
ABSTRACT CONTROL STRUCTURES
AND THE SEMANTICS OF QUANTIFIERS

Steven Cushing
Computer ~ Science Department

: " St. Anselm College
Manchester, New Hampshire, 03102 USA

ABSTRACT

Intuitively, a Ruantifier is any word or
phrase that expresses a meaning that answers one of
the questions "How many?" or "How much?" Typical
English examples include all, no, many, few, some
but not many, all but at most a ver~ few, wherever,
whoever, whoever there is, and also, it can be
argued, 0nly (Keenan, 1971), also (Cushing, 1978b),
and the (Chomsky, 1977). In this paper we review
an empirically motivated analysis of such meanings
(Cushing, 1976; 1982a) and draw out its computa-
tional significance. For purposes of illustration,
we focus our attention on the meanings expressed by
the English words whatever and some, commonly
represented, respectively, by the symbols "~" and
"3", but most of what we say will generalize to the
other meanings of this class.

In Section I, we review the notion of satis-
faction in a model, through which logical formulas
are customarily imbued implicitly with meaning. In
Section 2, we discuss quantifier relativizatlon, a
notion that becomes important for meanings other
than ~ and 3. In Section 3, we use these two
notions to characterize quantifier meanings as
structured functions of a certain sort. In
Section 4, we discuss the computational signifi-
cance of that analysis. In Section 5, we elaborate
on this significance by outlining a notion of
abstract control structure that the analysis
instantiates.

I MODELS AND SATISFACTION

Given a semantic representation language L
containing predicate constants and individual
constants and variables, an interpretation ~ of L
is a triple <D, R, (~}>, where D is a set of
individuals, the domain of ~; R is~ function, the
interpretation function of I, that assigns members
of D to individual constant~in L and sets of lists
of members of D to predicates in L, the length of a
list being equal to the number of arguments in the
predicate to which it corresponds; and (f} is a set
of functions, the assignment functions~f ~, that
assign members of D to variables in L. A model M
for L is a pair <D, R>, an interpretation of L
without its assignment functions. Since "a factual

situation comprises a set of individuals bearing
certain relations to each other," such "a situation
can be represented by a relational structure
<~'~i ~i >' where D is the set of indivi-

duals in question and ~I ~i'"" certain rela-

tions on D," (van Fraassen, I~71, 107), i.e., in
this context, sets of lists of members of D.
Models thus serve intuitively to relate formulas in
L to the factual situations they are intended to
describe by mapping their constants into D and
<--RI ~i >" The "variable" character o~ the

symbols assigned values by an f relative to those
interpreted by R is reflected in the fact that a
set of ~s corresponds to a fixed <D, R> to comprise
an interpretation.

The distinction between R and f gives us two
different levels on which the satisfaction of
formulas can be defined, i.e., on which formulas in
L can be said to be true or false under I. First,
we define satisfaction relative to an assignment of
values to variables, by formulating statements like
(i)-(vi) of Figure I, where "2 ~ (A) [~]" is read
as f satisfies A in M or M satisfies A glven f.
Given these statements, we ~an define "A--DB"~ read
if A then B, as 'U(B & ~)", and we can define
~3~)", read for some x or there are x, as
"~(~--~)'~". Second, we can define satisfaction by a
model, by saying that M satisfies A, written "M

(A)", if M ~ (A) [f] for whatever assignment
functions f there are for M. Intuitively, this can
be read as saying that A is true of the factual
situation that is represented by the relational
structure into which L is interpreted, regardless
of what values are given to variables by the
assignment functions of an interpretation. For
some discussion of the cognitive or psychological
significance of these notions, see Miller (1979a,b)
and Cushing (1983).

