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ABSTRACT 

The speech synthesis group at the Computer- 
Based Education Research Laboratory (CERL) of the 
University of Illinois at Urbana-Champalgn is 
developing a diphone speech synthesis system based 
on pltch-adaptive short-tlme Fourier transforms. 
This system accepts the phonemic specification of 
an utterance along with pitch, time, and amplitude 
warping functions in order to produce high quality 
speech output from stored dlphone templates. 

This paper describes the operation of a 
program which operates as a front end for the 
dlphone speech synthesis system. The UTTER (for 
"Unmarked Text Transcription by Expert Rule") 
system maps English text onto a phoneme string, 
which is then used as an input to the dlphone 
speech synthesis system. The program is a two- 
tiered Expert System which operates first on the 
word level and then on the (vowel or consonant) 
cluster level. The system's knowledge about 
pronunciation is organized in two decision trees 
automatically generated by an induction algorithm 
on a dynamically specified "training set" of 
examples. 

in that they are often unable to cope with a 
letter pattern that maps onto more than one 
phoneme pattern. Extreme cases are those words 
which, although differing in pronunciation, share 
orthographic representations (an analogous problem 
exists in speech recognition, where words which 
share phonemic representations differ in 
orthographic representation, and therefore 
possibly in semantic interpretation). A notable 
exception is the MIT speech synthesis system 
fAllen81] which is llngulstlcally-based, but not 
solely phoneme-based. 

A desirable feature in any rule-based system 
is the ability to automatically acquire or modify 
its own rules. Previous work [Oakey81] applies 
this automatic inference process to the text-to- 
phoneme transcription problem. Unfortunately, 
Onkey's system is strlctly letter-based and 
suffers from the same deficiencies as other 
nonilnguistlcally-based systems. 

The UTTER system is an attempt to provide a 
llngulstlcally-based transcription system which 
has the ability to automatically acquire its own 
rule base. 

I INTRODUCTION 

Most speech synthesis systems in use today 
require that eventual utterances be specified in 
terms of phoneme strings. The automatic 
transformation of normal English texts into 
phoneme strings is therefore a useful front-end 
process for any speech synthesis unit which 
requires such phonemic utterance specification. 

Unfortunately, this transcription process is 
not nearly as straightforward as one might 
initially imagine. It is common knowledge to 
nonnatlve speakers that English poses some 
particularly treacherous pronunciation problems. 
This is due, in part, to the mixed heritage of the 
language, which shares several orthographic 
bloodlines. 

Past attempts to create orthographically- 
based computer algorithms have not met with great 
success. Algorithms such as the Naval Research 
Laboratory pronunciation algorithm [Elovitz76] are 
letter-based instead of llnguistlcally-based. For 
this reason, such algorithms are excessively rigid 

II METHOD 

The system's basic goal is the transcription 
of input text into phoneme strings. The method 
used to accomplish this goal is based on a method 
taught to foreign students which enables them to 
properly pronounce unknown English words 
[DickersonF1, DickersonF2]. The method is 
basically a two stage process. The first stage 
consists in assigning major stress to one of the 
word's syllables. The second stage maps a vowel or 
consonant group with a known stress value uniquely 
onto its corresponding phoneme string. It is the 
stress-asslgnment process which distinguishes this 
pronunciation method from applying purely letter- 
based text-to-speech rules, as in, for example, 
the Naval Research Laboratory algorithm 
[Elovltz76]. 

In order to accomplish the transcription of 
text into phoneme strings, the system uses a set 
of two transcription rules which are machine 
generated over a set of sample transcriptions. As 
the system transcribes new input texts, any 
improper transcriptions (i.e., mispronunciations) 
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would be flagged by the user and added to the 
sample set for future generations of transcription 
rules. 

The first stage operates on "words "1 while 
the second stage operates on "clusters" of vowels 

or consonants. 2 Each word is examined 

individually, and "major stress "3 is assigned to 

one of the "syllables". ~ Major stress is assigned 
on the basis of certain "features" or 

"attrlbutes "5 extracted from the word (an example 
of a word-level attribute is "sufflx-type"). The 
assignment of major stress is always made uniquely 
for a given word. The assignment process consists 
of invoking and applying the "stress-rule". 

