vy (man(x) & woman(y) & admire(x,y) —> kiss(x,y))
respectively. The problem is that the definite description "a
woman! reemerges as universally quantified in the logical
representation ~ and there is no way out, because the pronown
"she'" has to be bound to the woman in question. IRT provides a
general accomnt of the meaning of indefinite descriptions,
conditionals, universally quantified noun phrases and anaphoric
pronouns, s.t. our first requirement is satisfied. The
semantic representations (called IRS’s) which are assigned to
sentences in which such constructions jointly appear have the
truth conditions which our intuitions attribute to them.

The second reason why we decided to use DIR as semantic
formalism for LFG is that the construction principles for a
sentence S(i) of a text D= S(1),...,3(n) are fomulated with
respect to the semantic representation of the preceeding text
S5(1)4e..,5(1=1). Therefore the theory can accomt for
intersentential semantic relationships in the same way as for
intrasentential ones, This is the second requirement: a
semantic representation has to represent the discourse as a
whole ard not as the mere union of the semantic representations
of its isolated sentences.

A third requirement a semantic representation has to fulfill is
the reflection of configurational restrictions on anaphoric
links: 1f one embeds sentence (2) into a conditional

(6) *If every man who admires a woman kisses her then she is
stressed

the anaphoric link in (2) is preserved. But (6) does - for
configurational reasons - not allow for an anaphoric relation
between the '"she" and "a woman'. The same happens
intersententially as shown by

(7) If John admires a woman then he kisses her.
enraged.

A last requirement we will stipulate here is the following: It
is neccessary to draw inferences already during the construction
of the semantic representation -of a sentence $(i) of the
discourse. The inferences must operate on the semantic
representation of the already analyzed discourse S(1),s..,5(i-1)
as well as on a database containing the knowledge the text talks
about. This requirement is of major importance for the analysis
of definite descriptions. Consider

(8) Pedro is a fammer, If a woman loves him then he is happy.
Mary loves Pedro., The happy farmmer marries her

in which the definite description "the happy famer is used to
refer to refer to the individual denoted by "Pedro”. In order
to get this link one has to infer that Pedro is indeed a happy
farmer and that he is the only one. If this were not the case
the use of the definite description would not be appropriate.
Such a deduction mechanism is also needed to analyse sentence
(9) Jom bought a car, The engine has 160 horse powers

In this case one has to take Into account some knowledge of the
world, namely the fact that every car has exactly one engine,

To illustrate the way the semantic representation has to be
interpreted let us have a brief look at the text~IRS for the
sample discourse (8)

*She is

u v

Pedro = u love(v,u)

farmer(u) Mary = v
y

ponan(y)| —> {happy(w)]

love(y,u,

marry(u,v)

Thus a IRS K consists of '
(1) a set of discourse referents: discourse individuals,
discourse events, discourse propositions, etc.

(11) a set of conditions of the following types

- atomic conditions, i.e. nmeary relations over discourse
referents

- complex conditions, i.e. n-ary relations (e.g. —> or :)
over sub-IRS’s and discourse referents (e.g. ¥(1) —> K(2) or

p:K, where p is a discourse proposition)
A whole IRS can be understood as partial model representing the
individuals introduced by the discourse as well as the facts and
rules those individuals are subject to.
The truth conditions state that a IRS K is true in a model M if
there is a proper imbedding from K into M. Proper embedding is
defined as a function f from the set of discourse referents of K
in to M s.t. (i) it is a homomorphism for the atomic conditions
of the IRS and (ii) - for the case of a complex condition R(1)
—> K(2) every proper embedding of K(1) that extends f is
extendable to a proper embedding of K(2).
- for the case of a complex condition p:K the modeltheoretic
object correlated with p (i.e. a proposition if p isa
discourse proposition, an event if p is a discourse event, etc.)
must be such that it allows for a proper embedding of K in it.
Note that the definition of proper embedding has to be made more
precise in order to adapt it to the special semantics one uses
for propositional attitudes. We canmot go into details here,
Nonetheless the truth condition as it stands should make clear
the following: whether a discourse referent introduced implies
existence or not depends on its position in the hierarchy of the
RS“s. Given a IRS which is true in M then eactly those
referents introduced in the very toplevel IRS imply existence;
all others are to be interpreted as universally quantified, if
they occur in an antecedent IRS, or as existentially quantified
if they occur in a consequent IRS, or as having opaque status if
they occur in a TRS specified by e.g. a discourse proposition,
Thus the role of the hierarchical order of the IRS’s is to build
a hase for the definition of truth conditions. But furthermore
the hierarchy defines an accessibility relation, which restricts
the set of possible antecedents of anaphoric NP‘'s. ‘This
accessibiltity relation is (for the fragment in (4]) defined as
follows:
For a given sub~IRS KO all referents occurring in KD or in any
of the IRS’s in which KO is embedded are accessible.
Furthemmore 1f KD is a consequent-[RS then the referents
occurring in its corresponding antecedent IRS on the left are
accessible too.
This gives us a correct treatment for (6) and (7).
For the time being - we have no algorithm which restricts and
orders the set of possible anaphoric antecedents according to
contextual conditions as given by e.g.
(5) John is reading a book on syntax and Bill is reading a book
on sematics.
The former {is enjoying himself}
is a paperback