II SIMPLE AND RELATIVIZED QUANTIFICATION

Statement (v) of Figure i characterizes simple
quantifications like (i), which represent the mean-
ings expressed by sentences like (2), for which
x = "x" and A = (3), while (vi) characterizes
relativlzed quantifications like (4), which

(i) ~ ~ (~I = ~2)[~] iff (!'~', if and only if) !(~I) = ~(x_2)

(ll) ~ ~ (£(~I x)) W iff (~(~i) ~(~.)) c ~(P_)

(iii) M ~ (A & B)[f] iff M ~ (A)[f] and M ~ (B)[f]

(iv) M ~ (~ A)[f] iff it is not the case that M ~ (A)[f]

(v) M ~ ((V x) A)[f] iff M ~ (A)[f'] for whatever assignments ~' for M are like ~ except perhaps
(l.~', at most) at

(vi) M ~ ((¥ x_)(B;A))[f] iff M ~ (A)[f'] for whatever assignments f' for M are like f except
perhaps at ~ for which E~ (B)[f ~]

Figure I: Typical Satisfaction Statements for Logical Formulas (adapted from van Fraassen, 1971, 108)

represent the meanings expressed by sentences like
(5), for which x and A are as for (2) and B = (6):

(i)

(2)

(3)

(4)

(5)

(V x) A

Whatever there is is interesting.

Interesting(x)

(v ~)(~;A)

Whatever is linguistic is interesting.

(= Whatever there is that is linguistic
is interesting.)

(6) Linguistic(x)

In general, B and ~ in (4) are lists of formulas in
L, the relativization formulas and the principal
formulas, respectively, of (4); both lists for (5)
are of length I, and we will assume lists of that
length for the rest of our discussion.

Given (v) and (vi), the relativized quantifi-
cation (4) is logically equivalent to the simple
quantification (7), reflecting the synonymy of (5)
with (8), for example, but this fact does not
generalize to quantifier meanings other than V,
because there are quantifiers ~ for which there is
no truth-functlonal connective c for which (9) is
l-~gically equivalent to (I0):

(7) (v x)(B = A)

(8) Whatever there is, if it is linguistic,
then it is interesting.

(9) (Rx_)(~;A)

(IO) (R x)~B c A)

For a formal proof of this important fact, see
Cushing (1976; 1982a). The relativized case must
thus be considered separately from the simple one,
despite its apparent superfluity in the case of ¥,
which suffices for our purposes (with 3) in all
other respects.

III QUANTIFIER MEANINGS AS STRUCTURED FUNCTIONS

Statement (vi) characterizes the meaning ex-
pressed by (4) implicitly, by stating the condi-
tions under which (4) can be said to be either true
or false; in general, other "truth values" are also
required for natural language (Cushing, 1982a;
1983), but we will not discuss those cases here.
Given (vi), we can characterize the meaning
expressed by (4) explicitly as a function, (Ii),
that generates a truth value ~ from M, f, x, B, and
A:

(II) u = V(M,f,x,B,A)

If we let o* be the function that maps a predicate
in i to its extension relative to M, f, and ~ --
i.e., the subset of D whose members make that
p--re--dicate satisfied b~ M given ~ when assigned
individually as values to ~ --, then we can replace
the English clause on the rlght-hand side of the
"iff" in (vi) with the equivalent set-theoretlc
formulation (12), and thus (vi) itself with the
equivalent statement (13):

(12) D fl o*(M,f,x,B) c o*(M,f,x,A)

(13) ~ ~ (v ~) (~;A_) [~]

iff D fl o*(M,f,x,B) = o*(M,f,x,A)

In other words, (4) is true if and only if the
intersection of D with the extension of B is wholly
contained as a subset in the extension of A. D is
omitted from the right-hand side of the " ~ " in
(12) for more general reasons that need not concern
us here.

Letting ~i' i__=0,i,2, be set variables, we can

abstract away from the sets in (12) to get the re-
lation -- i.e., in this context, boolean-valued
function -- (14), which can be factored into more
basic component set-theoretlc relations as shown in
(15), in which the superscripts and subscripts
indicate which argument places a relation is to be

applied to, when the steps in the derivation are
reversed:

(14) ~0 n a 1 £ a 2

c__~ (~0 n £i '~2) (~,_ n 21) (~ , a z , a 2)

Finally, dropping the arguments ~i from the last

llne of (15), we get the quantiflca~ional relation,
0~, expressed by V, as shown in (16):

(16) 0 v : (£~, n 21)

