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Abstract

Many of the world’s languages contain an
abundance of inflected forms for each lex-
eme. A major task in processing such lan-
guages is predicting these inflected forms.
We develop a novel statistical model for
the problem, drawing on graphical model-
ing techniques and recent advances in deep
learning. We derive a Metropolis-Hastings
algorithm to jointly decode the model. Our
Bayesian network draws inspiration from
principal parts morphological analysis. We
demonstrate improvements on 5 languages.

1 Introduction

Inflectional morphology modifies the form
of words to convey grammatical distinctions
(e.g. tense, case, and number), and is an extremely
common and productive phenomenon throughout
the world’s languages (Dryer and Haspelmath,
2013). For instance, the Spanish verb poner may
transform into one of over fifty unique inflectional
forms depending on context, e.g. the 1 person
present form is pongo, but the 2" person present
form is pones. These variants cause data sparsity,
which is problematic for machine learning since
many word forms will not occur in training
corpora. Thus, a necessity for improving NLP
on morphologically rich languages is the ability
to analyze all inflected forms for any lexical
entry. One way to do this is through paradigm
completion, which generates all the inflected forms
associated with a given lemma.

Until recently, paradigm completion has been
narrowly construed as the task of generating a
full paradigm (e.g. noun declension, verb conjuga-
tion) based on a single privileged form—the lemma
(i.e. the citation form, such as poner). While recent
work (Durrett and DeNero, 2013; Hulden, 2014,

Nicolai et al., 2015; Ahlberg et al., 2015; Faruqui
et al., 2016) has made tremendous progress on this
narrower task, paradigm completion is not only
broader in scope, but is better solved without priv-
ileging the lemma over other forms. By forcing
string-to-string transformations from one inflected
form to another to go through the lemma, the trans-
formation problem is often made more complex
than by allowing transformations to happen directly
or through a different intermediary form. This inter-
pretation is inspired by ideas from linguistics and
language pedagogy, namely principal parts mor-
phology, which argues that forms in a paradigm are
best derived using a set of citation forms rather than
a single form (Finkel and Stump, 2007a; Finkel and
Stump, 2007b).

Directed graphical models provide a natural for-
malism for principal parts morphology since a
graph topology can represent relations between
inflected forms and principal parts. Specifically,
we apply string-valued graphical models (Dreyer
and Eisner, 2009; Cotterell et al., 2015) to the prob-
lem. We develop a novel, neural parameterization
of string-valued graphical models where the con-
ditional probabilities in the Bayesian network are
given by a sequence-to-sequence model (Sutskever
et al., 2014). However, under such a parameteriza-
tion, exact inference and decoding are intractable.
Thus, we derive a sampling-based decoding algo-
rithm. We experiment on 5 languages: Arabic,
German, Latin, Russian, and Spanish, showing that
our model outperforms a baseline approach that
privileges the lemma form.

2 A Generative Model of Principal Parts

We first formally define the task of paradigm com-
pletion and relate it to research in principal parts
morphology. Let X be a discrete alphabet of char-
acters in a language. Formally, for a given lemma
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¢ € ¥*, we define the complete paradigm of
that lemma 7 (¢) = (my,...,my), where each
m; € ¥* is an inflected form.! For example, the
paradigm for the English lemma 7o run is defined
as 7 (RUN) = (run, runs, ran, running). While the
size of a typical English verbal paradigm is compar-
atively small (|7| = N = 4), in many languages
the size of the paradigms can be very large (Kib-
rik, 1998). The task of paradigm completion is
to predict all elements of the tuple 7w given one
or more forms (m;). Paradigm completion solely
from the lemma (m,), however, largely ignores the
linguistic structure of the paradigm. Given certain
inflected word forms, termed principal parts, the
construction of a set of other word forms in the
same paradigm is fully deterministic. Latin verbs
are famous for having four such principal parts
(Finkel and Stump, 2009).