The "stress-rule" is one of two machine- 
generated transcription rules, the other being the 
"cluster-rule". A transcription rule consists of a 
decision tree which, when invoked, is traversed on 
the basis of the feature values of the word or 
cluster under consideration. The transcription 

rule "test "6 is evaluated and the proper branch is 
then selected on the basis of values of the word 
features. The process is repeated until a leaf 
node of the tree is reached. The leaf node 
contains the value returned for that invocation of 
this transcription rule, which uniquely determines 
which syllable is to receive the major stress. 

I 
A "word" is delimited by conventional word 

separators such as common punctuation or blank 
spaces in the input stream. 

2 A "cluster" consists of contiguous vowels or 

contiguous consonants. The following classificato- 
ry scheme is used to determine if a letter is a 
vowel (-v-) or a consonant (-c-): 

"a m, "e", "i", and "o" are -v-, 
"u" is -v- unless it follows a "g" or "q", 
"i" is a special consonant represented by -i-, 
mr" is a special consonant represented by -r-, 
"y" is -v- if it follows -v-, -c-, -i- or -r-, 
"w" is -v- if it follows -v-. 

3 "Major stress" corresponds to that syllable 
which receives the most emphasis in spoken En- 
glish. 

4 
A "syllable" will be taken to be a set of two 

adjacent clusters, with the first cluster of the 
vowel type and the second cluster of the consonant 
type. For syllable division purposes, if the word 
begins with a consonant the first syllable in that 
word will consist solely of a consonant cluster. 
Similarly, if the word ends in a vowel then the 
final syllable will consist of a vowel cluster 
alone. In all other cases, a syllable will always 
consist of a vowel cluster followed by a consonant 
cluster. 

5 The terms "feature" and "attribute" will be 
used interchangeably to refer to some identifiable 
element in a word or cluster. For more information 
regarding word or cluster attributes see the fol- 
lowing section. 

6 A transcription rule "test" refers to the 
branching criteria at the current node. 

After word stress is assigned, each cluster 
within the word is considered sequentially. The 
cluster features are extracted, and the cluster- 
rule is invoked and applied to obtain the phonemic 
transcription for that particular cluster. Note 
that one of the cluster features is the stress of 
the particular syllable to which the cluster 
belongs. In other words, it is necessary to 
determine major stress before it is possible to 
transcribe the individual clusters of which the 
word is comprised. The value returned from 
invoking the cluster rule is the phoneme string 
corresponding to the current cluster. 

UTTER uses the World English Spelling 
[Sherwood78] phonetic alphabet to specify the 
forty-odd sounds in the English language. The 
major advantage of WES over other phonetic 
representations (such as the International 
Phonetic Alphabet, normally referred to as IPA) is 
that WES does not require special characters to 
represent phonemes. In UTTER's version of WES, 
WES uses no more than two Roman alphabet 

characters to specify a phoneme. 7 

The choice of WES over other phoneme 
representation systems was also motivated by the 
fact that Gllnski's system [Glinski81], with which 
UTTER was designed to interface, uses WES. The 
choice was strictly implementatlonal, and by no 
means excludes the use of a different 
representation system for future versions of 

UTTER. 

III SYSTEM ORGANIZATION 

The current implementation of UTTER operates 
in one of three modes, each of which corresponds 
to one of the three tasks required of the system: 

(I) execution mode: the transcription of input 
text usir~ existing transcription rules. 

(2) trainin~ mode: flagglr~ incorrect 
transcriptions for inclusion in the next 
generation of transcription rules. 

(3) inference mode: automatic induction of a new 
set of transcription rules to cover the set 
of training examples (including any additions 
made i n / 2 . ~ ~ .  

What follows is a more detailed description 
of each of these three modes of operation. 

~ .  ~ H o d e  

Execution mode is UTTER's normal mode o f  
o p e r a t i o n .  W h i l e  i n  e x e c u t i o n  mode,  UTTER a c c e p t s  
E n g l i s h  i n p u t  one  s e n t e n c e  a t  a t i m e  and  p r o d u c e s  
the corresponding pronunciation as a list of 
phonemes. 

What follows is a detailed description of 
each step taken by UTTER when operating in 
execution mode. 