The function (ii), the meaning expressed by
(4), thus consists of instances of two other
functions: G*, which generates sets from models,
assignments, and predicates; and D~, which gener-

ates truth values from sets; all related as in
Figure 2. Strictly speaking, the left-most in-
stance of o* is really a different function --
viz., the three-lnput function o*(, , ,true),
rather than the four-input function ~*(, , ,) --,
since true is a constant that must occur there, but
this technicality need not worry us here. Each
function in Figure 2 provides the same mapping as
is provided collectively by the lower-level
functions to which it is connected. "Select sets",
for example, is a mnemonic dummy-name for the
function that consists of the three indicated
instances of o*, through which these three inde-
pendent instances interface with 0~. The effect of

~, in turn, is achieved by applying PV to whatever

three sets are provided to it by Select-sets. Like
Select-sets, p~ can also be further decomposed into

subfunctions, as shown in Figure 3, which reflects
the structure of (15). The important point here is
not the tree notation per s e, but the fact that a
functional hierarchy is involved, of the indicated
sort. Any other notation that is capable of ex-
pressing the relevant relationships would be Just
as -- in certain respects, more (Cushing, 1982a,
Figures 10 and ii) -- adequate for our purpose.
For some general discussion of meanings as struc-
tured functions, see Cushing (1979a).

The two immediate subfunctions of ~ differ in
one key respect, namely, in that Select-sets has
nothing to do specifically with ~, but would be
required in the analysis of any quantifier meaning;
everything that is peculiar to ~ is encoded en-
tirely in p~. An analysis of B, for example, can

be obtained by simply replacing p~ in Figure 2 with

an appropriate 0B, viz., the one in (17), in which

Comp is a function that take the complement of a
set -- i.e., those members of D that are not in the
set --, and Pair is a function that duplicates its
input:

2 I 6 i
(17) p 3 = (#l'C°mpl' n 2,Pairl)

This relation unravels to exactly the correct truth
condition and satisfaction statement for relati-
vized 3, Just as (16) does for ~.

In the general case, we also have to include a
third subfunction, R O, which generates a numerical

parameter, as indicated in Figure 4. The function

u = V(M_,_f,x,B,A)

u : 0~(~O,al,a 2) (_~o~ets(M,f,x,B,A)

~0 = a*(M,f,x,true) a I : ~*(M,f,x,B) a 2 = o*(M,f,x,A)

Figure 2: Functional Decomposition of Relativized

2 , , , 2
u = = i(£o ,a t ') ~)
u_= (ao' : - - ~ ') ~0' = -a2

Figure 3: Functional Decomposition of the Quantificational Relation Expressed by Relativized V

u ffi Q(M,f,x,B,A)

/ ~ Select-sets
u = 0Q(~0,al,a2, ~) (~O'al'a2 'p) = and-parameter (M,f,x,B,A) - - . , - - - - - -

~ , x , B , A) _ I ~ 9_ ffi HQ(B,AD

~0 " o*(M,f,x,true) a I *' o*(M,f,x,B__) a 2 - o*(M,f,x,A)

Figure 4: Functional Decomposition of the General Relatlvized Quantifier Meaning

/
oQ

(characteristic of Q:
predication property

Q

Select-sets-and-parameter

Select-sets

(independent of ~:
binding property)

(characteristic of Q:
irreducibility property,

in certain cases)

Figure 5: Relationships Among Quantifier Meaning Subfunctions and the Properties They Explicate

Select-sets -- more precisely, its o* subfunctions
-- explicates the binding property common to all
quantifier meanings, because it characterizes the
extensions of predicates (via a*) by removing the
relevant variable from the purview of the assign-
ment, as can be seen clearly in statement (vi) of
Figure I. The function 0~, the quantificational

relation expressed by ~, explicates the predication
property of quantifier meanings, by virtue (pri-
marily) of which different quantifier meanings are
distinguished. Its quantlficational relation is
what a quantifier predicates; the extensions of the
predicates it is applied to are what it predicates
that of. The intuition that quantifiers are in
some sense predicational is thus explained, even
though the notion that they are "higher predicates"
in a syntactic sense has long since failed the test
of empirical verification. The function n o is what

underlies the irreducibility property of certain
quantifier meanings, by virtue of which (9)is not
logically equivalent to (I0). Like 0~, n O is

specifically characteristic of ~. For present pur-
poses, we can consider it to be null in the case of

and 3. The relationship of these functions to
the quantifier meanings they decompose is indicated
schematically in Figure 5.

