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Abstract

We present a model to perform author-
ship attribution of tweets using Convolu-
tional Neural Networks (CNNs) over char-
acter n-grams. We also present a strategy
that improves model interpretability by es-
timating the importance of input text frag-
ments in the predicted classification. The
experimental evaluation shows that text
CNNs perform competitively and are able
to outperform previous methods.

1 Introduction

The problem of authorship attribution (AA) has
always been harder for short texts compared to
long texts. Previous work has shown that it is
difficult for any AA system to maintain the same
performance with shorter texts (Koppel and Win-
ter, 2014). However in today’s world where
most human interaction is online and short, AA
of short texts has become ever more relevant,
especially in areas like phishing emails, spam,
and crowd sourced collaborative projects like
Wikipedia. With the advent of social media, one
can even argue that building systems that work
with short texts equally, if not more important than
long texts like books. This need is also reflected in
the increasing interest in AA of small texts such
as tweets and reviews in AA research community
(Qian et al., 2015; Schwartz et al., 2013; Layton et
al., 2010).

At the time of this writing, we could neither
find any prior work that successfully applied char-
acter n-grams with CNNs, nor any CNN meth-

ods that dealt with AA of short text. However,
we were able to find research in AA using tra-
ditional as well as related approaches. Character
and word n-grams have been used as the core of
many authorship attribution systems (Stamatatos,
2009; Schwartz et al., 2013; Layton et al., 2010).
Character and word n-grams help determine the
author of a document by capturing the syntax and
style of an author. Considering deep learning
approaches, we found one other work that uses
CNNs for authorship attribution (Rhodes, 2015).
However, they use word representations for larger
texts rather than character representation for short
texts. Additionally, work by Bagnall (2015) uses
a multi-headed Recurrent Neural Network (RNN)
character language model that gives a set of next
character probabilities for each author at every
step of the model. This was the best-performing
system for the PAN 2015 author identification
task with a macro-averaged area under the curve
(AUC) of 0.628 (Stamatatos et al., 2015). Despite
the promising results that CNNs and RNNs show,
the results are not interpretable and few of these
works attempt to analyze what the networks are
actually learning. We try to get an insight into our
model by using the saliency analysis by Li et al.
(2016). We have also devised our own method of
finding out the input n-grams that are overall most
important to the model.

As a solution to the problem of AA of short
texts, we propose a neural network architecture
that is able to learn the representation of the text
starting from the character sequence. Our archi-
tecture is a CNN that uses a sequence of character
n-grams as input. This contrasts with the tradi-
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Figure 1: N-gram CNN. N-gram embeddings are fed to con-
volutional and max pooling layers, and the final classification
is done via a softmax layer applied to the final text represen-
tation (_: whitespace in the input).

tional approach to CNN that uses either a sequence
of words or a sequence of characters (Kalchbren-
ner et al., 2014; Kim, 2014; Collobert et al., 2011;
Zhang et al., 2015). This CNN captures local in-
teractions at the character level, which are then ag-
gregated to learn high-level patterns for modeling
the style of an author. The main contributions of
this paper are:

• We are the first to present a CNN model based
on character n-grams for AA of short texts.
We also show a comparison with traditional
machine learning approaches.

• We validate the robustness of our model
against traditional AA architectures by eval-
uating it in different settings.

• We propose a new method to improve inter-
pretability of our CNN model.

2 N-gram Convolutional Neural
Networks

Our proposed architecture receives a sequence of
character n-grams as input. These n-grams are
then processed by three modules: a character em-
bedding module, a convolutional module, and a
fully connected softmax module, as illustrated in
Figure 1. Our character embedding module is mo-
tivated by the success of other distributed vector
representations like word embeddings (Mikolov et
al., 2013) This module learns a continuous, non-
sparse d-dimensional vector representation of the
character n-grams. The maximum length l of the
training sequences determines the size of the input
and input shorter than l are padded. This module

yields a matrix C ∈ Rd×l, where the columns are
the embedding of the n-gram cj of position j.

The next component is a convolutional module.
First a convolution filter, H ∈ Rd×w, is applied
to a portion of C, where w is the width of the fil-
ter. The resulting matrix, O, is used as input to
a sigmoid function g, along with a bias term b to
produce feature representations f for the text.