7 For a complete listing of the World English 

Spelling phonetic alphabet see Appendix A. 
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(I) The input text is scanned for word and 
cluster boundaries, and lists of pointers to 
boundary locations in the string are 
constructed. The parser also counts the 
number of syllables in each word, and 
constructs a new representation of the 
original string which consists only of the 
letters 'v', 'c', 'i', and 'r'. 

This new representation, which will be 
referred to as the "vowel-consonant mapping," 
or simply "v-c map," is the same length as 
the original input. Therefore, all pointers 
to the original string (such as those showing 
word and cluster boundaries) are also 
applicable to the v-c map. The v-c map will 
be used in the extraction of cluster 
features. 

(2) Each word is now processed individually. The 
first step is to determine whether the next 
word belongs to the group of "function 

words". 8 If the search through the function 
word list is successful, it will return the 
cross-listed pronunciation for that word. 
Table look-up provides time-efflclent 
transcription for this small class of words 
which have a very high frequency of 
occurrence in the English language, as well 
as highly irregular pronunciations. If the 
word is a function word, its pronunciation is 
added to the output and processing continues 
with the next word. 

Positioning of function words provides a 
valuable clue to the syntax of the input. 
Syntactic information is essential in 
dlsamblguating certain words. Although the 
current version of UTTER supports part-of- 
speech distinctions, the current version of 
the parser fails to supply this information. 
A new version of UTTER should include a 
better parser which is capable of making 

these sorts of part-of-speech dlstlnctlons. 9 
Such a parser need not be very accurate in 
terms of the proper assignment of words to 
part-of-speech classes. However, it must be 
capable of separating identically spelled 
words into different classes on the basis of 
function. These words often differ in 
pronunciation, such as "present" (N) and 
"present" (V) or "moderate" (N) and 
"moderate" (V). In other words, the parser 
need not classify these two words as noun and 
verb, as long as it makes some distinction 
between them. 

(3) Each word is now checked against another llst 
of words (with their associated 
pronunciations) called the "permanent 
exception llst," or PEL. The PEL provides the 

8 
For a complete listing of function words see 

Appendix B. 

9 It should be possible to model a new parser 
on an existing parser which already makes this 
sort of part-of-speech distinction. For example, 
the STYLE program developed at Bell Laboratories 
provides a tool for analyzing documents [CherryBO] 
and yleids more part-of-speech classes than would 
be required for UTTER's purposes. 

user with the opportunity to specify common 
domaln-speclflc words whose transcription 
would best be handled by table-look-up, 
without reconstructing the pronunciation of 
the word each time it is encountered. 

The time required to search this llst is 
relatively small (provided the size of the 
llst itself is not too large) compared to the 
time necessary for UTTER to transcribe the 
word normally. 

If the word is on the PEL, its pronunciation 
is returned by the search routine and added 
to the output. Processing continues with the 
next word. 

(4) At this point the set of word-level features 
is extracted. These features are used by the 
stress-rule for the assignment of major 
stress to a particular syllable in the word. 
A major stress assignment is made for each 
word. 

The set of word level attributes includes: 

part-of-speech (assigned by the parser); 
key-syllable (in terms of the v-c map 

representation); 
left-syllable (in terms of the v-c map 

representation); 
suffix type (neutral, weak or strong); 
preflx/left-syllable overlap 

(true or false). 

These features are both necessary and 
sufficient to assign major stress to any 
given word [Dickerson81]. 

Although a detailed account of the selection 
of these features is beyond the scope of this 
paper, an example of an input word and the 
appropriate attribute values should give the 
reader a better grasp of the word-level 
feature concept. 

Consider the input word "preeminent". 

The weak suffix "ent" is stripped. 
Key-syllable (final syllable excluding 

suffixes) is "in". 
Left-syllable (left of key-syllable) 

is "eem". 
Prefix ("pre") overlaps left-syllable 

("eem") since they share an "e". 

Proper stress placement for the word 
"preeminent" is on the left-syllable. 

(5) The word and its attributes are checked 
against a list of exceptions to the current 
stress rule (called the "stress exception 
list" or SEL). This llst is normally empty, 
in which case checklng does not take place. 
Additions to the list can only be made in 
training mode (see below). 

