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Abstract

In many natural language processing
tasks, a document is commonly mod-
eled as a bag of words using the
term frequency-inverse document fre-
quency (TF-IDF) vector. One major short-
coming of the TF-IDF feature vector is
that it ignores word orders that carry syn-
tactic and semantic relationships among
the words in a document. This paper pro-
poses a novel distributed vector represen-
tation of a document called DV-LSTM.
It is derived from the result of adapting
a long short-term memory recurrent neu-
ral network language model by the doc-
ument. DV-LSTM is expected to capture
some high-level sequential information in
a document, which other current document
representations fail to do. It was evalu-
ated in document genre classification in
the Brown Corpus , the BNC Baby Cor-
pus, and the Penn Treebank Dataset. The
results show that DV-LSTM significantly
outperforms TF-IDF vector and paragraph
vector (PV-DM) in most cases, and their
combinations may further improve classi-
fication performance.

1 Introduction

In many classification tasks in the area of natu-
ral language processing (NLP), it is necessary to
transform text documents of variable lengths into
vectors of a fixed length so that they can be clas-
sified or compared as most classifiers only work
on inputs of a fixed length. Perhaps the most
popular document vectors is the term frequency-
inverse document frequency (TF-IDF) feature vec-

tor (Robertson and Jones, 1976). Term-frequency-
based document vectorization makes two assump-
tions (Cachopo, 2007; Le and Mikolov, 2014): (a)
occurrences of each term are mutually indepen-
dent, and (b) a document is treated as a “bag of
words” and different permutations of the same set
of words are considered to be same. These as-
sumptions suffers from a major drawback that it
ignores word orders and other sequential informa-
tion in a document which can be important in some
NLP tasks such as genre classification. For exam-
ple, ‘Wall’ and ‘Street’ in the named entity ‘Wall
Street’ are treated as independent words in a TF-
IDF vector. Using an n-gram TF-IDF vector may
alleviate the problem to some extent, but it is still
hard to capture long-distance or high-level abstract
sequential patterns. Moreover, (n-gram) TF-IDF
vectors cannot capture syntactic or semantic re-
lationship/similarity between words, paragraphs,
and documents. Another notable document vec-
torization is the paragraph vector that learns from
a distributed memory model (PV-DM), which is
a succinct distributed representation of sentences
or paragraphs (Le and Mikolov, 2014; Dai et al.,
2015; Ai et al., 2016). PV-DM has been shown
to perform significantly better than the bag-of-
words model in many NLP tasks. Moreover, skip-
thought vectors (Kiros et al., 2015) that are de-
rived from recurrent encoder-decoder models also
show superior performance against the bag-of-
words model.

In this paper, we propose a novel document
vectorization method which adapts1 a long short-
term memory recurrent neural network (RNN)
language model (LSTM-LM) (Sundermeyer et al.,
2012) with a document, and then vectorize the

1One may also treat our adaptation method as re-training
the initial LSTM-LM with the adapting document.
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adapted model parameters to obtain its document
vector, labeled as DV-LSTM. Since the recurrent
nature of LSTM-LM should capture some high-
level and abstract sequential information from its
training documents, if the LM adaptation is ef-
fective, each adapted LM will contain distinctive
sequential information of the adapting document,
and the adapted parameters may be used to rep-
resent the adapting document distinctively. Our
DV-LSTM is similar to the TF-IDF vector and PV-
DM in that they all can be derived in an unsuper-
vised manner. Compared with the TF-IDF vector,
DV-LSTM is more expressive as it makes use of
continuous word embedding and sequential infor-
mation in a document. Compared with PV-DM,
DV-LSTM does not suffer from the limitation due
to a sliding context window on the inputs.

2 LSTM Language Modeling

RNN language model (LM) — especially the
long short-term memory language model (LSTM-
LM) — is the state-of-the-art language models
(Mikolov et al., 2010; Mikolov et al., 2011; Ben-
gio et al., 2006). LSTM-LM is chosen to de-
velop our document vectorization for three rea-
sons. Firstly, it can capture comparatively more
distant patterns in a document that are not limited
by the size of the input context window. Thus, the
model parameters of an LSTM-LM can encapsu-
late the different grammars and styles in its train-
ing documents. Secondly, the hidden layer(s) of
an LSTM provide a distributed representation of
the input words in a continuous space so that the
semantic and syntactic relationship among words
can be captured. Finally, by controlling the size
of the hidden layer(s) and the model parameters
to adapt, one may effectively adjust the number of
model parameters to adapt according to the size
of the adapting document to ensure that the final
document vector is derived robustly.