Therefore our selection set 1s restricted only by the
accessibility relation and the descriptive content of the
anaphoric NP's. Of course for anaphoric pronouns this content
is reduwced to a minimum, namely the grammatical features
associated to them by the lexical entries. This accounts e.g.
for the difference in acceptability of (10) and (11).
(10) Mary persuaded every man to shave himself
(11) "ary promised every man to shave himself
The IRS’s for (10) and (11) show that both discourse referents,
the one for "™Mary" and the one for a "man", are accessible from
the position at which the reflexive pronoun has to be resolved.
But if the '"himself" of (11) is replaced by x it cannot be
identified with y having the (not explicitely shown) feature
female,

l(10") v
(117) mary =y
{ Perswde(y#,p)i
{ pramise(y x,p)
p:f X
lmau“l(x)l - Ushave(x,x) ﬂ}
shave(y,himsel f)

Definite descriptions bear more information by virtue of the
semantic content of their common-noun-phrases and the existence
and wniqueness conditions presupposed by them. Therefore in

56

order to analyse definite descriptions we look for a discourse
referent introduced in the preceding IRS for which the
description holds and we have to check whether this descrition
holds for one referent only. Our algoritim proceeds as follows:
First we build up a small RS KD encoding the descriptive
content of the common-noun-phrase of the definite description
together with its uniquness and existency condition:

X0: X
farmer(x)
happy(x)
‘ y l
farmer(y) | —>
happy(y)

Second we have to show that we can prove KO out of the text-IRS
of the preceeding discourse , with the restriction that only
accessible referents are taken into account. The instantiation
of *x by this proof gives us the correct antecedent the definite
description refers to., Now we forget about K0 and replace the
antecedent discourse referent for the definite noun phrase to
get the whole text-IRS (87).

Of course it is possible that the presuppositions are not
mentioned explicitely in the discourse but follow implicitely
from the text alone or from the text together with the knowledge
of the domain it talks about. So in cases like

(9) John bought a car. The engine has 260 horse powers

Here the identified referent is functionally related to
referents that are more directly accessible, namely to Joln's
car, Rurthermore such a functional dependency confers to a
definite description the power of introducing a new discourse
referent, namely the engine which is fuinctionally determined by
the car of which it 1is part. This shifts the task from the
search for a direct antecedent for "the engine to the search
for the referent it is functionally related to. But the basic
mechanism for finding this referent. is the same deductive -
mechanism just outlined for the "happy farmer' example.

1II. TOWARIS AN INTERACTION BEIWEEN "'RAMATICAL PARSING'
"LOGICAL PARSING"

In this section we will outline the principles underlying the
extension of our parser to produce IRS’s as output. Because
none of the fragments of IRT contains Raising- and Equi~verbs
taking infinitival or that—complements we are confronted with
the task of writing construction rules for such verbs. Tt will
turn out, however, that it is not difficult to see how to extend
IRT to comprise such constructions. This is due to the fact
that using LFG as syntactic base for IRT - and mnot the
categorial syntax of Kamp - the unraveling of the thematic
relations in a sentence is already accomplished in f-structure.
Therefore it is straightforward to formulate construction rules
which give the correct readings for (10) and (l1) of the
previous section, establish the propositional equivalence of
pairs with or without Raising, Equi (see (1), (2)), etc.

(1) John persuarded Mary to come

(2) John persuaded Mary that she should come

Llet us first describe the RS construction rules by the familiar
example

(3) every man loves a woman

Using Kamp’s categorial syntax, the construction rules operate
top down the tree. The specification of the order in which the
parts of the tree are to be treated is assumed to be given by
the syntactic rules. I.e. the specification of scope order is
directly determined by the syntactic construction of ' the
sentence. We will deal with the point of scope ambiguities
after having described the way a I[RS is constructed. Our
description - operating bottom up instead top down - is
different from the one given in [4] in order to come closer to
the point we want to make, But note that this difference is not
a genuine one. Thus according to the first requirement of the
previous section we assume that to each semantic from a semantic
structure is associated. For the lexical entries of (3) we have

AND

the following:
man ~—> man(*) a —>
woman —> woman(*) every —> ‘ E.—,D

loves —> love(*,*) .

The semantic structures for the common nouns and the verbs are
n—place predicates. The structure for "a" is a IRS with
discourse individual v. introduced and conditions mot yet
specified, The entry for "every" is a IRS with no discourse
individuals introduced on the toplevel. It contains however a
camplex condition KO —> Kl s.t a discourse individual x is
introduced in KD and both KO and K! contain any other
conditions.