If the word and its features are indexed on 
the SEL, the SEL search returns the proper 
stress in terms of the number 0 or -1. If 
stress is returned as 0, major stress falls 
on the key-syllable. If stress is returned 
as -I, major stress falls on the left- 
syllable. 
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(6) If the word does not appear on the SEL, then 
the current stress rule is applied. The 
stress rule is essentially a decision tree 
which is traversed on the basis of the values 
of the word's word level attributes. 
Application of the stress rule also returns 
either 0 or -I. 

(7) Now processingcontlnues for the current word 
on a cluster-by-cluster basis. The cluster- 
level attributes are extracted. They include: 

cluster type (vowel or consonant); 
cluster (orthography); 
left neighbor cluster map (from v-c map); 
right neighbor cluster (orthography); 
right neighbor cluster map 

(from v-c map); 
cluster position (prefix, suffix, etc.); 
stress (distance in syllables from major 

stress syllable). 

These features are necessary and sufficient 
to classify a cluster [Dickerson82]. 

As before, an example of cluster level 
attributes is appropriate. Consider the 
cluster "ee" (from our sample word 
"preeminent"). 

The cluster type is "vowel". 
The cluster orthography is "ee". 
The left neighbor cluster map is "cr" 

(v-c map of "pr"). 
The right neighbor cluster is "m". 
The right neighbor cluster map is "c" 

(v-c map of "m"). 
The cluster position is 

"word-prefix boundary". 
The cluster is inside the syllable 

with major stress (see above). 

(8) The cluster and its associated attributes are 
checked against a list of exceptions to the 
cluster rule (called the "cluster exception 
list" or CEL). This list is normally empty, 
and addltlons can only be made in training 
mode (see below). If the search through the 
CEL is successful, it will return the proper 
pronunciation for the particular cluster. The 
pronunciation (in terms of a WES phoneme 
string) is added to the output, and 
processing continues with the next cluster in 
the current word, or with the next word. 

(9) The cluster transcription rule is applied to 
the current cluster. As in the case of the 
stress rule, the cluster rule is a decision 
tree which is traversed on the basis of the 
values of the cluster level attributes. The 
cluster rule returns the proper pronunciation 
for this particular cluster and adds it (in 
terms of a WES phoneme string) to the output. 
Processing continues with the next cluster in 
the current word, or with t~ next word in 
the input. 

~. Traininm Mode 

When UTTER is operating in training mode, the 
system allows the user to correct errors in 

transcription interactively by specifying the 
proper pronunciation for the incorrectly 
transcribed word. 

The training mode operates in the same manner 
as the execution mode with the exception that, 
whenever either rule is applied (see steps 6 and 9 
above), the user is prompted for a judgement on 
the accuracy of the rule. The user functions as 
the "oracle" who has the final word on what is to 
be considered proper pronunciation. 

Let us assume, for example, that the stress 
rule applied to a given word yields the result 
"stress left-syllable" (in other words, the rule 
application routine returns a -I) and the proper 
result should be "stress key-syllable" (or a 
result of 0). If the system were operating in 
execution mode, processing would continue and it 
is unlikely that the word would be properly 
transcribed. The user could switch to training 
mode and repeat the transcription of the problem 
word in the same context. 

In training mode, the user has the 
opportunity to inspect the results from every rule 
application, allowing the user to flag incorrect 
results. When an incorrect rule result is 
detected, the proper result (alone with the 
current features) will be saved on the appropriate 
exception list. In terms of the previous example, 
the current word and word-level features would be 
saved on the SEL. 

If the given word should arise again in the 
same context, the SEL would contain the exception 
to the transcription rule, prohibiting the 
application of the stress rule. The information 
from the SEL (and from the CEL at the cluster- 
level) will be used to infer the next generation 
of transcription rules. 

It is important to note that UTTER makes a 
given mistake only once. If the transcription 
error is spotted and added to the SEL (or CEL, 
depending on which transcription rule is at fault) 
it will not be repeated as long as the exception 
information exists. The SEL (and CEL) can only be 
cleared by the rule inference process (see below) 
which guarantees that the new generation of rules 
will cover any example that is to be removed from 
the appropriate exception llst. 

