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Abstract

We explore the problem of translating
speech to text in low-resource scenarios
where neither automatic speech recognition
(ASR) nor machine translation (MT) are
available, but we have training data in the
form of audio paired with text translations.
We present the first system for this problem
applied to a realistic multi-speaker dataset,
the CALLHOME Spanish-English speech
translation corpus. Our approach uses un-
supervised term discovery (UTD) to cluster
repeated patterns in the audio, creating a
pseudotext, which we pair with translations
to create a parallel text and train a simple
bag-of-words MT model. We identify the
challenges faced by the system, finding that
the difficulty of cross-speaker UTD results
in low recall, but that our system is still able
to correctly translate some content words
in test data.

1 Introduction

Typical speech-to-text translation systems pipeline
automatic speech recognition (ASR) and machine
translation (MT) (Waibel and Fugen, 2008). But
high-quality ASR requires hundreds of hours of
transcribed audio, while high-quality MT requires
millions of words of parallel text—resources avail-
able for only a tiny fraction of the world’s estimated
7,000 languages (Besacier et al., 2014). Neverthe-
less, there are important low-resource settings in
which even limited speech translation would be
of immense value: documentation of endangered
languages, which often have no writing system (Be-
sacier et al., 2006; Martin et al., 2015); and crisis
response, for which text applications have proven
useful (Munro, 2010), but only help literate popu-
lations. In these settings, target translations may be
available. For example, ad hoc translations may be

collected in support of relief operations. Can we
do anything at all with this data?

In this exploratory study, we present a speech-
to-text translation system that learns directly from
source audio and target text pairs, and does not
require intermediate ASR or MT. Our work com-
plements several lines of related recent work. For
example, Duong et al. (2016) and Anastasopoulos
et al. (2016) presented models that align audio to
translated text, but neither used these models to
try to translate new utterances (in fact, the latter
model cannot make such predictions). Berard et
al. (2016) did develop a direct speech to transla-
tion system, but presented results only on a corpus
of synthetic audio with a small number of speak-
ers. Finally, Adams et al. (2016a; 2016b) targeted
the same low-resource speech-to-translation task,
but instead of working with audio, they started
from word or phoneme lattices. In principle these
could be produced in an unsupervised or minimally-
supervised way, but in practice they used super-
vised ASR/phone recognition. Additionally, their
evaluation focused on phone error rate rather than
translation. In contrast to these approaches, our
method can make translation predictions for audio
input not seen during training, and we evaluate it
on real multi-speaker speech data.

Our simple system (§2) builds on unsupervised
speech processing (Versteegh et al., 2015; Lee et
al., 2015; Kamper et al., 2016b), and in particu-
lar on unsupervised term discovery (UTD), which
creates hard clusters of repeated word-like units
in raw speech (Park and Glass, 2008; Jansen and
Van Durme, 2011). The clusters do not account
for all of the audio, but we can use them to sim-
ulate a partial, noisy transcription, or pseudotext,
which we pair with translations to learn a bag-of-
words translation model. We test our system on the
CALLHOME Spanish-English speech translation
corpus (Post et al., 2013), a noisy multi-speaker
corpus of telephone calls in a variety of Spanish di-
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alects (§3). Using the Spanish speech as the source
and English text translations as the target, we iden-
tify several challenges in the use of UTD, includ-
ing low coverage of audio and difficulty in cross-
speaker clustering (§4). Despite these difficulties,
we demonstrate that the system learns to translate
some content words (§5).

2  From unsupervised term discovery to
direct speech-to-text translation

For UTD we use the Zero Resource Toolkit (ZR-
Tools; Jansen and Van Durme, 2011).! ZRTools
uses dynamic time warping (DTW) to discover
pairs of acoustically similar audio segments, and
then uses graph clustering on overlapping pairs
to form a hard clustering of the discovered seg-
ments. Replacing each discovered segment with
its unique cluster label, or pseudoterm, gives us a
partial, noisy transcription, or pseudotext (Fig. 1).

In creating a translation model from this data,
we face a difficulty that does not arise in the par-
allel texts that are normally used to train trans-
lation models: the pseudotext does not represent
all of the source words, since the discovered seg-
ments do not cover the full audio (Fig. 1). Hence
we must not assume that our MT model can com-
pletely recover the translation of a test sentence.
In these conditions, the language modeling and
ordering assumptions of most MT models are un-
warranted, so we instead use a simple bag-of-words
translation model based only on co-occurrence:
IBM Model 1 (Brown et al., 1993) with a Dirich-
let prior over translation distributions, as learned
by fast_align (Dyer et al., 2013).2 In partic-
ular, for each pseudoterm, we learn a translation
distribution over possible target words. To trans-
late a pseudoterm in test data, we simply return its
highest-probability translation (or translations, as
discussed in §5).

