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Abstract
An important asset of using Deep Neu-
ral Networks (DNNs) for text applica-
tions is their ability to automatically engi-
neer features. Unfortunately, DNNs usu-
ally require a lot of training data, espe-
cially for high-level semantic tasks such as
community Question Answering (cQA).
In this paper, we tackle the problem of
data scarcity by learning the target DNN
together with two auxiliary tasks in a mul-
titask learning setting. We exploit the
strong semantic connection between se-
lection of comments relevant to (i) new
questions and (ii) forum questions. This
enables a global representation for com-
ments, new and previous questions. The
experiments of our model on a SemEval
challenge dataset for cQA show a 20% rel-
ative improvement over standard DNNs.

1 Introduction

Deep Neural Networks (DNNs) have successfully
been applied for text applications, e.g., (Goldberg,
2015). Their capacity of automatically engineer-
ing features is one of the most important reasons
for explaining their success in achieving state-of-
the-art performance. Unfortunately, they usually
require a lot of training data, especially when mod-
eling high-level semantic tasks such as QA (Yu
et al., 2014), for which, more traditional methods
achieve comparable if not higher accuracy (Ty-
moshenko et al., 2016a).

Finding a general solution to data scarcity for
any task is an open issue, however, for some
classes of applications, we can alleviate it by
making use of multitask learning (MTL). Recent
work has shown that it is possible to jointly train
a general system for solving different tasks si-

multaneously. For example, Collobert and We-
ston (2008) used MTL to train a neural network
for carrying out many sequence labeling tasks
(e.g., pos-tagging, named entity recognition, etc.),
whereas Liu et al. (2015) trained a DNN with
MTL to perform multi-domain query classification
and reranking of web search results with respect to
user queries.

The above work has shown that MTL can be ef-
fectively used to improve NNs by leveraging dif-
ferent kinds of data. However, the obtained im-
provement over the base DNN was limited to 1-2
points, raising the question if this is the kind of
enhancement we should expect from MTL. An-
alyzing the different tasks involved in the model
by Liu et al. (2015), it appears evident that query
classification provides little and very coarse infor-
mation to the document ranking task. Indeed, al-
though, the vectors of queries and documents lie in
the same space, the query classifier only chooses
between four different categories, restaurant, ho-
tel, flight and nightlife, whereas the documents can
potentially span infinite subtopics.

In this paper, we conjecture that when the tasks
involved in MTL are more semantically connected
a larger improvement can be obtained. More
specifically, MTL can be more effective when we
can encode the instances from different tasks us-
ing the same representation layer expressing sim-
ilar semantics. To demonstrate our hypothesis,
we worked on Community Question Answering
(cQA), which is an interesting and relatively new
problem and still focused on a query and retrieval
setting.

2 Preliminaries and paper results

cQA websites enable users to freely ask questions
in web forums and get some good answers in the
form of comments from other users. In particu-
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Figure 1: The three tasks of cQA at SemEval: the
arrows show the relations between the new and the
related questions and the related comments.

lar, given a fresh user question, qnew, and a set of
forum questions, Q, answered by a comment set,
C, the main task consists in determining whether
a comment c ∈ C is a suitable answer to qnew

or not. Interestingly, the task can be divided into
three sub-tasks as shown in Fig. 2: given qnew,
the main Task C is about directly retrieving a rel-
evant comment from the entire forum data. This
can also be achieved by solving Task B to find a
similar question, qrel, and then executing Task A
to select comments, crel, relevant to qrel.

Given the above setting, we define an MTL
model that solves Task C, learning at the same
time the auxiliary tasks A and B. Considering that
(i) qnew and qrel have the same nature and (ii) com-
ments tend to be short and their text is compara-
ble to the one of questions,1 we could model an
effective shared semantic representation. Indeed,
our experiments with the data from SemEval 2016
Task 3 (Nakov et al., 2016) show that our MTL ap-
proach improves the single DNN for solving Task
C by roughly 8 points in MAP (almost 20% of
relative improvement). Finally, given the strong
connection between the objective functions of the
DNNs, we could train our network with the three
different tasks at the same time, performing a sin-
gle forward-backward operation over the network.

3 Our MTL model for cQA
MTL aims at learning several related tasks at the
same time to improve some (or possibly all) tasks
using joint information (Caruana, 1997). MTL is
particularly well-suited for modeling Task C as it
is a composition of tasks A and B, thus, it can ben-
efit from having both questions qnew and qrel in
input to better model the interaction between the
new question and the comment. More precisely, it
can use the triplets, 〈qnew, qrel, crel〉, in the learn-
ing process, where the interaction between the

1In cQA domains, these are typically longer than standard
questions, i.e., up to few paragraphs containing subquestions
and an introduction.

