Continuous multilinguality with language vectors

Robert Ostling
Department of Linguistics*
Stockholm University
robert@ling.su.se

Abstract

Most existing models for multilingual nat-
ural language processing (NLP) treat lan-
guage as a discrete category, and make
predictions for either one language or the
other. In contrast, we propose using
continuous vector representations of lan-
guage. We show that these can be learned
efficiently with a character-based neural
language model, and used to improve in-
ference about language varieties not seen
during training. In experiments with 1303
Bible translations into 990 different lan-
guages, we empirically explore the ca-
pacity of multilingual language models,
and also show that the language vectors
capture genetic relationships between lan-
guages.

1 Introduction

Neural language models (Bengio et al., 2003;
Mikolov et al., 2010; Sundermeyer et al., 2012)
have become an essential component in several ar-
eas of natural language processing (NLP), such as
machine translation, speech recognition and im-
age captioning. They have also become a common
benchmarking application in machine learning re-
search on recurrent neural networks (RNN), be-
cause producing an accurate probabilistic model
of human language is a very challenging task
which requires all levels of linguistic analysis,
from pragmatics to phonology, to be taken into ac-
count.

A typical language model is trained on text in
a single language, and if one needs to model mul-
tiple languages the standard solution is to train a

Work done while the author was at the University of
Helsinki

644

Jorg Tiedemann
Department of Modern Languages
University of Helsinki
jorg.tiedemann@helsinki.fi

separate model for each language. This presup-
poses large quantities of monolingual data in each
of the languages that needs to be covered and each
model with its parameters is completely indepen-
dent of any of the other models.

We propose instead to use a single model with
real-valued vectors to indicate the language used,
and to train this model with a large number of
languages. We thus get a language model whose
predictive distribution p(x;|x1_4—1,1) is a contin-
uous function of the language vector [, a property
that is trivially extended to other neural NLP mod-
els. In this paper, we explore the “language space”
containing these vectors, and in particular explore
what happens when we move beyond the points
representing the languages of the training corpus.

The motivation of combining languages into
one single model is at least two-fold: First of all,
languages are related and share many features and
properties, a fact that is ignored when using inde-
pendent models. The second motivation is data
sparseness, an issue that heavily influences the
reliability of data-driven models. Resources are
scarce for most languages in the world (and also
for most domains in otherwise well-supported lan-
guages), which makes it hard to train reasonable
parameters. By combining data from many lan-
guages, we hope to mitigate this issue.

In contrast to related work, we focus on mas-
sively multilingual data sets to cover for the first
time a substantial amount of the linguistic diver-
sity in the world in a project related to data-driven
language modeling. We do not presuppose any
prior knowledge about language similarities and
evolution and let the model discover relations on
its own purely by looking at the data. The only
supervision that is giving during training is a lan-
guage identifier as a one-hot encoding. From that
and the actual training examples, the system learns
dense vector representations for each language in-

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 644—649,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics

cluded in our data set along with the character-
level RNN parameters of the language model it-
self.

2 Related Work

Multilingual language models is not a new idea
(Fugen et al., 2003), the novelty of our work lies
primarily in the use of language vectors and the
empirical evaluation using nearly a thousand lan-
guages.

Concurrent with this work, Johnson et al. (2016)
conducted a study using neural machine transla-
tion (NMT), where a sub-word decoder is told
which language to generate by means of a special
language identifier token in the source sentence.
This is close to our model, although beyond a sim-
ple interpolation experiment (as in our Section 5.3)
they did not further explore the language vectors,
which would have been challenging to do given
the small number of languages used in their study.

Ammar et al. (2016) used one-hot language
identifiers as input to a multilingual word-based
dependency parser, based on multilingual word
embeddings. Given that they report this result-
ing in higher accuracy than using features from a
typological database, it is a reasonable guess that
their system learned language vectors which were
able to encode syntactic properties relevant to the
task. Unfortunately, they also did not look closer
at the language vector space, which would have
been interesting given the relatively large and di-
verse sample of languages represented in the Uni-
versal Dependencies treebanks.