This setup implies that in order to translate, we
must apply UTD on both the training and test au-
dio. Using additional (not only training) audio in
UTD increases the likelihood of discovering more
clusters. We therefore generate pseudotext for the
combined audio, train the MT model on the pseu-
dotext of the training audio, and apply it to the
pseudotext of the test data. This is fair since the
UTD has access to only the audio.?

"https://github.com/arenjansen/ZRTools
2We disable diagonal preference to simulate Model 1.
3This is the simplest approach for our proof-of-concept sys-
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(A)..,.......,..
. cl.. ' . I

Sp;m'ish:' t s .plles y el carrito
English: yes well and the car
Pseudotext:  cl

. cl . 5
Spaﬁis.h:' o 'sf'pues y qué tal vascon
English: yes well and hows it going
Pseudotext:  cl, c2

©) .. c2 .
Spanish: este trabajo y se
English: this work

Pseudotext:  c2

@)

c2 .
Spanish: llama del trabajo mi
English: call him from work

Pseudotext:  ¢2

Figure 1: Example utterances from our data, show-
ing UTD matches, corresponding pseudotext, and
English translation. For clarity, we also show Span-
ish transcripts with the approximate alignment of
each pseudoterm underlined, though these tran-
scripts are unavailable to our system. Stopwords
(in gray) are ignored in our evaluations. These ex-
amples illustrate the difficulties of UTD: it does
not match the full audio, and it incorrectly clusters
part of utterance B with a good pair in C and D.

3 Dataset

Although we did not have access to a low-resource
dataset, there is a corpus of noisy multi-speaker
speech that simulates many of the conditions we
expect to find in our motivating applications: the
CALLHOME Spanish—English speech translation
dataset (LDC2014T23; Post el al., 2013).* We ran
UTD over all 104 telephone calls, which pair 11
hours of audio with Spanish transcripts and their
crowdsourced English translations. The transcripts
contain 168,195 Spanish word tokens (10,674
types), and the translations contain 159,777 En-
glish word tokens (6,723 types). Though our sys-
tem does not require Spanish transcripts, we use
them to evaluate UTD and to simulate a perfect
UTD system, called the oracle.

For MT training, we use the pseudotext and trans-
lations of 50 calls, and we filter out stopwords in the

tem. In a more realistic setup, we could use the training audio

to construct a consensus representation of each pseudoterm

(Petitjean et al., 2011; Anastasopoulos et al., 2016), then use

DTW to identify its occurrences in test data to translate.
*We did not use the Fisher portion of the corpus.



translations with NLTK (Bird et al., 2009).> Since
UTD is better at matching patterns from the same
speaker (§4.2), we created two types of 90/10%
train/test split: at the call level and at the utterance
level. For the latter, 90% of the utterances are ran-
domly chosen for the training set (independent of
which call they occur in), and the rest go in the test
set. Hence at the utterance level, but not the call
level, some speakers are included in both training
and test data. Although the utterance-level split is
optimistic, it allows us to investigate how multiple
speakers affect system performance. In either case,
the oracle has about 38k Spanish tokens to train on.

4 Analysis of challenges from UTD

Our system relies on the pseudotext produced by
ZRTools (the only freely available UTD system we
are aware of), which presents several challenges
for MT. We used the default ZRTools parameters,
and it might be possible to tune them to our task,
but we leave this to future work.

4.1 Assigning wrong words to a cluster

Since UTD is unsupervised, the discovered clusters
are noisy. Fig. 1 shows an example of an incorrect
match between the acoustically similar “qué tal
vas con” and “te trabajo y”’ in utterances B and C,
leading to a common assignment to c2. Such incon-
sistencies in turn affect the translation distribution
conditioned on c2.

Many of these errors are due to cross-speaker
matches, which are known to be more challenging
for UTD (Carlin et al., 2011; Kamper et al., 2015;
Bansal et al., 2017). Most matches in our corpus
are across calls, yet these are also the least accu-
rate (Table 1). Within-utterance matches, which
are always from the same speaker, are the most
reliable, but make up the smallest proportion of
the discovered pairs. Within-call matches fall in
between. Overall, average cluster purity is only
34%, meaning that 66% of discovered patterns do
not match the most frequent type in their cluster.

4.2 Splitting words across different clusters

Although most UTD matches are across speakers,
recall of cross-speaker matches is lower than for
same-speaker matches. As a result, the same word
from different speakers often appears in multiple
clusters, preventing the model from learning good
translations. ZRTools discovers 15,089 clusters in

‘http://www.nltk.org/

utterance call corpus
Matches 2% 17% 81%
Accuracy 78% 53% 8%

Table 1: UTD matches within utterances, within
calls and within the corpus. Matches within an
utterance or call are usually from the same speaker.

utterance split call split
Oracle 420 (10%) 719 (17%)
Pseudotext 601 (29%) 892 (44%)

Table 2: Number (percent) of out-of-vocabulary
(OOV) word tokens or pseudoterms in the test data
for different experimental conditions.

our data, though there are only 10,674 word types.
Only 1,614 of the clusters map one-to-one to a
unique word type, while a many-to-one mapping
of the rest covers only 1,819 gold types (leaving
7,241 gold types with no corresponding cluster).
Fragmentation of words across clusters renders
pseudoterms impossible to translate when they ap-
pear only in test and not in training. Table 2 shows
that these pseudotext out-of-vocabulary (OOV)
words are frequent, especially in the call-level split.
This reflects differences in acoustic patterns of dif-
ferent speakers, but also in their vocabulary — even
the oracle OOV rate is higher in the call-level split.