Figure 2: Our MTL architecture for cQA. Given
the input sentences qnew, qrel and crel (at the bot-
tom), the NN passes them to the sentence en-
coders. Their output is concatenated into a new
vector, hj , and fed to a hidden layer, hs, whose
output is passed to three independent multi-layer
perceptrons. The latter produce the scores for the
individual tasks.

triplet members is exploited during the joint train-
ing of the three models for the tasks A, B and C.
In fact, a better model for question-comment sim-
ilarity or question-question similarity can lead to a
better model for new question-comment similarity
(Task C).

Additionally, each thread in the SemEval
dataset is annotated with the labels for all the three
tasks and therefore it is possible to apply joint
learning directly (using a global loss), rather than
training the network by optimizing the loss of the
three single tasks independently. Note that, in pre-
vious work (Collobert and Weston, 2008; Liu et
al., 2015), each input example was annotated for
only one task and thus training the model required
to alternate examples from the different tasks.

3.1 Joint Learning Architecture
Our joint learning architecture is depicted in Fig-
ure 2, it takes three pieces of text as input, i.e,
a new question, qnew, the related question, qrel,
and its comment, crel, and produces three fixed
size representations, xqnew , xqrel

and xcrel
, respec-

tively. This process is performed using the sen-
tence encoders, xd = f(d, θd), where d is the
input text and θd is the set of parameters of the
sentence encoder. In previous work, different sen-
tence encoders have been proposed, e.g., Con-
volutional Neural Networks (CNNs) with max-
pooling (Kim, 2014; Severyn and Moschitti, 2015)
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Task A Task B Task C
Train 37.51% 39.41% 9.9%

Train + ED 37.47% 64.38% 21.25%
Dev 33.52% 42.8% 6.9%
Test 40.64% 33.28% 9.3%

Table 1: Percentage of positive examples in the
training datasets for each task.

and Long-short term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997).

We concatenate the three representations, hj =
[xqnew , xqrel

, xcrel
], and fed them to a hidden layer

to create a shared input representation for the three
tasks, hs = σ(Whj + b). Next, we connect
the output of hs to three independent Multi-Layer
Perceptrons (MLP), which produce the scores for
the three tasks. At training time, we compute the
global loss as the sum of the individual losses for
the three tasks for each example, where each loss
is computed as binary cross-entropy.

3.2 Shared Sentence Models
The SemEval dataset contains ten times less new
questions than related questions by construction.
However, all questions have the same nature (i.e.,
generated by forum users), thus, we can share the
parameters of their sentence models as depicted in
Figure 2. Formally, let xd = f(d, θ) be a sentence
model for a text, d, with parameters, θ, i.e., the
embedding weights and the convolutional filters:
in a standard setting, each sentence model uses a
different set of parameters θqnew , θqrel

and θcrel
.

In contrast, our proposed sentence model encodes
both the questions, qnew and qrel, using the same
set of parameters θq.

4 Experiments

4.1 Setup
Dataset: the data for the above-mentioned tasks
is distributed in three datasets for: Task A, which
contains 6, 938 related questions and 40, 288 com-
ments. Each comment in the dataset was anno-
tated with a label indicating its relevancy to the
question of its thread. Task B, which contains 317
new questions. For each new question, 10 related
questions were retrieved, summing to 3, 169 re-
lated questions. Also in this case, the related ques-
tions were annotated with a relevancy label, which
tells if they are relevant to the new question or not.
Task C contains 317 new questions, together with
3, 169 related questions (same as in Task B) and
31, 690 comments. Each comment was labeled

Model MAP MRR
LSTM 43.91 49.28
CNN 44.43 49.01
CNN Train 44.43 49.01
CNN Train + ED3 44.77 52.07

Table 2: Impact of CNN vs. LSTM sentence mod-
els on the baseline network for Task C.

with its relevancy with respect to the new ques-
tion. Each of the three datasets is in turn divided
in training, dev. and test sets.

Table 1 reports the label distributions with re-
spect to the different datasets. The data for Task C
presents a higher number of negative than positive
examples. Thus, we automatically extended the
set of positive examples in our joint MTL training
set using the data from Task A. More specifically,
we take the pair (qrel, crel) from the training set
of Task A and create the triples, (qrel, qrel, crel),
where the label for question-question similarity is
obviously positive and the labels for Task C are
inherited from those of Task A. We ensured that
the questions in the extended data (ED) generated
from the training set do not overlap with questions
from the dev. and test sets. The resulting train-
ing data contains 34, 100 triples: its relevance la-
bel distribution is shown in the row, Train + ED,
of Table 1. 2