Inspired by the concept of principal parts, we
present a solution to the paradigm completion task
in which target inflected forms are predicted from
other forms in the paradigm, rather than only from
the lemma. We implement this solution in the form
of a generative probabilistic model of the paradigm.
We define a joint probability distribution over the
entire paradigm:

p(m) = Hp(mi | Mpa(i)) (1)

where pa;(+) is a function that returns the parent
of the node 7 with respect to the tree 7, which
encodes the source form from which each target
form is predicted. In terms of graphical modeling,
this p() is a Bayesian network over string-valued
variables (Cotterell et al., 2015). Trees provide a
natural formalism for encoding the intuition behind
principal parts theory, and provide a fixed paradigm
structure prior to inference. We construct a graph
with nodes for each cell in the paradigm, as in
Figure 1. The parent of each node is another form
in the paradigm that best predicts that node.

2.1 Paradigm Trees

Baseline Network. Predicting inflected forms
only from the lemma involves a particular graphi-
cal model in which all the forms are leaves attached
to the lemma. This network is treated as a baseline,
and is depicted in Figure 1a.

"'We constrain the task such that the number of forms in
a paradigm (|| = N) is fixed, and each possible form of a
paradigm is assumed to have consistent semantics.

(b) Principal parts paradigm tree.

(a) Lemma paradigm tree.

Figure 1: Two potential graphical models for the paradigm
completion task. The topology in (a) encodes the the network
where all forms are predicted from the lemma. The topology
in (b) is a principle-parts-inspired topology introduced here.

Heuristic Network. We heuristically induce a
paradigm tree with the following procedure. For
each ordered pair of forms in a paradigm 7, we
compute the number of distinct edit scripts that
convert one form into the other. The edit script
procedure is similar to that described in Chrupata et
al. (2008). For each ordered pair (i, j) of inflected
forms in 7, we count the number of distinct edit
paths mapping from m; to m;, which serves as
a weight on the edge w;_.;. Empirically, w;_;
is a good proxy for how deterministic a mapping
is. We use Edmonds’ algorithm (Edmonds, 1967)
to find the minimal directed spanning tree. The
intuition behind this procedure is that the number
of deterministic arcs should be maximized.

Gold Network. Finally, for Latin verbs we con-
sider a graph that matches the classic pedagogical
derivation of Latin verbs from four principal parts.

3 Inflection Generation with RNNs

RNNs have recently achieved state-of-the-art re-
sults for many sequence-to-sequence mapping
problems and paradigm completion is no excep-
tion. Given the success of LSTM-based (Hochre-
iter and Schmidhuber, 1997) and GRU-based (Cho
et al., 2014) morphological inflectors (Faruqui et
al., 2016; Cotterell et al., 2016), we choose a neural
parameterization for our Bayesian network, i.e. the
conditional probability p(m; | mp, (;)) is com-
puted using a RNN. Our graphical modeling ap-
proach as well as the inference algorithms subse-
quently discussed in §4.2 are agnostic to the minu-
tiae of any one parameterization, i.e. the encoding
p(m; | mpa_(s)) is a black box.
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Algorithm 1 Decoding by Simulated Annealing

1: procedure SIMULATED-ANNEALING(7, d, €)
2 T—100;m «— [g,...,€]
3: repeat
4: i ~ uniform({1, 2, ..., |m|}) D sample latent node in 7
5 m; ~ (i D> sample string from proposal distribution
’ 1/7
6: 4 — min |:17 (p(m”mpuq*(w))) q%(m}):|
p(mi|mp, (1)) q; (m})
7: if uniform(0, 1) < a then
8: m; < m; D> update string to new value if accepted
9: T—T-d > decay temperature where d € (0, 1)
10: until 7 < € > repeat until convergence; see Spall (2003, Ch. 8)
11: return m

3.1 LSTMs with Hard Monotonic Attention

We define the conditional distributions in our
Bayesian network p(m; | mp,_(;)) as LSTMs with
hard monotonic attention (Aharoni et al., 2016;
Aharoni and Goldberg, 2016), which we briefly
overview. These networks map one inflection to
another, e.g. mapping the English gerund running
to the past tense ran, using an encoder-decoder
architecture (Sutskever et al., 2014) run over an
augmented alignment alphabet, consisting of copy,
substitution, deletion and insertion, as in Dreyer et
al. (2008). For strings z,y € ¥*, the alignment is
extracted from the minimal weight edit path using
the BioPython toolkit (Cock et al., 2009). Crucially,
as the model is locally normalized we may sam-
ple strings from the conditional p(m; | My (i)
efficiently using forward sampling. This network
stands in contrast to attention models (Bahdanau et
al., 2015) in which the alignments are soft and not
necessarily monotonic. We refer the reader to Aha-
roni et al. (2016) for exact implementation details
as we use their code out-of-the-box.’