4.3 UTD is sparse, giving low coverage

UTD is most reliable on long and frequently-
repeated patterns, so many spoken words are not
represented in the pseudotext, as in Fig. 1. We
found that the patterns discovered by ZRTools
match only 28% of the audio. This low cover-
age reduces training data size, affects alignment
quality, and adversely affects translation, which is
only possible when pseudoterms are present. For
almost half the utterances, UTD fails to produce
any pseudoterm at all.

5 Speech translation experiments

We evaluate our system by comparing its output
to the English translations on the test data. Since
it translates only a handful of words in each sen-
tence, BLEU, which measures accuracy of word
sequences, is an inappropriate measure of accu-
racy.® Instead we compute precision and recall over

SBLEU scores for supervised speech translation systems
trained on our data can be found in Kumar et al. (2014).
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source text

gold translation

oracle translation

utd translation

1 cémo anda ¢! plan esco- school plan
lar going

2 dile mando salu-  tell say hi
dos

3 dos dientes yeah two teeth less
menos

4 dejando o dejando dos giving or giving two
dias days

5 ah yu okey veintitrés ah yeah okay twenty
noviembre third o/ november

things whoa mean plan school school going

tell send best says say hi

two teeth less least denture yeah teeth
improves apart improves apart  two days

two days

oh ah okay another three fourth  twenty november
november

Table 3: Source text (left) paired with translations by humans (gold), oracle, and UTD-based system.
Underlined words appear in UTD and the corresponding human translations.

oracle ‘ pseudotext
K metric | utterance call | utterance call
1 Prec. 38.6 35.7 7.9 4.0
1 Rec. 33.8 28.4 1.8 0.6
5  Prec. 24.6 23.1 59 2.7
5 Rec. 54.4 46.4 5.2 1.5

Table 4: Precision and recall for K = land K =5
under different conditions.

the content words in the translation. We allow the
system to guess K words per test pseudoterm, so
for each utterance, we compute the number of cor-
rect predictions as corrQK = |predQK N gold|,
where pred@K is the multiset of words predicted
using K predictions per pseudoterm and gold is the
multiset of content words in the reference transla-
tion. For utterances where the reference translation
has no content words, we use stop words. The
utterance-level scores are then used to compute
corpus-level Precision@ K and Recall@ K.

Table 4 and Fig. 2 show that even the oracle
has mediocre precision and recall, indicating the
difficulties of training an MT system using only
bag-of-content-words on a relatively small corpus.
Splitting the data by utterance works somewhat bet-
ter, since training and test share more vocabulary.

Table 4 and Fig. 2 also show a large gap be-
tween the oracle and our system. This is not sur-
prising given the problems with the UTD output
discussed in Section 4. In fact, it is encouraging
given the small number of discovered terms and the
low cluster purity that our system can still correctly
translate some words (Table 3). These results are a
positive proof of concept, showing that it is possi-
ble to discover and translate keywords from audio
data even with no ASR or MT system. Neverthe-
less, UTD quality is clearly a limitation, especially
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Figure 2: Precision and Recall @K for the call and
utterance level test sets.

for the more realistic by-call data split.

6 Conclusions and future work

Our results show that it is possible to build a speech
translation system using only source-language au-
dio paired with target-language text, which may be
useful in many situations where no other speech
technology is available. Our analysis also points to
several possible improvements. Poor cross-speaker
matches and low audio coverage prevent our sys-
tem from achieving a high recall, suggesting the
of use speech features that are effective in multi-



speaker settings (Kamper et al., 2015; Kamper
et al., 2016a) and speaker normalization (Zeghi-
dour et al., 2016). Finally, Bansal et al. (2017)
recently showed that UTD can be improved using
the translations themselves as a source of informa-
tion, which suggests joint learning as an attractive
area for future work.

On the other hand, poor precision is most likely
due to the simplicity of our MT model, and de-
signing a model whose assumptions match our data
conditions is an important direction for future work,
which may combine our approach with insight from
recent, quite different audio-to-translation models
(Duong et al., 2016; Anastasopoulos et al., 2016;
Adams et al., 2016a; Adams et al., 2016b; Berard
et al., 2016). Parameter-sharing using word and
acoustic embeddings would allow us to make pre-
dictions for OOV pseudoterms by using the nearest
in-vocabulary pseudoterm instead.
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