~. Inference Mode 

Inference mode allows for the generation of 
new transcription rules. The inference routine is 
based  on  techniques d e v e l o p e d  in artificial 
intelligence for the purpose of generating 
decision trees based on sets of examples and their 
respective classifications [Qulnlan79]. The basic 
idea behind such an inference scheme is that some 
set of examples (the "training set") and their 
proper classifications are available. In 
addition, a finite set of features which are 
sufficient to classify these examples, as well as 
some method for extracting these features, are 
also available. For example, consider the training 
set [dog, cat, eagle, whale, trout] where each 
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element is classified as one of [mammal, fish, 
bird]. In addition, consider the feature set 
[has-fur, llves-ln-water, can-fly, is-warm- 
blooded] and assume there exists a method for 
extracting values for each feature of every entry 
in the training set (in this example, values would 
be "true" or "false" but this need not always be 
so). From this information, the inference routine 
would extract a decision tree whose branch nodes 
would be tests of the form "if has-fur is true 
then branch-left else branch-rlght" and whose 
terminal nodes would be of the form "the animal in 
question is a mammal." The premls is that such a 
decision tree would be capable of correctly 
classifying not only the examples contained in the 
training set but any other example whose feature 

values are known or extractable. I0 

What follows is a step-by-step description of 
the inference algorithm as applied to the 
generation of the stress transcription rule. 
Generation of the cluster transcription rule is 
similar, except that the cluster transcription 
rule returns a phoneme string rather than a 
number. For a more complete discussion of the 
inference algorithm, which would be beyond the 
scope of this paper, see [Qulnlan79]. 

(I) The current stress exception llst is combined 
with the training set used to generate the 
previous stress transcription rule. The old 
training set is referred to as the "stress 
classified llst," or SCL, and is stored 

following rule generatlon. 11 Since the SCL is 
not used again until a new rule is generated, 
it can be stored on an inexpensive remote 
device, such as magnetic tape. The SCL (as 
well as the CCL) tends to become quite 
large. 12 

10 
The inference algorithm need not be time- or 

space-efflclent. In fact, in the current implemen- 
tation of UTTER, it is neither. This observation 
is not particularly alarming, since inference mode 
is not used very often, in comparison to execution 
or training modes (where space- and time- 
efficiency are particularly vital to fast text 
transcription). There are some inference systems 
[Oakey81] in which the inference routine is some- 
what streamlined and not nearly as inefficient as 
in the case of the current implementation. Future 
versions of UTTER might consider using a more 
streamlined inference routine. However, since the 
inference routine need not be invoked very often, 
its inefficiency does not have any effect on what 
the user percleves as transcription time. 

11 The equivalent llst in the cluster tran- 
scription rule case is called the "cluster classi- 
fied llst," or CCL. 

12 It should be possible to use an existing 
computer encoded pronunciation dictionary (or a 
subset thereof) to provide the initial SCL and 
CCL. The current version of UTTER uses null lists 
as the initial SCL and CCL, and therefore forces 
the user to build these lists via the SEL and CEL. 
This implies a rather time consuming process of 
running text through UTTER in training mode. An 

(2) Features are extracted for each of the 
entries in the training set. Features which 
cannot be extracted in isolation, such as 
the part-of-speech of a given word, are 
stored along with the entry and its result in 
the SEL. These unextractable attributes rely 
on the context the entry appeared in rather 
than on the entry itself and, therefore, 
cannot be reconstructed "a posterlori." 

The training set now consists of all of the 
entries from the SCL and the SEL, as well as 
all of the features for each entry. At this 
point an initial "window" on the training set 
is chosen. Since the inference algorithm's 
execution time increases comblnatorlally with 
the size of the training set, it is wise to 
begin the inference procedure with a subset 
of the training set. This is acceptable since 
there is often a relatively high rate of 
redundancy in the training set. The selection 
of the window may be done arbitrarily (as in 
the current version of UTTER), or one might 
try to select an initial window with the 

widest possible set of feature values. 13 

(3) For each "attrlbute-value "14 in the current 
window a "desirability index" is computed. 
This index dlrectiy reflects the ability of a 
test on the attrlbute-value to spilt the 
window into two relatively even subwindows. 

