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Abstract

We propose ECO: a new way to generate
embeddings for phrases that is Efficient,
Compositional, and Order-sensitive. Our
method creates decompositional embeddings
for words offline and combines them to create
new embeddings for phrases in real time.
Unlike other approaches, ECO can create
embeddings for phrases not seen during
training. We evaluate ECO on supervised
and unsupervised tasks and demonstrate that
creating phrase embeddings that are sensitive
to word order can help downstream tasks.

1 Introduction

Semantic embeddings of words represent word
meaning via a vector of real values (Deerwester et al.,
1990). The Word2Vec models introduced by Mikolov
et al. (2013a) greatly popularized this semantic
representation method and since then improvements
to the basic Word2Vec model have been proposed
(Levy and Goldberg, 2014; Ling et al., 2015).

Although techniques exist to sufficiently induce
representations of single tokens (Mikolov et al.,
2013a; Pennington et al., 2014), current methods for
creating n-gram embeddings are far from satisfactory.
Recent approaches cannot embed n-grams that do
not appear during training. For example, Hill et
al. (2016) used a heuristic of converting phrases to
tokens before learning the embeddings. Additionally,
Yin and Schiitze (2014) queried sources to determine
which phrases to embed.

We propose a new method for creating phrase
embeddings on-the-fly.  Offline, we compute
decomposed word embeddings (Figure 1a) that can
be used online to Efficiently generate Compositional
n-gram embeddings that are sensitive to word Order
(Figure 1b). We refer to our method as ECO. ECO is

* denotes equal contribution.
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Figure 1: (a): Skip-embeddings for each word by generalizing
Word2Vec. The numbers refer to the position, relative to the
given word, that the individual skip-embedding represents. (b):
ECOs efficient heuristic for composing n-gram embeddings.

a novel way to incorporate knowledge about phrases
into machine learning tasks. We evaluate our method
on different supervised and unsupervised tasks.

2 Background

Before introducing our approach for creating
decomposed word embeddings to ultimately create
n-gram embeddings online, we introduce our notation
and provide a brief overview of the Word2Vec model.

Notation We define s to be a sequence of words
and s; to be the 5" word of sequence s. Let |s| be
the length of the sequence and let S be the set of all
sequences. Additionally, let " denote an indexed
set of words, w denote a generic word and w; denote
the i*" word of W. V and Vjy denote indexed sets
of vectors of length d corresponding to W, i.e. v
€V, vout € Vour, and v, corresponds to the vector
representing word w € W. These two sets of vectors
correspond to the input and output representations of
a word as described by Mikolov et al. (2013b). The
notation |[.,.) denotes a set of integers that contain
successive integers starting from and including the
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left and excluding the right argument.

Word2Vec Model The popular Word2Vec model
consists of four possible models: Continuous
Bag-of-Words (CBOW) with hierarchical softmax
or negative sampling, and Skip-Gram (SG) with

the same choices for optimizing training parameters.

CBOW aims to predict a single word w surrounded
by the given context while SG tries to predict the
context words around w (Rong, 2014). The SG model
maximizes the following average log-probability of
the sentence averaged over the entire corpus:

!S\Z\ |Z Z

sES J k€lj—c0)U

logp(skls;), (D)
0,5+

where c refers to the window size, i.e. half the size of
the context. The probability of token s given token
s; is computed as the softmax over the inner products
of the embeddings of the two tokens:

exp (<v2‘k’t7vsj )
exXp (e (005,

3 Possible approaches to embed n-grams

p(sklsj)=

@

Before introducing ECO, we present a discussion of
other possible ways to combine unigram embeddings
to generate n-gram embeddings. This discussion
motivates the need for ECO and the issues that our
novel approach solves.

Treat n-grams as words The simplest way to
create embeddings for phrases would be to treat
phrases as single words and run out-of-the-box
software to embed those n-grams just like one would
for single words. Implementing such an approach
would just require changing how one pre-processes
text and then running Word2Vec. Yin and Schiitze
(2014) use external sources to determine common
bigrams to embed offline.

This approach can not embed unknown n-grams
regardless of whether each of the n-words in the
sequence appeared in a training corpus. Since this
situation will often occur, especially when increasing
the minimum count for words used to learn an
unknown embedding, this approach is insufficient
and cannot embed n-grams on-the-fly.