Figure 1 shows the LSTM-LM network for
training our document vectors. The input to the
model is the current word wt represented by its
one-hot encoding, which is projected to a dis-
tributed representation by a linear identity com-
pression layer and then by a non-linear sigmoid
layer. The identity compression layer also helps
make the model more compact so as to improve
training speed. Let st be the hidden state for the
input word wt. The model is trained to give two
kinds of outputs to the word class layer (vt) as

Figure 1: The LSTM network chosen to derive our
document vectors. (The recurrency of LSTM cells
is not shown)

well as to the output word layer (wt+1) (Mikolov
et al., 2011). That is, it produces the posterior
probability P (vt|st) of the word class vt given
the current state st, and the posterior probability
P (wt+1|vt, st) of the next word wt+1 given the
current word class and LSTM state.

3 Document Vectorization by LSTM-LM
Adaptation

We propose to derive document vectors (DVs)
from a well-trained parent LSTM language model
by adaptation using the following procedure:

STEP 1: Train a parent LM using all the docu-
ments in a training corpus.

STEP 2: Adapt the parent LM with each document
in the training corpus.

STEP 3: Extract model parameters of interest
from the adapted LM, and vectorize them to
produce DV-LSTM for the adapting document.

3.1 Derivation of DV-LSTM
In our experiments, the LSTM neural network of
Figure 1 has 200 units in the identity compres-
sion layer, 100 units in the sigmoid compression
layer, 100 LSTM units, 500 word classes and V
output units (where V is the vocabulary size). In
the derivation of DV-LSTM, only the biases in the
sigmoid layer bl ∈ R100, LSTM layer bm ∈ R400,
and word-class layer bc ∈ R500 are adapted. The
LSTM bias vector bm is further comprised of four
100-dimensional bias sub-vectors: input-gate bi-
ases bmi , forget-gate biases bmf

, output-gate bi-
ases bmo , and cell biases bmc .
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The 3 different biases are supposed to capture
different and complementary information in a doc-
ument: bl is to capture the abstract and distributed
word embeddings; bm is to capture the long-span
sequential text information in a document; bc is to
capture the word class statistics. The 3 biases are
concatenated to the final 1000-dimensional DV-
LSTM document vector as follows:

DV-LSTM = [n(b′
ml), n(b′

c)]
′ , (1)

where bml is given by

[n(b′
mi

), n(b′
mf

), n(b′
mo

), n(b′
mc

), n(b′
l)]

′ . (2)

In Eq.(1) and Eq.(2), n(·) is the normalization op-
erator which normalizes a vector to the unit norm.

According to some previous researches in genre
classification, it is found that models fitted on
some lower-level features (e.g., term-frequency re-
lated feature, which is highly correlated to the
topic and language) may actually hurt genre clas-
sification when they are tested on new documents
of the same genre but of different topic or lan-
guage (Petrenz and Webber, 2011; Petrenz, 2009;
Petrenz, 2012).

In our model, bm is a high-level abstract fea-
ture, which is relatively independent of the topic or
language specific term-frequency distribution. bc

is a lower-level feature that is related to the word
clusters. Comparing with n-gram term-frequency
features whose good performance depend on a
strong topic-genre correlation, bc is a relatively
moderate lower-level feature. We believe that by
combining high-level abstract features and lower-
level features, our model may perform better in
situations where the term-frequency based pattern
is not entirely reliable for classification. Such is
the case in the genre classification tasks of this pa-
per, where term-frequency distribution can be con-
fused by different topic-genre correlation.

4 Experimental Evaluation: Text Genre
Classification

The proposed document vector DV-LSTM was
evaluated on the genre classification of documents
in three corpora:

• Brown Corpus (Brown) (Francis and Kucera,
1979): It consists of 500 documents with a to-
tal of about 1 million words distributed across
15 genres organized hierarchically in three
levels. The sub-genres under the fiction genre

were merged (Wu et al., 2010) so that the to-
tal number of genres was reduced to 10.

• BNC Baby Corpus (BNCB) (Burnard, 2003):
It is a subset of BNC, consisting of 182 doc-
uments written in 4 genres: fiction, newspa-
pers, academic and conversation. Each genre
consists of a total of about 1 million words.