The current version of UTTER uses a 
desirability index which is defined as: 

samples with this attribute-value 
distinct final values in this subset. 

Different desirability indices might be 
substituted to reflect the information 
content of attrlbute-vaiues. 

When generating rules using UTTER the user 
has the option of using either only a test 
for equality in the decision tree, or a 
larger set of tests containing "equals," 
"not-equals," "less-than," and "greater- 
than". If the larger set of possible tests 
is used, then the inference routine takes 

existing pronunciation dictionary would allow 
training mode to be used rather infrequently, and 
then only to make more subtle corrections to the 
transcription rules. 

13 The selection of all those examples which 
have unique combinations of feature values should 
reduce the number of iterations required in the 
inference routine by eliminating redundant entries 
in the training set. This type of training set 
pruning should be done at the same time the train- 
ing set is scanned for clashes (discussed below). 

14 
An "attribute-value" refers to the value of 

a feature or attribute for the given example. For 
instance, let the attribute in question be the 
word-level attribute "part-of-speech" and assume 
it may take one of five possible values (noun, 
verb, adjective, adverb, or function word). If 
this attribute appears with only three values 
(such as noun, verb, adjective) in the current 
window, then only those three attrlbute-values 
need be considered. 
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much longer to execute. However, the decision 
trees generated uslr~ the larger set are 
often smaller and therefore usually faster to 
traverse. 

(4) The attrlbute-value with the greatest 
desirability index is chosen as the next test 
in the decision tree. This test is added to 
the decision tree. In this manner, examples 
occurring most frequently will take the least 
amount of time to classify and, thus, to 

transcribe. 15 

(5) The current window is split into two 
subwlndows. The spilt is based on which 
examples in the window contain the 
attrlbute-value selected as the new test, and 
which examples do not. 

(6) For each subwlndow, it is determined whether 
there is only one result value in a given 
subwlndow (i.e., is the result uniform on the 
window?) or whether there is more than one 
result. 

(7) If there is more than one result in a 
subwlndow, this procedure is applied 
recurslvely with the subwlndow as the new 
window. 

If there is only one result across a given 
subwlndow, then generate a "terminal" or 
"leaf" node for the decision tree which 
returns this singular result as the value of 
the tree at that terminal. Terminal nodes 
are thus easily recognized since they have 
only one distinct result. 

(8) When the original window is completely 
classified the resulting decision tree is the 
new rule which is gUaranteed to cover the 
original window. 

The newly g e n e r a t e d  r u l e  i s  a p p l i e d  t o  t h e  
remaining examples in the training set. From 
the examples it fails to correctly classify, 
a subset of the failures is chosen for 
addition to the previous iteratlon's starting 
window. The inference algorithm is reapplled 
using this new starting window. 

(9) When no failures exist, the most recently 
generated decision tree completely covers the 
training set. In this case, the training set 
then becomes the SCL, and is stored in remote 
storage until the next rule generating 
session. The most recently generated 
decision tree becomes the new rule and the 
SEL i s  z e r o e d .  

It is, of course, possible to terminate the 
inference algorithm before it completely 
classifies the training set. In this case, UTTER 
simply places all of the "failures" on the SEL and 
all of the properly classified examples from the 
training set on the SCL. In this fashion it is 

15 In certain pathological cases, the tree gen- 
erated is not optimal in terms of traversai time. 
This problem has not yet occurred with real tran- 
scription data, and, in any case, would still 
yield an acceptable, though less than optimal, de- 
cision tree. 

possible to reduce the size of the SEL without 
exhaustively classifying the entire training set. 
The procedure for creating a cluster rule is 
identical. 

In the course of rule generation, an 
inconsistency called a "clash" may arise when the 
attributes are insufficient to classify two or 
more examples. A clash manifests itself as a 
window with uniform values for all of  t he  
attributes, but with more than one result present 
in the window. The current version of UTTER aborts 
the rule generation process when a clash occurs. 
Future versions of UTTER should screen the entire 
training set for clashes before starting the rule 
generation process, as well as allow the user to 
remove or correct the entries responsible for the 
clash. 