Our evaluation in Section 5.2 calls to mind pre-
vious work on automatic language classification,
by Wichmann et al. (2010) among others. How-
ever, our purpose is not to detect genealogical re-
lationships, even though we use the strong correla-
tion between such classifications and our language
vectors as evidence that the vector space captures
sensible information about languages.

3 Data

We base our experiments on a large collection of
Bible translations crawled from the web, coming
from various sources and periods of times. Any
other multilingual data collection would work as
well, but with the selected corpus we have the ad-
vantage that we cover the same genre and roughly
the same coverage for each language involved. It
is also easy to divide the data into training and test

645

<s>

64

<l
<t >
<t o
< —
< —

64

Language@vector
<t
-
<t
-
--

|
> <<

i

Figure 1: Schematic of our model. The three parts
of the language vector are concatenated with the
inputs to the two LSTM:s and the final softmax
layer.

o <€

sets by using Bible verse numbers, which allows
us to control for semantic similarity between lan-
guages in a way that would have been difficult in
a corpus that is not multi-parallel. Altogether we
have 1,303 translations in 990 languages that we
can use for our purposes. These were chosen so
that the model alphabet size is below 1000 sym-
bols, which was satisfied by choosing only trans-
lations in Latin, Cyrillic or Greek script.

Certainly, there are disadvantages as well, such
as the limited size (roughly 500 million tokens in
total, with most languages having only one trans-
lation of the New Testament each, with roughly
200 thousand tokens), the narrow domain and the
high overlap of named entities. The latter can lead
to some unexpected effects when using nonsensi-
cal language vectors, as the model will then gen-
erate a sequence of random names.

The corpus deviates in some ways from an
ideal multi-parallel corpus. Most translations are
of the complete New Testament, whereas around
300 also contain the Old Testament (thus several
times longer), and around ten contain only por-
tions of the New Testament. Additionally, several
languages have multiple translations, which are
then concatenated. These translations may vary in
age and style, but historical versions of languages
(with their own ISO 639-3 code) are treated as dis-
tinct languages. During training we enforce a uni-
form distribution between languages when select-
ing training examples.

4 Methods

Our model is based on a standard stacked
character-based LSTM (Hochreiter and Schmid-
huber, 1997) with two layers, followed by a hid-
den layer and a final output layer with softmax ac-
tivations. The only modification made to accom-
modate the fact that we train the model with text
in nearly a thousand languages, rather than one,
is that language embedding vectors are concate-
nated to the inputs of the LSTMs at each time step
and the hidden layer before the softmax. We used
three separate embeddings for these levels, in an
attempt to capture different types of information
about languages.! The model structure is summa-
rized in Figure 1.

In our experiments we use 1024-dimensional
LSTMs, 128-dimensional character embeddings,
and 64-dimensional language embeddings. Layer
normalization (Ba et al., 2016) is used, but no
dropout or other regularization since the amount
of data is very large (about 3 billion characters)
and training examples are seen at most twice. For
smaller models early stopping is used. We use
Adam (Kingma and Ba, 2015) for optimization.
Training takes between an hour and a few days on
a K40 GPU, depending on the data size.

5 Results

In this section, we present several experiments
with the model described. For exploring the lan-
guage vector space, we use hierarchical agglomer-
ative clustering for visualization. For measuring
performance, we use cross-entropy on held out-
data. For this, we use a set of the 128 most com-
monly translated Bible verses, to ensure that the
held-out set is as large and overlapping as possible
among languages.

5.1 Model capacity

Our first experiment tries to answer what happens
when more and more languages are added to the
model. There are two settings: adding languages
in a random order, or adding the most closely re-
lated languages first. Cross-entropy plots for these
settings are shown in Figure 2 and Figure 3.

In both cases, the model degrades gracefully (or
even improves) for a number of languages, but
then degrades linearly (i.e. exponential growth of

"The embeddings at the different levels are different, but

we did not see any systematic variation. We also found that
using the same embedding everywhere gives similar results.