Combining individual word embeddings The
next plausible approach to create n-gram embeddings
would be to combine the individual word embeddings
into one new embedding with heuristics such
as averaging, adding, or multiplying the word

embeddings (Mitchell and Lapata, 2010). Averaging
the embeddings, which we use as a baseline for our
experiments, can be viewed as

Uy + -+ Ve,
n

Vlwy wn] = 3)
where vy, ..,,] 1s the embedding for a phrase of size n.

However, regardless of how one combines the
individual word embeddings, the ordering of words
in a phrase is not captured in the new n-gram
embedding. For example, with this method, the
embeddings for the bigrams shark killer and
killer shark would be the same. Therefore, an
ordered approach is needed.

4 The ECO Way

We now present our strategy to eliminate the
shortcomings of the previously discussed approaches
and propose an intuitive method for creating n-gram
embeddings.

Skip-Embeddings The Word2Vec model encodes
a word w using a single embedding v,, that must
maximize the log probability of the tokens that occur
around it. This encourages the embedding of a
word to be representative of the context surrounding
it. However a careful look reveals that the context
around a word can be split into multiple categories,
specifically that each word has at least 2c contexts,
one for each position in the window being considered.

Thus, we can parameterize each word w with 2¢
embeddings. For all i € [—c:c] such that i # 0, v},
encodes the context of word w at a specific position,
to the left (—) or right (+), from w. With this strategy,
instead of having one model with the objective
function from (1), we now have 2c independent
models with their own objective function of

where s, is the word 7 positions away from s; in s.
The new probability distribution is now

exp ((vie,vf))

)
oxp (3 e (Vi vi))

plsklsj) =

We refer to each of the newly decompositional 2c¢
embeddings created per word as skip-embeddings.
Since a skip-embedding only considers a single
token separated by ¢ tokens from w, the dimension-
ality of v’, should be kept to % to allow for direct
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comparison to Word2Vec that uses d dimensional
embeddings. Consequently, each skip-embedding is
trained with only % parameters.

Another major benefit of this architecture is
that the training can run in parallel, since the 2c
skip embeddings are generated independently. As
evidenced in section 5.2, our approach does not
sacrifice quality in single word embeddings.

Combining Skip-Embeddings After creating
skip-embeddings offline, we are ready to embed
n-grams on-the-fly, regardless of whether a n-gram
appeared in the original training corpus. Although
we could concatenate the 2c embeddings to create
a unigram embedding, instead of creating n-grams
embeddings, we average the position specific
skip-embeddings of words to create two vectors
v[I;UI:wn} and v} that summarize the left and the

[w1:wn)]
right context of the n-gram independently. v[Izulzwn]
and U[l}m:wn] are computed as follows:
-1 n
L (D o
v[w1:wn] = n = (6)
—n —1
R Vgpy oo TV,
U[wlzwn} = n - (7)

We then concatenate v and vB to create
. 3 w1 W] ) w1 W]

a single embedding of the entire n-gram. After

concatenation, the dimensionality of a ECO n-gram

embedding is %.

S Experiments

Our proposed method decomposes previous word
embedding work into 2c models as explained in
(4) and uses an order-sensitive heuristic (6) (7) to
combine skip-embeddings to embed n-grams. Our
experiments demonstrate that this novel method
retains more semantic meaning than other approaches.
We evaluate our n-gram embeddings through both
supervised and unsupervised tasks to test how well
our technique embeds phrases and words.

Data We extracted over 111 million sentences! con-

sisting of over 2 billion words of raw text from En-
glish Wikipedia (Ferraro et al., 2014) and ran our ECO
framework? to create skip-embeddings for each word
that appeared at least five times in the text. We also ran
out-of-the-box Word2Vec on the English Wikipedia

"We removed sentences with less than 4 tokens.
>The code and datasets developed are available at
https://github.com/azpoliak/eco
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Source Target 1.0 2.0
PPDB
disintegration 4.09 15.69
the break-up 343 6.71
the
dissolution N 7.7
repeal 331 2320
the death 0.86 26.62

Figure 2: Ilustration of phrase similarity evaluation data. Bold
phrases represent the pair of target phrases that were randomly
sampled.

dataset as a baseline for ECO. For both Word2Vec
and ECO embeddings, we chose ¢ from {2,5} and
d from {100,500,700}. Hill et al. (2016) argue that
a dimensionality of 500 is a sufficient comporimise
between qualitiy and memory constraints and addition-
ally claim that Faruqui et al. (2015)’s experiments sug-
gest that a dimensionality of 700 yield the best results.