O = H · C[i : i + w − 1]

f = g(H · C[i : i + w − 1] + b), f ∈ Rl−w+1

As can be seen from Figure 1, we use a convolu-
tional layer with different widths w, allowing us to
capture patterns that involve everything from mor-
phemes to words. We then pool the resulting fea-
ture maps f by max-over-time pooling (Collobert
et al., 2011), to obtain yk, the maximum value of
each feature map fk:

yk = max
i

fk[i], k = 1 . . . m

where m is the number of feature maps. This al-
lows us to represent the text by its most important
features, independent of their position. After pool-
ing and concatenating the feature representations
yk, we obtain a compact representation of the text.

Finally, this representation is passed through
a fully connected module containing a softmax
layer. Representation learning models based on
neural networks attempt to find features that are
useful to solve a learning problem automatically.
In the case of AA, stylistic features may be found
at morphological, lexical and syntactic levels. We
hypothesize that our model is able to automatically
capture patterns at all these levels by starting at
short sequences of characters and then using con-
volution to generate representations for longer se-
quences.

2.1 Implementation details

Layer # of layers Hyperparameters

Embedding 1 l 140
d 300

Convolutional 3
m [500, 500, 500]
w [3, 4, 5]
Pooling max

Fully connected 1 # of units Depends on the # of authors

Table 1: Neural network architecture hyperparameters

Table 1 contains the combination of hyperpa-
rameters for the three modules that generate the
best validation score. Additionally, we have added
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a dropout layer with 25% dropout after the first
embedding layer for regularization. We then shuf-
fle and group the samples into mini-batches of size
32 for faster training. We employ Adaptive Mo-
ment Estimation (Kingma and Ba, 2015) with a
learning rate of 1e − 4 to train our network. We
train for a maximum of 100 epochs and choose the
model with the lowest validation error.

3 Experimental Evaluation

CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W
0.761 0.757 0.712 0.703 0.645 0.548

Table 2: Accuracy for 50 authors with 1000 tweets each.

We evaluated our approach on the dataset from
Schwartz et al. (2013) containing ∼9,000 Twit-
ter users with up to 1,000 tweets each, using the
same train/test splits, and normalized URLs, user-
names, and numbers. We trained separate CNN
models with character n-grams (n = 1, 2, 3) on
a small validation set. Here we evaluate our two
best-performing models, one on unigrams (CNN-
1) and another on bigrams (CNN-2), against three
other systems described below:
SCH: The Schwartz et al. (2013) work uses char-
acter 4-grams and word 2-5 grams. They also in-
troduced k-signatures and flexible patterns to rep-
resent the unique signature of an author. Their best
system uses a combination of all these features.
LSTM-2: Long Short Term Memory networks
(LSTM) have been successfully used for text clas-
sification (Tai et al., 2015; Tang et al., 2015). We
evaluate an LSTM trained on bigrams, since the
LSTM produced better results on a small valida-
tion set.
CHAR: Character and word n-grams have been
the core of many AA systems (Stamatatos, 2009;
Schwartz et al., 2013; Layton et al., 2010). We
tested various n-gram combinations on the small
validation set and our final system uses character
2,3,4-grams with logistic regression.
CNN-W: Many works on CNN use word se-
quences as input (Kalchbrenner et al., 2014;
Rhodes, 2015). We also trained a CNN model with
Google Word embeddings (Mikolov et al., 2013)
fed to a static embedding layer.

All systems use cross-validation over the train-
ing set for hyperparameter tuning. We first ex-
perimented with a relatively small set of 50 au-
thors and their 1000 tweets each. The results are

in Table 2. The results show that our CNN bi-
gram model (CNN-2) performs very well on this
dataset and outperforms the SCH system by nearly
5%. CNN-1 also exceeds the SCH method but is
marginally worse than CNN-2, showing that there
is merit in exploring the training of a CNN model
on n-grams rather than only on single characters.