Pre-processing: we tokenized and put both ques-
tions and comments in lowercase. Moreover, we
concatenated question subject and body to create a
unique question text. For computational reasons,
we limited the document size to 100 words. This
did not cause any degradation in accuracy.
Neural Networks: we mapped words to embed-
dings of size 50, pre-initializing them with stan-
dard skipgram embeddings of dimensionality 50.
The latter embeddings were trained on the English
Wikipedia dump using word2vec toolkit (Mikolov
et al., 2013). We encoded the input sentence with
a fixed-sized vector, whose dimensions are 100,
using a convolutional operation of size 5 and a k-
max pooling operation with k = 1. Table 2 shows
the results of our preliminary experiments with the
sentence models of CNN and LSTM, respectively,
on the dev. set of Task C. In our further experi-
ments, we opted for CNN since it produced a bet-

2We make out MTL data available at
http://ikernels-portal.disi.unitn.it/
repository/

3Extended Dataset for Task C computed using the ques-
tions from Task A.
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Model DEV TEST
MAP MRR MAP MRR

Random - - 15.01 15.19
IR Baseline - - 40.36 45.83
SUper-team - - 55.41 61.48
KeLP - - 52.95 59.23
SemanticZ - - 51.68 55.96
MTE-NN - - 49.38 51.56
ICL00 - - 49.19 53.89
SLS - - 49.09 55.98
ITNLP-AiKF - - 48.49 55.21
ConvKN - - 47.15 51.43
ECNU - - 46.47 51.41
UH-PRHLT - - 43.20 47.79
〈qnew, crel〉 44.77 52.07 41.95 47.21
〈qnew, qrel, crel〉 45.59 51.04 46.99 55.64
〈qnew, qrel, crel〉 + ↔ 47.82 53.03 46.45 51.72
MTL (BC) 47.80 52.31 48.58 55.77
MTL (AC) 46.34 51.54 48.49 54.01
MTL (ABC) 49.63 55.47 49.87 55.73
MTL + one feature - - 52.67 55.68

Table 3: Results on the validation and test sets for
the proposed models.

ter MAP and is computationally more efficient.
For each MLP, we used a non-linear hidden

layer (with hyperbolic tangent activation, Tanh),
whose size is equal to the size of the previ-
ous layer, i.e., 100. We included information
such as word overlaps (Tymoshenko et al., 2016a)
and rank position as embeddings with an addi-
tional lookup table with vectors of size dfeat =
5. The rank feature is provided in the SemEval
dataset and describes the position of the ques-
tions/comments in the search engine output.
Training: we trained our networks using SGD
with shuffled mini-batches using the rmsprop up-
date rule (Tieleman and Hinton, 2012). We set the
training to iterate until the validation loss stops
improving, with patience p = 10, i.e., the num-
ber of epochs to wait before early stopping, if no
progress on the validation set is obtained. We
added dropout (Srivastava et al., 2014) between
all the layers of the network to improve general-
ization and avoid co-adaptation of features. We
tested different dropout rates (0.2, 0.4) for the in-
put and (0.3, 0.5, 0.7) the hidden layers obtaining
better results with highest values, i.e., 0.4 and 0.7.

4.2 Results
Table 3 shows the results of our individual and
MTL models, in comparison with the Random and
IR baselines of the challenge (first two rows), and
the SemEval 2016 systems (rows 3–12). Rows 13-
15 illustrate the results of our models when trained
only on Task C. 〈qnew, crel〉 corresponds to the ba-

sic model, i.e., the single network, whereas the
〈qnew, qrel, crel〉 model only exploits the joint in-
put, i.e., the availability of qrel. Rows 16-18 report
the MTL models combining Task C with the other
two tasks. The difference with the previous group
(rows 13-15) is in the training phase, which is also
operated on the instances from tasks A and B.

We note that: (i) the single network for Task C
cannot compete with the challenge systems, as it
would be ranked at the last position, according to
the official MAP score (test set result); (ii) the joint
representation, 〈qnew, qrel, crel〉, highly improves
the MAP of the basic network from 41.95 to 46.99
on the test set. This confirms the importance of
having highly related tasks using input encoding
closely related semantics. (iii) The shared sen-
tence model for qnew and qrel (indicated with ↔)
improves MAP on the dev. set only. (iv) The MTL
(ABC) provides the best MAP, improving BC and
AC by 1.29 and 1.38, respectively. Most impor-
tantly, it also improves, 〈qnew, qrel, crel〉 by 2.88
points, i.e., the best model using the joint repre-
sentation and no training on the auxiliary tasks.