Clashes are usually the result of an error 
made by the user in training mode. If a clash 
should arise which is not the result of a user 
error, it would indicate that the attribute set is 
insufficient to characterize the set of 
transcriptions. Additional attributes would have 
to be added to UTTER in order to handle this 
e v e n t .  

For example, the word "read" is pronounced 
differently in present tense than it is in past 
tense. Since UTTER cannot extract contextual or 
semantic informatlon, the distinction cannot be 
made. Therefore, two entries in the training set 
might be present with the came attributes, but 
different transcriptions. This situation results 
in a clash which cannot be resolved without the 
addition of another attribute, such as "tense." 
Fortunately, such cases account for a very small 
portion of the English language. 

IV CONCLUSION 

This paper has described a newly developed 
system for the transcription of unmarked Er~lish 
text into strings of phonemes for eventual 
Computer speech output. The current 
implementation of the system has shown this 
technique to be feasible in terms of speed of 
execution and storage requirements, and desirable 
in terms of transcription accuracy. 

One of the unique features of UTTER is the 
possibility of creating "mlnl-lmplementatlons" of 
UTTER for use on evermore popular micro computers. 
These reduced versions of UTTER would only need to 
provide execution mode. The two transcription 
rules could be developed on a full-scale system, 
and provided to the user on floppy diskettes for 
use on a micro computer. The micro systems need 
not provide a training mode, so no SEL or CEL need 
be retained (or checked during the transcription 
process). The PEL should still be provided so the 
user could tailor the operation of the system to 
the particular application by adding domain- 
specific words to this list. The micro systems 
need not supply an inference mode which requires 
the most processor time and memory space of all 
the modes of operation. Updated rules (on floppy 
diskettes) could be provided perlodlcaily from the 
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main system -- thus keeping memory and storage 
requirements well within the capabilities of 
today's micro computers. 

Accurate phoneme string transcription from 
ur~arked text will become increasingly vital as 
speech synthesis technology continues to improve. 
Better speech synthesis tools will encourage the 
trend from dlgltally-encoded recorded messages (as 
well as other phrase- or word-based computer 
speech methods) towards sub-word synthetic speech 
methods (such as diphone or phoneme based 
synthesis). The UTTER system is an example of a 
new approach to this old problem, embodying 
features from both the linguistic and artificial 
intelligence communities. 
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APPENDIX A - World EnglishSpellln~ 

a fat le tie s set 
aa far J Jam sh shed 
ae Mac k kit t tin 
au taut i let th this 
b but m met tx thin 
ch chum n net u up 
d dig ng sing ur fur 
e set nk sink uu book 
ee see oe toe ux above 
er adder ol oll v van 
f fat oo too w win 
g gum or for wh when 
h hat ou out y yes 
i in p pet z zoo 
ix engage r run zh vision 
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a 

a b o u t  
across 
agalnst 
althouEh 
am 
amor~ 
an 
and 
any 
anybody  
a n y o n e  
anything 
are 
around 
as 
at 
be 
because 
been 
before 
behind 
below 
beneath 
beside 
between 
beyond 
but 
by 

APPENDIX B - 

can 
c o u l d  
d i d  
do 
d o e s  
down 
d u r i n g  
e a c h  
e i t h e r  
e v e r  
e v e r y  
e v e r y b o d y  
everyone 
everything 
for 
from 
going 
had 
has 
have 
he 
her 
hers 
herself 
him 
himself 
his 
how 
however 

Function 

I 
if 
in 
into 
is 
it 
its 
itself 
like 
may 
me 
might 
mine 
must 
my 
myself 
neither 
n e v e r  
no 
nobody 
noone 
nor 
not 
nothing 
off 
on 
one 
onto 
or 

Words 

o u g h t  
ou r  
o u ~ s  
Ourselves 
over 
shall 
she 
should 
since 
so 
some 
somebody 
someone 
somethirq~ 
than 
that 
the 
their 
them 
themsei yes 
then 
therfore 
these 
they 
this 
those 
though 
through 
to 

u n d e r  
unless 
until 
up 
us  
was 
w e  

were 
what 
whatever 
when 
whenever 
where 
wherever 
whether 
which 
while 
who 
whom 
whose 
why 
will 
with 
without 
would 
you 
your 
yours 
yourself 
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