3.1 Varying number of authors and tweets

# of authors CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W
100 0.506 0.508 0.425 0.412 0.338 0.241
200 0.481 0.473 0.411 0.409 0.335 0.208
500 0.422 0.417 0.355 0.342 0.298 0.161

1000 0.365 0.359 0.303 0.291 0.248 0.127

Table 3: Accuracy comparison for increasing # of authors
with 200 tweets per author.

We also wanted to explore how our method
fares against the other methods when the problem
becomes more difficult, i.e. when the number of
authors increases or when the number of tweets
per author decreases, as done in Schwartz et al.
(2013). The results for increasing number of au-
thors are shown in Table 3. Both our CNN models
perform fairly well above the other methods for all
our experiments. Although the accuracy decreases
with the increasing number of authors, even with
1000 authors our model obtains an accuracy well
above 36%, and there is a 6% improvement over
the state-of-the-art (SCH).

# of tweets CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W
500 0.724 0.717 0.672 0.655 0.597 0.509
200 0.665 0.665 0.614 0.585 0.528 0.460
100 0.613 0.617 0.565 0.517 0.438 0.417
50 0.542 0.562 0.507 0.466 0.364 0.366

Table 4: Accuracy comparison for decreasing # of tweets per
author for 50 authors.

We can draw similar conclusions from the re-
sults where we decrease the number of tweets per
author as shown in Table 4. Following the work in
SCH, these results are an average of the accuracy
values obtained from 10 disjoint datasets. The per-
formance of our system is fairly stable even when
the number of tweets per author is low. The im-
provement margin actually increases slightly as
we move towards a lower number of tweets.

A statistical t-test on the results over the 10 dis-
joint datasets shows that the difference between
CNN-2 and CHAR, LSTM-2, and CNN-W are
statistically significant at p < 0.001. We could
not perform a test with SCH results as the in-
dividual disjoint dataset results are not reported.
In both these tables, we can see that the CNN-2
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CNN-2 CNN-1 CHAR LSTM-2 CNN-W
0.683 0.678 0.609 0.525 0.420

Table 5: Accuracy values for 35 authors with 1000 tweets
each after bot-like authors removal (15 authors were bots).

model outperforms the CNN-1 model for exper-
iments with more data points (higher no. of au-
thors and/or tweets), which can be attributed to
CNN-2 having a higher number of parameters to
train. CNN-W performs worse than the other sys-
tems. Char-based inputs specialize on stylistic pat-
terns whereas word-based ones focus on content-
related patterns, which are less important for AA.
This finding is consistent with previous research in
AA (Stamatatos, 2009; Koppel and Winter, 2014;
Koppel and Schler, 2004).

3.2 Bot-like Authors

During analysis, we noticed that nearly 30% of au-
thors behave like automated bots. Their tweets
show repeated patterns, e.g., a title of some
news/advertisements with a URL at the end. Since
our goal is to perform AA on humans, we re-
moved these authors manually to create a refined
dataset. There are no comparable experiments in
(Schwartz et al., 2013), thus we compare only
against CHAR, LSTM-2, and CNN-W as shown
in Table 5. The accuracies for all of the methods
decrease on this dataset as the bot-like authors are
easy to identify. The CNN methods still outper-
form other methods. Since SCH’s performance
was similar to CHAR on the whole dataset and
CNN-2 exceeds CHAR by a larger margin in this
dataset, we can estimate that here too, CNN-2 is
likely to outperform SCH.

4 What does the CNN capture?

Despite the competitive performance of neural
representation techniques in several NLP tasks,
there is a lack of understanding about exactly
what these models are learning, or how the
parameters relate to the input data. Few empirical
studies have attempted to understand the role of
RNN components (Jozefowicz et al., 2015; Greff
et al., 2016). In order to analyze what makes
neural representation learning suitable for AA, we
look at the most salient sections of a single input
tweet. We also perform an analysis of what types
of character n-grams are more important to the
model overall.

Figure 2: Salient sections of a bot-like author’s tweets
([U]:URL, [N]:username, [R]:number).

Figure 3: Salient sections of a human author’s tweets
([U]:URL, [N]:username, [R]:number).