646

—+— Chayahuita (Cahuapanan, Peru)
2 | ---+-- Konkomba (Gur, Ghana/Togo) m
-+ Tawala (Oceanic, Papua New Guinea) .--
| ——+— Benabena (Goroka, Papua New Guinea)) |
+ e

Test set cross-entropy

ol — s L

1 10 100

Number of languages

Figure 2: Cross-entropy of the test sets from the

first four languages added to our model. At the

leftmost point (x = 1), only Chayahuita is used

for training the model so no results are available
for the other languages.

2.6 T - T T
Danish ——

24 Norwegian (Nynorsk) —<— <1
Norwegian (Bokmal) —*x—

22 Swedish —8— 1

2
1.8
1.6
14
1.2

1 M R | M|
1 10 100 1000

Number of languages

Test set cross-entropy

Figure 3: Cross-entropy of the test sets from
Scandinavian languages. The languages added at
each step are: Swedish, Norwegian+Danish, Ice-
landic+Faroese, remaining Germanic, remaining
Indo-European, all remaining languages.

2.6
24

T L T AL T T
total parameters —+—

LSTM parameters —x<— T

languages —*—

2.2

2 -
1.8 .
1.6 -
1.4 .
127 -

1 1 1 1
1 10 100 1000

Parameter reduction factor, Number of languages

Test set cross-entropy (Swedish)

Figure 4: Cross-entropy of the Swedish test set,
given two conditions: increasing number of lan-
guages by the given factor (adding the most sim-
ilar languages first) or decreasing number of pa-
rameters by the same factor (for a monolingual
model, which is why the curves meet at x = 1).

perplexity) with exponentially increasing number
of languages.

For comparison, Figure 4 compares this to the
effect of decreasing the number of parameters in
the LSTM by successively halving the hidden state
size.? Here the behavior is similar, but unlike the
Swedish model which got somewhat better when
closely related languages were added, the increase
in cross-entropy is monotone. It would be inter-
esting to investigate how the number of model
parameters needs to be scaled up in order to ac-
commodate the additional languages, but unfortu-
nately the computational resources for such an ex-
periment increases with the number of languages
and would not be practical to carry out with our
current equipment.

5.2 Structure of the language space

We now take a look at the language vectors found
during training with the full model of 990 lan-
guages. Figure 5 shows a hierarchical clustering of
the subset of Germanic languages, which closely
matches the established genetic relationships in
this language family. While our experiments in-
dicate that finding more remote relationships (say,
connecting the Germanic languages to the Celtic)
is difficult for the model, it is clear that the lan-
guage vectors preserves similarity properties be-
tween languages.

In additional experiments we found the overall
structure of these clusterings to be relatively sta-
ble across models, but for very similar languages
(such as Danish and the two varieties of Norwe-
gian) the hierarchy might differ, and the some
holds for languages or groups that are significantly
different from the major groups. An example from
Figure 5 is English, which is traditionally clas-
sified as a West Germanic language with strong
influences from North Germanic as well as Ro-
mance languages. In the figure English is (weakly)
grouped with the West Germanic languages, but
in other experiments it is instead weakly grouped
with North Germanic.

5.3 Generating Text

Since our language model is conditioned on a lan-
guage vector, we can gain some intuitive under-
standing of the language space by generating text
from different points in it. These points could be

Note that two curves are given, one counting all model

parameters and one counting only the LSTM parameters. The
latter dominates the model size for large hidden states.

647

Dutch
Afrikaans

German
Frisian

M. English E—
Englishf————]

Bokmal
Danish
Nynorsk
Swedish

Icelandic E——
Faroese%‘

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 5: Hierarchical clustering of language vec-
tors of Germanic languages.

4.0

3.5

3.0

2.5

2.0

Cross-entropy (King James Version, English)

.0 0.2 0.4 0.6 0.8 1.0
(1-x) English + x German

Figure 6: Cross-entropy of interpolated language
models for English and German measured on En-
glish held-out text.

either one of the vectors learned during training,
or some arbitrary other point. Table 1 shows text
samples from different points along the line be-
tween Modern English [eng] and Middle English
[enm]. Consistent with the results of Johnson et al.
(2016), it appears that the interesting region lies
rather close to 0.5. Compare also to our Figure 6,
which shows that up until about a third of the way
between English and German, the language model
is nearly perfectly tuned to English.