The IRS construction rules specify how these semantic structures
are to be combined by propagating them up the tree. The easiest
way to illustrate that is to do it by the following picture (for
the case of narrow scope reading of "a woman'"):

(4) Sl v
T | |wn(x)| — |woman(v)
love(x,v)
\
VP v
| woman(v)
love(*,v)
M’_’ X NP: v
”D woman(v)
~ |
]E_]/] man(*) love(*,*) woman(*)
[
evet/'y rm!nk loves Eli woman

For the wide scope reading the NP-tree of "a woman'
at the very ed to give

is treated

(5) y
woman(y)
X
lnangxz love(x
The picture should make clear the wvay we want to extend the

parsing mechanism described in section 1 in order to produce
RS’s as output and no more f-structures: instead of partially
instantiated f-structures determined by the lexical entries
partially instantiated IRS’s are passed around the tree getting
accomplished by unification. The control mechanism of LFG will
automatically put the discourse referents into the correct
argument position of the verb. Thus no additional work has to
be done for the grammatical relations of a sentence.

But what about the logical relations?

Recall that each clause has a unique head and that the
functional features of each phrase are identified with those of
its head. For (3) the head of S > NP VP is the VP and the
head of VP —> V NP is the V. Thus the outstanding role of the
verb to determine and restrict the grammatical relations of the
sentence is captured. (4) , however, shows that the logical
relations of the sentence are mainly determined by its
determiners, which are mot heads of the NP-phrases and the
NP-phrases themselves are not the heads of the VP- and S-phrase
respectively. To account for this dichotomy we will call the
syntactically defined notion of head "grammatical head" and we
will introduce a further notion of "logical head" of a phrase.
Of course, in order to make the definition work it has to be
elaborated in a way that garantees that the logical head of a
phrase is uniquely determied too. Consider

(6) John persuaded an american to win

(7) John expected an american to win

for which we propose the following IRS’s

(6" Jy

John = j
american(y) p: -wi.n(y)
rsuade({,y,p) -

57

) 3 7 Ty
John = j Jom = j
expect(j,p) american(y)
p: expect(j,p)

| american(y) p: [win(y
win(y) |

The fact that (7) does not neccesserily imply existence of an
american whereas (6) does is triggered by the difference between
Equi~ and Raising-verbs.

Suppose we define the NP to be the logical head of the phrase VP
—> V NP VP! Then the logical relations of the VP would be
those of the NP. This amounts to incorporating the logical
structures of the V and the VP'into the logical structure of the
NP, which 1s for both (6) and (7)

and thus would lead to the readings represented in (6’) and
(7°’). Consequently (7°) would mot be produced.

Defining the logical head to be the VP! would exclude the
readings (%) and (777).

Evidently the last possibility of defining the logical head to
be identical to the grammatical head, namely the V itself, seems
to be the only solution. But this would block the construction
already at the stage of unifying the NP~ and VE-structures with
persuade(* ,* *) or expect(*,*). At first thought one easy way
out of this dilemmz is to associate with the lexical entry of
the verb not the mere n-place predicate but a IRS containing
this predicate as atomic condition. This makes the unification
possible but gives us the following result:

*) j
John = j

american

persuade(j,* J’)}
expect(j,p)
p:{win

Of course one can say that (*) is open to produce the set of
IRS’s representing (6) and (7). But this means that one has to
work an (*) after having reached the top of the tree - a
consequence that seems undesirable to us.

Thus the only way out is to consider the logical head as not
being uniquely identified by the mere phrase structure
configurations. As the above example for the phrase VP —)> V NP
VP' shows 1its head depends on the verb class too. But we will
still go further.

We claim that it 1is possible to make the logical head to
additionally depend on the order of the surface string, on the
use of active and passive voice and probably others. This will
give us a preference ordering of the scope ambiguities of

.sentences as the following:

~ Every man loves a woman

- A woman is loved by every man

- A ticket is bought by every man

- Every man bought a ticket

The properties of unification grammers listed above show that
the theoretical framework does not impose any restrictions on

that plan.

REFERENCES

(1] Bresnan, J. (ed.), "the Mental Representation of Grammatical
Relations". MIT Press, Cambridge, Mass., 1982

{2] Frey, Werner/ Reyle, Use/ Rohrer, Christian, "Automatic
Construction of a Knowledge Base by Analysing Texts in
Natural Language', in: Proceedings of the Eigth Intern.
Joint Conference on Artificial Intelligence II, 1983

[3] Balverson, P.~k., "Semantics for Lexical Functional
Grammar". In: Linguistic Inquiry 14, 1982

[4] Kamp, Hans, "A Theory of Truth and Semantic Representa=
tion". In: J.A. Groevendijk, T.U.V. (ed.), Formal
Semantics in the Study of Matural Language I, 1981