4 Neural Graphical Models over Strings

Our Bayesian network defined in Equation (1) is
a graphical model defined over multiple string-
valued random variables, a framework formalized
in Dreyer and Eisner (2009). In contrast to previ-
ous work, e.g. Cotterell and Eisner (2015; Peng et
al. (2015), which considered conditional distribu-
tions encodable by finite-state machines, we offer
the first neural parameterization for such graphi-
cal models. With the increased expressivity comes
computational challenges—inference becomes in-
tractable. Thus, we fashion an efficient sampling
algorithm.

2
https://github.com/roeeaharoni/

morphological-reinflection
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4.1 Parameter Estimation

Following previous work (Faruqui et al., 2016),
we train our model in the fully observed setting
with complete paradigms as training data. As our
model is directed, this makes parameter estimation
relatively straightforward. We may estimate the
parameters of each LSTM independently without
performing joint inference during training. We fol-
low the training procedure of Aharoni et al. (2016),
using a maximum of 300 epochs of SGD.

4.2 Approximate Joint Decoding

In a Bayesian network, the maximum-a-posteriori
(MAP) inference problem refers to finding the most
probable configuration of the variables given some
evidence. In our case, this requires finding the best
set of inflections to complete the paradigm given
an observed set of inflected forms. Returning to
the English verbal paradigm, given the past tense
form ran and the 3" person present singular runs,
the goal of MAP inference is to return the most
probable assignment to the past tense and gerund
form (the correct assignment is ran and running).
In many Bayesian networks, e.g. models with finite
support, exact MAP inference can be performed
efficiently with the sum-product belief propagation
algorithm (Pearl, 1988) when the model has a tree
structure. Despite the tree structure, the LSTM
makes exact inference intractable. Thus, we resort
to an approximate scheme.

4.3 Simulated Annealing

The Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970) is a popular Markov-
Chain Monte Carlo (MCMC) (Robert and Casella,
2013) algorithm for approximate sampling from
intractable distributions. As with all MCMC al-
gorithms, the goal is to construct a Markov chain
whose stationary distribution is the target distribu-
tion. Thus, after having mixed, taking a random
walk on the Markov chain is equivalent to sampling
from the intractable distribution. Here, we are in-
terested in sampling from p(7), where part of 7
may be observed.

Simulated annealing (Kirkpatrick et al., 1983;
Andrieu et al., 2003) is a slight modification of the
Metropolis-Hastings algorithm suitable for MAP
inference. We add the temperature hyperparameter
7, which we decrease on a schedule. We achieve
the MAP estimate as 7 — (. The algorithm works
as follows: Given a paradigm with tree 7, we sam-



Language | Baseline Heuristic Tree Gold Tree
Arabic 70.3% 92.7% N/A
German 93.3% 98.8% N/A
Latin 92.8% 98.3% 98.9%
Russian 84.2% 84.4% N/A
Spanish 99.2% 99.2% N/A

Table 1: Accuracy on the paradigm completion task comparing
Bayesian network topologies over 5 languages.

ple a latent node ¢ in the tree uniformly at random.
We then sample a new string m, from the proposal
distribution g; (see §4.4), which we accept (replac-
ing m;) with probability

o0l gy )\ st
a=min |1, i par(d) £l 1. Q)
p(mi ‘ mpaT(i)) qz(mz)

We iterate until convergence and accept the final
configuration of values as our approximate MAP
estimate. We give pseudocode in Algorithm 1 for
clarity.