5.4 Mixing and Interpolating Between
Languages

By means of cross-entropy, we can also visualize
the relation between languages in the multilingual
space. Figure 6 plots the interpolation results for
two relatively dissimilar languages, English and
German. As expected, once the language vector
moves too close to the German one, model perfor-
mance drops drastically.

More interesting results can be obtained if

1.40

1.38

1.36

1.34

1.32

1.30

Cross-entropy (King James Version)

1.28

1.2

0.0 0.2 0.4 0.6

(1-x) Modern English + x Middle English

0.8

Figure 7: Cross-entropy of interpolated language
models for modern and middle English tested on
data from the King James Bible.

we interpolate between two language variants
and compute cross-entropy of a text that repre-
sents an intermediate form. Figure 7 shows the
cross-entropy of the King James Version of the
Bible (published 1611), when interpolating be-
tween Modern English (1500-) and Middle En-
glish (1050-1500). The optimal point turns out
to be close to the midway point between them.

5.5 Language identification

If we have a sample of an unknown language or
language variant, it is possible to estimate its lan-
guage vector by backpropagating through the lan-
guage model with all parameters except the lan-
guage vector fixed.> We found that a very small set
of sentences is enough to give a considerable im-
provement in cross-entropy on held-out sentences.
In this experiment, we used 32 sentences from the
King James Version of the Bible. Using the re-
sulting language vector, test set cross-entropy im-
proved from 1.39 (using the Modern English lan-
guage vector as initial value) to 1.35. This is com-
parable to the result obtained in Section 5.4, ex-
cept that here we do not restrict the search space
to points on a straight line between two language
vectors.

6 Conclusions

We have shown that language vectors, dense vec-
tor representations of natural languages, can be

3In practice, using error backpropagation is too computa-
tionally expensive for most applications, and we use it here
because it requires only minimal modifications to our model.
A more reasonable method could be to train a separate lan-
guage vector encoder network.

648

Table 1: Examples generated by interpolating be-
tween Modern English and Middle English.

% Random sample

(temperature parameter 7 = 0.5)

30 and thei schulen go in to alle these thingis, and
schalt endure bothe in the weie

40 and there was a certaine other person who was called
in a dreame that he went into a mountaine.

44 and the second sacrifice, and the father, and the
prophet, shall be given to it.

48 and god sayd, i am the light of the world, and the
powers of the enemies of the most high god may
find first for many.

50 but if there be some of the seruants, and to all the
people, and the angels of god, and the prophets

52 then he came to the gate of the city, and the bread
was to be brought

56 therefore, behold, i will lose the sound of my soul,
and 1 will not fight it into the land of egypt

60 and the man whom the son of man is born of god,

so have i therefore already sent to the good news of
christ.

learned efficiently from raw text and possess sev-
eral interesting properties. First, they capture lan-
guage similarity to the extent that language family
trees can be reconstructed by clustering the vec-
tors. Second, they allow us to interpolate between
languages in a sensible way, and even allow adopt-
ing the model using a very small set of text, simply
by optimizing the language vector.

References

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431-444.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization. ArXiv e-prints,
July.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137-1155, March.

Christian Fugen, Sebastian Stuker, Hagen Soltau, Flo-
rian Metze, and Tanja Schultz. 2003. Efficient
handling of multilingual language models. In 2003
IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 441-446, Nov.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s multilingual neural machine translation

system: Enabling zero-shot translation. CoRR,
abs/1611.04558.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. The Interna-
tional Conference on Learning Representations.

Tomas§ Mikolov, Martin Karafiat, Luka$ Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, pages 1045-1048.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In INTERSPEECH 2012, pages 194-197.

Seren Wichmann, Eric W. Holman, Dik Bakker, and
Cecil H. Brown. 2010. Evaluating linguistic dis-
tance measures. Physica A: Statistical Mechanics
and its Applications, 389(17):3632 — 3639.

649