• Penn Treebank Dataset (PTB): It was artifi-
cially extracted from the Penn Treebank Cor-
pus by taking out the documents that have
genre tags provided by (Webber, 2009; Plank,
2009). It has 5 genres: essays, highlights, let-
ters, errata and news. The errata genre was
removed as there are very few documents of
that genre. We also removed short documents
with fewer than 200 words from the dataset.
At the end, the dataset has a total of 239 doc-
uments in 4 genres: 38 highlights, 95 essays,
42 letters, and 64 news.

4.1 Text pre-processing and SVM training

The Natural Language Toolkit (NLTK) (Loper
and Bird, 2002) was used for tokenization, and
the WordNet Lemmatizer (Miller, 1994) was used
for text pre-processing. The letters in the docu-
ments were also converted to lower cases to im-
prove the TF-IDF baseline performance, and the
word classes were determined by Brown cluster-
ing (Brown et al., 1992). During the unsupervised
training of PV-DMs and DV-LSTMs, documents
in a dataset were shuffled to eliminate the possibil-
ity that a classifier may simply use the position of
documents for genre classification. All data were
mean-zeroed before inputting to the classifier.

For each type or combination of document fea-
ture vectors, a linear SVM classifier was built
from the training dataset using LinearSVC from
the scikit-learn toolkit2. To improve the reliabil-
ity of experimental results, documents in each cor-
pus were shuffled ten times, and for each shuffled
dataset, a 10-fold cross-validation was conducted.
Our DV-LSTM was tested against the TF-IDF fea-
ture and the state-of-the-art paragraph vector PV-
DM. Results are reported in terms of classification
accuracies that are averages from classifications
over 10× 10-fold cross validations.

2Empirically, we did not get better results using nonlinear
kernels such as the RBF kernel.
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4.2 Training of document vector DV-LSTM

The RWTH Aachen University Neural Network
Language Modeling Toolkit (RWTHLM) (Sunder-
meyer et al., 2015; Sundermeyer et al., 2014)
was used for training all LSTM-LMs and adapting
them to produce the DV-LSTMs. The length of
historical context is the concatenation of the de-
fault sentence segmentations in the original cor-
pus up to 500 characters. The parent model was
trained with a maximum of 10 epochs, while LM
adaptation took at most 15 epochs. The initial
learning rates were set to 0.02. The sub-vectors in
bm were whitened first (mean-zeroed and scaling
to the unit variance for each axis) before concate-
nation.

Table 1: Values of various hyperparameters being
tuned for the derivation of the best PV-DM.

context window size {5, 10, 15, 20}
min. word frequency {0, 5, 10, 20}

negative word samples {0, 10 , 20}
downsampling threshold {0, 5E-5}

4.3 Training of paragraph vector PV-DM

A PV-DM was trained for each document in a cor-
pus using the Gensim toolkit (Řehůřek and Sojka,
2010). They were trained for 20 epochs with an
initial learning rate of 0.025. PV-DMs with di-
mensions of 100, 500 and 2000 were investigated,
and it was found that PV-DMs of 500 dimensions
provide consistently good performance; they are
denoted as PV500. The optimal hyperparameters
for PV-DM derivation were grid-searched for each
task using 1/10 of its corpus data. The hyperpa-
rameters and their values tried in the grid search
are summarized in Table 1.

Most hyperparameters in Table 1 are also shared
by the training of DV-LSTM. However, due to the
limitation of the current experiment platform and
the cost of grid searches, we do not tune these hy-
perparameters in training DV-LSTM. Hence the
corresponding hyperparameters in DV-LSTM are
all set to 0 unless stated explicitly. Thus DV-
LSTM is expected to have a disadvantage in the
tuning of hyperparameters.

4.4 Summary

Table 2 summarizes the dimension of various fea-
ture vectors used in the experiments, where z1000

5

Table 2: The dimension of various feature vectors.

Feature Dimension
PV500 500
z1000
5 1,000

DV-LSTM 1,000
z5 10,000

and z5 represent the TF-IDF feature vectors using
the top 1,000 and 10,000 5-grams respectively.

4.5 Experimental Results
The genre classification accuracy and the weighted
F-score results using different feature vectors over
the three corpora are summarized in Table 3 and
Table 4.

Table 3: Genre classification accuracy (%).