5.1 Phrase Similarity

We compare similarities between source and target
phrases extracted from the paraphrase database
(PPDB). To create our evaluation set of source and
a pair of corresponding target phrases, we randomly
sampled source phrases from PPDB that had at least
two corresponding target phrases in the database. We
then randomly sampled two target phrases for each
source phrase (bolded in the figure above). For each
tuple consisting of a source phrase and two target
phrases, we manually chose which target phrase best
captured the meaning of the source phrase or whether
both target phrases have the same meaning. This
became our gold data. Our evaluation set consists
of 279 source phrases: 137 source phrases from
PPDB’s extra-extra-large phrasal subset and 142
source phrases from PPDB’s extra-extra-large lexical
subset’. Figure 2 illustrates an example from our
evaluation dataset.

We use our proposed model to embed the source
and target phrases. If the absolute difference between
cosine similarities is less than .01, we count the two
target phrases as having the same meaning. Otherwise,
we choose the target phrase whose embedding had
a higher cosine similarity with the embedding of
the source phrase. We compare our results with the
PPDBI1.0 (Ganitkevitch et al., 2013) and PPDB2.0
(Pavlick et al., 2015) similarity scores and the cosine
similarity scores computed by the naive approach

*http://nlpgrid.seas.upenn.edu/PPDB/eng/
ppdb-2.0-xxx1l-{lexical, phrasal}.qgz



PPDB p=100 w=2 p=100 w=5 p=500 w=2 p=500 w=5 p=700 w=2 p=700 w=5

MAI | 10 20 | W2V ECO | W2V ECO | W2V ECO | W2V ECO | W2V ECO | W2y ECo

LEXICAL || 4300 | 2324 57.04 | 5474 5839' | 5401 5620 | 5547 60.58' | 5620 5547 | 5693 5547 | 5620 5620
PHRASAL || 36.50 | 24.00 4672 | 4648 5634 | 47.89" 48.59' | 50.70" 52821 | 51411 5634 | 47.18' 5493t | 47.891 52.82f
ALL 3978 [ 2437 5233 [ 5054 5735' | 5090 5233 [ 53.05' 56.63' | 53761 55911 | 55200 55201 | 5197 54.48'

Table 1: Accuracy on phrase ranking evaluation. p refers to the number of parameters used to create the word embeddings. w refers
to window size. W2V refers to word2vec. The best system’s scores are in boldface. Tdenotes improvement to the PPDB2.0 baseline.

MALI refers to the majority choice.

as discussed in section 3. The accuracies reported in
Table 1 demonstrate that ECO captures semantics on
n-grams better than the baseline approach. In all of
the configurations, ECO outperforms Word2Vec for
phrases that are longer than one word.

5.2 Word Embedding Similarity

Although ECO’s primary goal is to create n-gram
embeddings, it is important for our approach to not
sacrifice quality in single word embeddings. Thus,
we compare our word embeddings to seven word
similarity benchmarks provided by Faruqui and Dyer
(2014)’s online system. To evaluate how well ECO
embeds unigrams, we concatenate v;,' and v for
the 5629 words provided by Faruqui and Dyer (2014)
and upload our ECO word embeddings to Faruqui
and Dyer (2014)’s website*. We also upload the
embeddings we generate by running Word2 Vec as our
baseline. The scores reported in Table 2 suggest that as
the number of parameters increase, ECO better retains
information for word embeddings than Word2Vec.