4.4 Proposal Distribution

We define a tractable proposal distribution for our
neural graphical model over strings using a pro-
cedure similar to the stochastic inverse method of
Stuhlmiiller et al. (2013) for probabilistic program-
ming. In addition to estimating the parameters of
an LSTM defining the distribution p(m; | mp,_(;)),
we also estimate parameters of an LSTM to define
the inverse distribution p(mp, ;) | mi). As we ob-
serve only complete paradigms at training time, we
train networks as in §4.1. First, we define the neigh-
borhood of a node : as all those nodes adjacent to
1 (connected by an ingoing or outgoing edge). We
define the proposal distribution as a mixture model
of all conditional distributions in the neighborhood

N (3), i.e.

gi(mi) = IN(@)|™H D0 plmi|my). ()
JEN(3)
Crucially, some of the distributions are stochastic
inverses. Sampling from g; is tractable: We sample
a mixture component uniformly and then sample a
string.

5 Related Work

Our effort is closest to Faruqui et al. (2016),
who proposed the first neural paradigm completer.
Many neural solutions were also proposed in the

Language (POS) | Train Dev  Test
Arabic (N) 632 79 79
German (N) 1723 200 200
Latin (V) 2660 333 333
Russian (N) 8266 1032 1033
Spanish (V) 2973 372 372

Table 2: Lemmata per dataset.

SIGMORPHON shared task on morphological re-
inflection (Cotterell et al., 2016). Notably, the
winning system used an encoder-decoder archi-
tecture (Kann and Schiitze, 2016). Neural net-
works have been used in other areas of compu-
tational morphology, e.g. morpheme segmentation
(Wang et al., 2016; Kann et al., 2016; Cotterell and
Schiitze, 2017), morphological tagging (Heigold
et al., 2016), and language modeling (Botha and
Blunsom, 2014).

6 Experiments and Results

Our proposed model generalizes previous efforts
in paradigm completion since all previously pro-
posed models take the form of Figure 1a, i.e. a
graphical model where all leaves connect to the
lemma. Unfortunately, in that configuration, ob-
serving additional forms cannot help at test time
since information must flow through the lemma,
which is always observed. We conjecture that prin-
cipal parts-based topologies will outperform the
baseline topology for that reason. We propose a
controlled experiment in which we consider iden-
tical training and testing conditions and vary only
the topology.

Data. Data for training, development, and testing
is randomly sampled from the UniMorph dataset
(Sylak-Glassman et al., 2015).> We run experi-
ments on Arabic, German, and Russian nominal
paradigms and Latin and Spanish verbal paradigms.
The sizes of the resulting data splits are given in
Table 2. For the development and test splits we
always include the lemma (as is standard) while
sampling additional observed forms. On average
one third of all forms are observed.

Evaluation. Evaluation of the held-out sets pro-
ceeds as follows: Given the observed forms in the
paradigm, we jointly decode the remaining forms
as discussed in §4.2; joint decoding is performed
without Algorithm 1 for the baseline—instead, we

*http://www.unimorph.org
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decode as in Aharoni et al. (2016). We measure
accuracy (macro-averaged) on the held-out forms.

Results. In general, we find that our princi-
pal parts-inspired networks outperform lemma-
centered baseline networks. In Arabic, German,
and Latin, we find the largest gains (for Latin, our
heuristic topology closely matches that of the gold
tree, validating the heuristics we use). We attribute
the gains to the ability to use knowledge from
attested forms that are otherwise difficult to pre-
dict, e.g. forms based on the Arabic broken plural,
the German plural, and any of the Latin present
perfect forms. In the case of paradigms with por-
tions which are difficult to predict without knowl-
edge of a representative form, knowing multiple
principle parts will be a boon given a proper tree
improvement—we attribute this to the fact that al-
most all of the test examples were regular -ar verbs
and, thus, fully predictable. Finally, in the case
of Russian we see only minor improvements—this
stems from need to maintain a different optimal
topology for each declension. Because our model
assumes a fixed paradigmatic structure in the form
of a tree, using multiple topologies is not possible.

7 Conclusion

We have presented a directed graphical model over
strings with a RNN parameterization for principle-
parts-inspired morphological paradigm completion.
This paradigm gives us the best of two worlds. We
can exploit state-of-the-art neural morphological
inflectors while injecting linguistic insight into the
structure of the graphical model itself. Due to the
expressivity of our parameterization, exact decod-
ing becomes intractable. To solve this, we derive an
efficient MCMC approach to approximately decode
the model. We validate our model experimentally
and show gains over a baseline which represents
the topology used in nearly all previous research.
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