Features PTB Brown BNCB
4-char-gram* - 64.40 -

5-gram z5 80.91 65.24 96.27
PV500 81.63 65.68 98.35

DV-LSTM-bm 75.93 60.14 98.50
DV-LSTM-bc 82.63 63.88 99.45

DV-LSTM 84.70 65.20 100.00
DV-LSTM-PV500 86.00 67.00 100.00
DV-LSTM-z1000

5 86.38 66.84 100.00

Table 4: Genre classification F-score.

Features PTB Brown BNCB
1-gram* - - 0.913
5-gram* - - 0.956
5-POS* - - 0.947

5-gram z5 0.7996 0.6275 0.9623
PV500 0.8154 0.6455 0.9820

DV-LSTM-bm 0.7559 0.5959 0.9841
DV-LSTM-bc 0.8239 0.6326 0.9941

DV-LSTM 0.8434 0.6443 1.0000
DV-LSTM-PV500 0.8576 0.6613 1.0000
DV-LSTM-z1000

5 0.8607 0.6614 1.0000

Besides individual features, we also investi-
gated the contribution of each bias vector in DV-
LSTM and the possibility of feature combinations.
The bold results represent the best performance for
each task given by a single feature or a set of com-
bined features. Results labeled with * are baseline
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results quoted from (Tang and Cao, 2015; Wu et
al., 2010).

We have the following observations:

• For both the Brown Corpus and BNCB Cor-
pus, results from our own 5-gram TF-IDF are
better than the quoted baselines.

• In general, our DV-LSTM performs better
than PV-DM, and PV-DM performs better
than the 5-gram TF-IDF. All the bold results
are statistically significantly better than the
5-gram TF-IDF results based on the paired
sample t-test (Dietterich, 1998) at the 99%
confidence level.

• Among the single features, the proposed DV-
LSTM performs the best in both PTB and
BNCB tasks, and gives comparable perfor-
mance as PV500 in the Brown Corpus.

One possible reason is that the hyperparame-
ters for training DV-LSTM were not as fine-
tuned as those for PV500, giving DV-LSTM
a disadvantage. Another plausible reason is
that PTB’s genres are almost unrelated to the
topics and it likely requires more abstract se-
quential information for their classification.
On the other hand, the Brown Corpus has a
relatively strong overlapping between topics
and genres. Thus, features such as TF-IDF or
PV-DM that have good estimates of the term
frequencies of topic related words/phrases
could perform better.

• Both PV500 and our DV-LSTM show supe-
rior performance comparing to the traditional
n-gram TF-IDF. This is probably attributed
to the neural network’s capability of learning
abstract patterns. Moreover, the paragraph
vector and our DV-LSTM are dense represen-
tations of documents. They have more util-
ity than the sparse TF-IDF vector, especially
when comparing the semantic and syntactic
similarity of documents.

• Between the two bias components of our DV-
LSTM, it is interesting to see that the LSTM
bias vector bm (and its results are labeled
with DV-LSTM-bm in Tables 3 and 4) is out-
performed by the class bias vector bc (and its
results are labeled with DV-LSTM-bc in Ta-
bles 3 and 4). Nevertheless, it seems that they
are complementary to each other, and their

combination in DV-LSTM further improves
the classification performance.

5 Conclusions and Future Works

This paper proposes a novel distributed represen-
tation of a document, which we call “document
vector” (DV). Currently, we estimate the DV by
adapting the various bias vectors and the word
class bias of an LSTM-LM network trained from
the corpus of a task. We believe that these pa-
rameters capture some word ordering information
in a larger context that may supplement the stan-
dard frequency-based TF-IDF feature or the para-
graph vector PV-DM in solving many NLP tasks.
Here, we only confirm its effectiveness in docu-
ment genre classification. In the future, we would
like to investigate the effectiveness of our DV-
LSTM in other NLP problems such as topic clas-
sification and sentiment detection. Moreover, we
would also like to investigate the utility of this
model (or its variants) in the cross-lingual prob-
lems, as high-level sequential pattern captured by
the (deep) hidden layers is expected to be rela-
tively language independent.

6 Acknowledgements

The work described in this paper was supported
by grants from the Research Grants Council of the
Hong Kong Special Administrative Region, China
(Project Nos. HKUST616513, HKUST16206714
and HKUST16215816).

References
Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce

Croft. 2016. Analysis of the paragraph vector
model for information retrieval. In Proceedings of
the 2016 ACM on International Conference on the
Theory of Information Retrieval, pages 133–142.
ACM.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
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Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Pro-
ceedings of Interspeech, pages 1045–1048.
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