IV COMPUTATIONAL SIGNIFICANCE

It must be stressed in the strongest possible
terms that the motivation for the analysis embodied
in Figure 4 has absolutely nothing at all to do
with computational considerations of any sort.
Computational relevance need not imply linguistic
or cognitive relevance, any more than mathematical
relevance does, and vice versa. See Cushing
(1979b) and Berwick and Weinberg (1982) for
relevant argumentation. On the contrary, the
analysls is motivated by a wide range of linguistic
and psychological considerations that is too
extensive to review here. See Cushing (1982a) for
the full argument. The analysis does have
computational significance, however, which follows
post facto from its form and consists in the fact
that functional hierarchies of exactly the sort it
exemplifies can be seen to make up the computa-
tional systems that are expressed by computer pro-
grams.

If we take a program like the one in Figure 6,
for example, and ask what functions -- ~.~.,
mathematical mappings with no side effects -- it

involves, we can answer immediately with the llst
in (18):

(18) (i) y = x + 2

(li) Z' =" (y + x) 2

,2
(iii) z = z

(iv) z' = (y x) 2

(v) z = -z '2

(vl) w = z - I

There is a function that gets a value for y by
adding 2 to the value of x, a function that gets a
value for z' by squaring the sum of the values of x
and y, and so on. Closer examination reveals,
however, that there is an even larger number of
other functions that must be recognized as being
involved in Figure 6. First, there is the function
in (19), which does appear explicitly in Figure 6,
but without an explicit output variable:

(19) s = sin(y)

Second, there is the boolean-valued function in
(20), which also appears in Figure 6, but with no
indication as to its functional character:

(20) b = <(s,.5)

More significantly, there is a set of
functions that are entirely implicit in Figure 6.
Since (19) generates a value of s from a value of
y, and (20) generates a value of b from that value
of s, there is an implicit function -- cali it F 1

-- that is defined by that interaction, generating
that value of b from that value of y, as indicated
in (21):

(21) b = Fl(Y)

b s = ~ ~ sin(y)

Similarly, since (18)(ii) and (iv) generate values
of z' independently from values of x and y, and
these are then taken by (18)(ill) and (v),
respectively, to generate values of z, there are
two further implicit functions -- call them F 4 and

BEGIN

IF sin y < .5

END ;

y=x+2;

THEN z' = (y + x) ** 2;
Z = Z w ** 2;

ELSE z' = (y - x) ** 2;
z =-(z' ** 2);

w= z- I;

Figure 6: A Simple Sample Program

w = z - i z = Fs(x,y,b) b = <(s,.5) s = sin(y)

(b = False)/ ~ ~ (b = True)

z = -z 2 z 2 = (y - x) 2 z = z I z I = (y + x) 2

Figure 7: Functional Hierarchy Expressed by the Program in Figure 6.

y~=x + 2

F 5 -- that are defined by these interactions, as

shown in (22) and (23):

(22) z ~ F4(x,y)

z = z/'2-~~z ' = (y + x) 2

(23) z " Fb(X,y)

z = - / z ' 2 ~ ~ z ' . (y - x) 2

Since F 4 and F 5 generate different values, in

general, for z for the same values of x and y, they
interact, in turn, to define a "choice" function --
call it F 3 -- with its alternatives determined, in

this case, by the value of b, as indicated in (24):

(24) z = F3(x,y,b)

(b = False)/ ~ (b = True)

/ \
z = F5(x,y) z = F4(x,y)

Continuing in this way, we can extract two further
functions: F 2, which consists of the composition

of (18vi) and F3; and FO, which consists of the

composition of F 2, FI, and (181) and defines the

overall function effected by the program, as shown
in Figure 7.

The variables in Figure 6 are strictly
numerical only for the sake of illustration. As we
have Just seen, even in this case, extracting the
implicit functional hierarchy expressed by the
program requires the introduction of a non-
numerical -- viz., boolean-valued -- variable. In
general, variables in a program can be taken to
range over any data type at all -- i.e., any kind
of object to be processed --, as long as it can be
provided with an appropriate implementation, and
the same is therefore true, as well, of its
implicit functional hierarchy. For an extensive
llst of references on abstract data types, see
Kaput (1980); for some discussion of their com-
plementary relationship with the functional
hierarchies expressed by programs, see Cushing
(1978a; 1980).