Salient sections of a tweet
Li et al. (2016) define a saliency score S(e) as:

w(e) =
∂(Sc)
∂(e)

S(e) = |w(e)|

where the embedding e represents the input and
the class score Sc represents the output of our
CNN model. The score indicates how sensitive a
model is to the changes in the embedding input,
i.e. in our case, how much a specific n-gram in the
text input contributes to the final decision. In order
to visualize saliency per character, we adapted this
method by taking the maximum saliency value per
character.

We selected two authors, one bot-like and
one human, to analyze what kind of patterns are
learned for specific authors. Figure 2 presents two
tweets from a bot author. The darker the shade is,
the more salient that section of the tweet is in the
attribution decision. This automated bot seems to
follow the pattern Title: URL and sure enough,
it is detected by the CNN-2 model as indicated
by dark shading towards the end of both tweets.
Similarly, Figure 3 shows two tweets from a
human author. We can notice right away that this
author has the tendency to use uhm and we can
see this section highlighted in the figure. The
author also tends to use consecutive dots, this too
is highlighted, albeit a little less than uhm. Figure
4 shows the saliency values for a tweet from
the CNN-2 (top) and the CNN-1 (mid) models.

Figure 4: Salient sections comparison of CNN-2 (top) and
CNN-1 (mid). The bottom figure is shaded using the feature
weights from logistic regression for CHAR.
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Dataset Highest activations overall Top activations per filter CHAR top features
Bot & non-bot _[U], Di, :l, n‘, (:, Xn, KM, o), :_, =h, _[R], :-, qh, wu, !, bi, ul, al, ug, me, in, mp, AN, um, an, en, "w, sa, e_ :_[U], :, _-, _u, _r, .._-, _X, XD, _XD, li, go,_., _#
Non-bot only _[U], qh, KM, Di, (:, Uh, ;D, :p, _[N], __, :l, !_, =D, :_ _t, _m, er, ou, e_, in, ed, co, _a, is, nd, _r, ve, te, st ...,;-), lol, :d, maoo, &&, :)), :-(, :-p, loll, ????, ^_^

Table 6: Input char bigrams with highest CNN activations ([U]:URL, [N]:username, [R]:number, _:whitespace).

For the CNN-1 model, although uhm and ... are
highlighted, the saliency values are more dis-
tributed throughout the tweet, highlighting even
are and hurt. While we can see that the CNN-2
model puts its focus exactly on the uhm, which
is a very distinctive style of this author. Figure
4 also has a similar figure for the CHAR model
at the bottom, which we created by using the
feature weights from the logistic regression clas-
sifier. Although there is more focus on the uhm
part, again, the distribution is more spread out for
this model as well, compared to the CNN-2 model.

N-grams with highest contributions Some n-
grams activate several filters, but generate low ac-
tivation values, meanwhile, other n-grams gener-
ate higher activation values but only for a few fil-
ters. Both types hold important clues in under-
standing our model. We use the intermediate rep-
resentation of the CNN filters, consisting of a ma-
trix O ∈ Rn×m where n is the number of n-grams
and m is the number of filters. We first deter-
mine the n-grams that generate the highest acti-
vation values aggregated over all filters. The sec-
ond column in Table 6 shows the top 15 bigrams
from this analysis for CNN-2 models trained on
the whole dataset and on the refined dataset. The
third column presents the top positive weighted
features from the CHAR model. We can observe
that many of the highest bigrams are uncommon
versions of emoticons, such as (:, :p and ;D that
are likely correlated with specific authors. For the
bot authors, [U] has the highest activation since
most automated tweets have URLs at the end as
their characteristic.

We then also collect the n-grams that have the
highest number of filters where their activation is
in the top 3. The third column in Table 6 shows the
top bigrams from this analysis. Here we mostly
see bigrams that are affixes. We can attribute this
fact to the importance of morphological features
for characterizing human tweets.

5 Conclusions and Future work

We presented a strategy for using CNNs with char-
acter n-grams for AA of short texts, and provided
a comprehensive comparison against standard ap-

proaches. We found that CNNs give better perfor-
mance for AA of tweets, and using character n-
grams instead of just character sequences can also
improve performance. We were also able to gain
some insights on what our architecture is actually
learning. We could see that the network is focus-
ing more on some sections of the text. This cre-
ates a premise for applying attention models and
we are currently working in this direction.
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