Additionally, our full MTL model would have
ranked 4th on Task C of the SemEval 2016 com-
petition. This is an important result since all the
challenge systems make use of many manually
engineered features whereas our model does not
(except for the necessary initial rank). If we add
the most powerful feature used by the top systems
to our model, i.e., the weighted sum between the
score of the Task A classifier and the Google rank
(Mihaylova et al., 2016; Filice et al., 2016), our
system would achieve an MAP of 52.67, i.e., very
close to the second system.

Finally, we do not report the results of the aux-
iliary tasks for lack of space and also because our
idea of using MTL is to improve the target Task C.
Indeed, by their definition, tasks A and B are sim-
pler than C, and are designed for solving it. Thus,
attempting to improve the simpler A and B tasks
by solving the more complex Task C, although
interesting, looks less realistic. Indeed, we did
not observe any important improvement of tasks
A and B in our MTL setting. More insights and
results are available in our longer version of this
paper (Bonadiman et al., 2017).

5 Related Work

The work related to cQA spans two major areas:
question and answer passage retrieval. Hereafter,
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we report some important research about them and
then conclude with specific work on MTL.

Question–Question Similarity. Early work on
question similarity used statistical machine trans-
lation techniques, e.g., (Jeon et al., 2005; Zhou
et al., 2011), to measure similarity between ques-
tions. Language models for question-question
similarity were explored by Cao et al. (2009), who
incorporated information from the category struc-
ture of Yahoo! Answers when computing simi-
larity between two questions. Instead, Duan et
al. (2008) proposed an approach that identifies
the topic and focus from questions and compute
their similarity. Ji et al. (2012) and Zhang et
al. (2014) learned a probability distribution over
the topics that generate the question/answers pairs
with LDA and used it to measure similarity be-
tween questions. Recently, Da San Martino et al.
(2016) showed that combining tree kernels (TKs)
with text similarity features can improve the re-
sults over strong baselines such as Google.

Question–Answer Similarity. Yao et al. (2013)
used a conditional random field trained on a set of
powerful features, such as tree-edit distance be-
tween question and answer trees. Heilman and
Smith (2010) used a linear classifier exploiting
syntactic features to solve different tasks such as
recognizing textual entailment, paraphrases and
answer selection. Wang et al. (2007) proposed
Quasi-synchronous grammars to select short an-
swers for TREC questions. Wang and Man-
ning (2010) used a probabilistic Tree-Edit model
with structured latent variables for solving tex-
tual entailment and question answering. Severyn
and Moschitti (2012) proposed SVM with TKs
to learn structural patterns between questions and
answers encoded in the form of shallow syntac-
tic parse trees, whereas in (Tymoshenko et al.,
2016b; Barrón-Cedeño et al., 2016) the authors
used TKs and CNNs to rank comments in web fo-
rums, achieving the state of the art on the SemEval
cQA challenge. Wang and Nyberg (2015) trained
a long short-term memory model for selecting an-
swers to TREC questions.

Finally, a recent work close to ours is (Guzmán
et al., 2016), which builds a neural network for
solving Task A of SemEval. However, this does
not approach the problem as MTL.

Related work on MTL. A good overview on
MTL, i.e., learning to solve multiple tasks by
using a shared representation with mutual bene-

fit, is given in (Caruana, 1997). Collobert and
Weston (2008) trained a convolutional NN with
MTL which, given an input sentence, could per-
form many sequence labeling tasks. They showed
that jointly training their system on different tasks,
such as speech tagging, named entity recognition,
etc., significantly improves the performance on the
main task, i.e., semantic role labeling, without re-
quiring hand-engineered features.

Liu et al. (2015) is the closest work to ours.
They used multi-task deep neural networks to map
queries and documents into a semantic vector rep-
resentation. The latter is later used into two tasks:
query classification and question-answer rerank-
ing. Their results showed a competitive gain over
strong baselines. In contrast, we have presented
a model that can also exploit a joint question and
comment representation as well as the dependen-
cies among the different SemEval Tasks.

6 Conclusions

We proposed an MTL architecture for cQA, where
we could exploit auxiliary tasks, which are highly
semantically connected with our main task. This
enabled the use of the same semantic representa-
tion for encoding the text objects associated with
all the three tasks, i.e., new question, related ques-
tion and comments. Our shared semantic rep-
resentation provides an important advantage over
previous MTL applications, whose subtasks share
a less consistent semantic representation.

Our experiments on the SemEval 2016 dataset
show that our MTL approach relatively improves
the individual DNNs by almost 20%. This is due
to the shared representation as well as training on
the instances of the two auxiliary tasks.

In the future, we would like to experiment with
hierarchical MTL for stressing even more the role
of the auxiliary tasks with respect to the main task.
Additionally, we would like to apply constraints
on the global loss for enforcing specific relations
between the tasks.
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