The hierarchy expressed by an assembly
language program, for example, might well involve

variables that range over registers, locations, and
the llke, and bottom-node functions that store and
retrieve data, and so on, just as Figure 4 has
bottom-node functions that assign extensions to
predicates and form the intersections of sets.
Given implementations of these latter functions,
Figure 4 defines a computational system, Just as
much as Figure 7 does, and so can be naturally
implemented in whatever programming language those
implementations are themselves formulated in.

V ABSTRACT CONTROL STRUCTURES
AS FUNCTIONAL HIERARCHIES

The control structure indicators -- the words
IF, THEN, ELSE, the semi-colons, the sequential
placement on the page, and so on -- in Figure 6 are
ad hoc syntactic devices that really express
semantic relationships of functional hierarchy,
viz., those shown in Figure 7. In general, we can
identify a control structure with such a functional
hierarchy. For some background discussion relevant
to this notion, see Hamilton and Zeldin (1976). A
control structure can be said to be legitimate, if
its interfaces are correct, !'e', if the sub-
functions do effect the same mappings as the
functions they purportedly decompose. Of the three
structures in Figure 8, for example, only (ii) is
legitimate, because (i) and (iii) each generates a
value of a as a side effect -- !'~', a is generated
by a subfunction, but not by the overall function
--, and b in (i) appears from nowhere -- !'~., as
an input to a subfunction, but not as an input to
the overall function, or as an output from another
subfunction on the same level.

Structure (iii) can be made legitimate by
adding a to the output list of its top-most
function, as indicated in (25):

(25)

y = h(x)

This structure represents one sort of parallel
process, in which two functions operate in-
dependently on the same input variable to generate
values for different output variables. Structure
(i) can be made legitimate by adding a to the
output llst of its top-most function, as in the

y ~Af(x) y ~ f(x)

Y = ~ ~ x . , . . = h(x)

y = f(x)

y = ~ / ~ ~ ' " = h(x)

Figure 8: Three Possible Control Structures

case of (iii), and also adding b to that function's
input llst, as indicated in (26):

(26) y,a = f (b,x)

This structure represents a different sort of
parallel process, in which two functions operate
independently on different input variables to
generate values for different output variables.
Structure (ii) represents a non-parallel,
sequential process in which two functions operate
dependently, one generating a value for an output
variable that is used by the other as an input
variable.

In general, the variables in these structures
can be interpreted as really representing lists of
variables, just as "B" and "~" in (4) can be
interpreted as representing lists of predicates•
Of these three legitimate structures, then, only
(ii) can be seen as occurring in Figure 7.
Figure 4 also contains a different structure (for
Select-sets) that combines the features of (25) and
(26).

The important point here is that functional
hierarchies comprising legitimate control struc-
tures are inherent in the systems expressed by
workable programs. As such, they have proven
useful both as a verification tool and as a
programming tool. For some discussion of the
relationship that ought to exist, ideally, between
these two different modes of application, see
Hamilton and Zeldin (1979).

Through interaction with those who have
written an existing program, one can derive the
abstract control structure of the system expressed
by the program, make that structure legitimate, and
then make the corresponding changes in the original
program. In this way, subtle but substantial
errors can be exposed and corrected that might not
be readily revealed by more conventional debugging
techniques.

Conversely, given a legitimate control struc-
ture -- such as the one for quantifier meanings in
Figure 4, for example --, the system it comprises
can be implemented in any convenient programming
language -- essentially, by reversing the process
through which we derived Figure 7 from Figure 6,
adapted to the relevant language. For some dis-
cussion of software that automates this process,
see Cushing (19825) and Wasserman and Gutz (1982).
For a good description of the vision that motivates
the development of this software -- ~.~., the ideal
situation toward which its development is directed
--, see Hamilton and Zeldln (1983). Our present
concerns are primarily theoretical and thus do not
require the ultimate perfection of this or any
other software.

A number of interesting variants have been
proposed to make this notion of control structure
applicable to a wider class of programs• See

Martin (1982), for example, for an attempt to
integrate it with more traditional data base
notions. Harel (1979) introduces non-determlnacy,
and Prade and Valna (1980) attempt to incorporate
concepts from the theory of fuzzy sets and systems.
Further development of the latter of these efforts
would be of particular interest in our present
context, in view of work done by Zadeh (1977), for
example, to explicate quantifier and other meanings
in terms of fuzzy logic.