Word2Vec ECO
100 700 100 700

Acronym Size 2 5 2 5 2 5 2 5

WS-353-SIM 203 ||| 0.685 0.696 0.711 0.692|0.611 0.507 0.725 0.696
WS-353-REL 2521|0458 0.478 0.431 0.444/0.312 0.226 0.430 0.367
MC-30 30| 0.659 0.709 0.630 0.664 || 0.593 0.582 0.719 0.710
Rare-Word 2034 |1 0.289 0.306 0.331 0.309|0.307 0.241 0.360 0.346
MEN 3000 ||| 0.588 0.611 0.591 0.618 || 0.472 0.339 0.542 0.545
YP-130 130 (| 0.206 0.208 0.175 0.246 |/0.212 0.072 0.186 0.197
SimLex-999 999 ||| 0.305 0.300 0.363 0.358|/0.228 0.170 0.353 0.320

Table 2: Word Embedding similarity scores form wordvec—
tors.org. The left half reports the Word2Vec scores and the
right half reports the ECO scores. We bold the scores of the best
configuration in each row.

5.3 Supervised Scoring Model

Unlike the original paraphrase ranking heuristic,
Pavlick et al. (2015) rank paraphrases in a supervised
setting. They solicit annotators to rank phrase
similarities on an 5-point Likert scale and used a
set of 209 features to train a regression. Using their

*http://wordvectors.org/

data and features, we add phrase embeddings to the
feature set. The scores reflect correlation with human
judgements as measured by Spearman’s p. When
using only the features from Pavlick et al. (2015), we
report a score of 0.7025. Due to run time constraints,
we only include Word2Vec and ECO embeddings
where d = 100. With a window size of 2, ECO’s
score is 0.729 and Word2Vec’s score is 0.622. When
increasing the window size to 5, ECO scores 0.7156
and Word2Vec’s p is 0.569. Our results suggest that
these features can be useful in improving the quality
of existing PPDB resources.

6 Previous work

Due to the popularity of word embeddings and the
boost they have provided in supervised (Le and
Mikolov, 2014) and unsupervised (Lin et al., 2015)
NLP tasks, recent work has focused on how to prop-
erly embed sentences and phrases. Yin and Schiitze
(2014)’s method is similar to the method discussed
in Section 3. They use Wiktionary and WordNet
to determine the most common bigrams and create
embeddings for those. Hill et al. (2016) use reverse
dictionaries to determine which phrases define single
words and use neural language models to learn a
mapping between the phrases and word vectors. Both
of these approaches can not generate embeddings for
phrases on the fly and require an external corpus.
Recent work has also focused on capturing word
order in embeddings. While Yuan et al. (2016)
are not concerned with embedding phrases, they
point out issues with concatenating or averaging
standard word embeddings. They train an LSTM
to appropriately incorporate word vectors in the
Word Sense Disambiguation task. Their model is
sensitive to word order when determining the sense
of a specific word. Yuan et al. (2016)’s approach is
more computationally intensive than ECO. Le and
Mikolov (2014)’s Paragraph Vector framework also
focus on capturing word order in their embeddings.
However, our method is more efficient since ECO
does not require training the n-gram embeddings.
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Ling et al. (2015)’s work on structured Word2 Vec is
most similar to ours. However, instead of decompos-
ing Word2Vec into 2c models with the same number
of parameters, Ling et al. (2015) combine the contexts
into one large model, creating a single model with 2¢
parameters. Even though Ling et al. (2015) incorpo-
rate positional information into the Word2Vec models,
their approach cannot be used to create efficient, com-
positional, and order-sensitive n-gram embeddings.

7 Conclusion

We investigated a general view of Word2Vec based
upon creating multiple separate, skip-embeddings
per word, where each skip-embedding is individually
much smaller in size in comparison to the single
Word2Vec word embedding. Our method allows us
to efficiently compose embeddings for n-grams that
were not seen during training of the skip-embeddings
while maintaining order sensitivity. Our experiments
also demonstrated that averaging skip-embeddings
for creating n-gram embeddings that preserve
order-sensitive information is useful for NLP tasks
while using the same number of parameters as
the word2vec method. In comparison to previous
approaches (Le and Mikolov, 2014; Yuan et al., 2016),
our method is computationally efficient. This tradeoff
between efficiency, both in terms of the number of
parameters stored and learnt, computations performed,
and order sensitivity is unique to our proposed model.
In future work, we will investigate other heuris-
tics for combining skip-embeddings into n-gram
embeddings. Additionally, we hope to use similar
techniques as ECO to embed full sentences and
documents in real time. Finally, we plan to explore
tensor factorization methods (Cotterell et al., 2017) to
incorporate morphology, syntactic relations, and other
linguistic structures into ECO n-gram embeddings.
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