ACKNOWLEDGEMENTS

I would llke to thank Fred Barrett, Mitka
Golub, and Robert Kuhns for helpful comments on an
earlier draft, and Margaret Moore for typing the
final manuscript.

REFERENCES

Berwick, Robert C. and Amy S. Weinberg. 1982.
"Parsing Efficiency, Computational Complexity,
and the Evaluation of Grammatical Theories."
Linguistic Inquiry• 13:165-191.

Chomsky, Noam. 1977. Essays on Form and Inter-
pretation. New York: North-Holland.

Cushing, Steven. 1976. "The Formal Semantics of
Quantification." UCLA doctoral dissertation.
Ann Arbor, Michigan: University Microfilms.

• 1978a. "Algebraic Specification of Data
Types in Higher Order Software." Proceedings,
Eleventh Annual Hawaii International Conference
o__nn System Sciences• Honolulu, Hawaii•

• 19785. "Not Only Only, But Also Also."
Linguistic Inquiry. 9:1271132.

. 1979a. "Lexical Functions and Lexical
Decompositibn: An Algebraic Approach to Lexical
Meaning." Linguistic ~ . 10:327-345.

• 19795. "Semantic Considerations in Natural
Language: Crosslingulstic Evidence and Morpho-
logical Motivation." Studies i._n_n Language. 3:181-
201.

1980. "Software Security and How to Handle
It. ~ Chapter 4 of Advances in Computer Security
Management, Volume I. Rullo, Thomas A. (ed.).
Philadelphia: Heyden & Son.

• 1982a. ~uantlfier Meanings: A Study in
the Dimensions of Semantic Competenc~. North -'Z
Holland Linguistic Series, Volume 48. Amsterdam:
North-Holland.

1982b. Letter to ACM Forum. Communl-
cations of the ACM. 25:951.

• 1983. "Dynamic Model Selection in the In-
terpretation of Discourse." In Cosnitive Con___~
straints on Communication: Representations and
Processes. Vaina, Lucia and Jaakko Hintikka
(eds.). Dordrecht: Reidel.

van Fraassen, Bas C. 1971. Formal Semantics and
Logic. New York: Macmillan.

Hamilton, Margaret and Saydean Zeldin. 1976.
"Higher Order Software -- A Methodology for
Defining Software." IEEE Transactions on
Software Engineering. SE-2:9-32.

. 1979. "The Relationship Between Design and
Verlfication." Journal of System s and Software.
1:29-56.

1983.
Automation."
3:25-62.

"The Functional Life Cycle and Its
Journal of Systems and Software.

Harel, David. 1979. "And/Or Programs: A New
Approach to Structured Programming." SRecifi-
cations of Reliable Software. IEEE Catalog No.
79 CH1401-9C.

Kaput, Deepak. 1980. "Towards a Theory for
Abstract Data Types•" TR-237. Laboratory for
Computer Science• Massachusetts Institute of
Technology•

Keenan, Edward L. 1971. "Quantifier Structures in
English." Foundations of Language. 7:255-284.

Martin, James. 1982• Program Design Which Is
Pro vabl ~ Correct. Carnforth, England: Savant In-
stitute.

Miller, George A. 1979a. "Construction and
Selection in the Mental Representation of Text."
Cahler_.~sd__ee~'Institut d~eLingulstique de Louvain.
5:185-197.

19795. "Images and Models, Similes and
Metaphors." In Metaphor and Thought. Ortony,
Andrew (ed.). Cambridge: Cambridge University
Press.

Prade, Henri and Lucia Valna. 1980. "What 'Fuzzy
HOS' May Mean." ProceedlnKs, Fourth Interna-
tional Computer Software and Applications Con..___~
ference. IEEE Catalog No. 80 CH1607-I.

Wasserman, Anthony I. and Steven Gutz. Reply to
Letters to ACM Forum. Communications of the ACM.
25:951-2.

Zadeh, Lotfl A. 1977. "PRUF - A Language for the
Representation of Meaning in Natural Languages."
Proceedln~s, Fifth International Joint Conference
on Artificial Intelli~ence, Volume 2. Cambridge,
Massachusetts.

