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Abstract

Translating into morphologically rich lan-
guages is difficult. Although the cover-
age of lemmas may be reasonable, many
morphological variants cannot be learned
from the training data. We present a statis-
tical translation system that is able to pro-
duce these inflected word forms. Different
from most previous work, we do not sepa-
rate morphological prediction from lexical
choice into two consecutive steps. Our ap-
proach is novel in that it is integrated in
decoding and takes advantage of context
information from both the source language
and the target language sides.

1 Introduction

Morphologically rich languages exhibit a large
amount of inflected word surface forms for most
lemmas, which poses difficulties to current statis-
tical machine translation (SMT) technology. SMT
systems, such as phrase-based translation (PBT)
engines (Koehn et al., 2003), are trained on par-
allel corpora and can learn the vocabulary that is
observed in the data. After training, the decoder
can output words which have been seen on the tar-
get side of the corpus, but no unseen words.
Sparsity of morphological variants leads to
many linguistically valid morphological word
forms remaining unseen in practical scenarios.
This is a substantial issue under low-resource con-
ditions, but the problem persists even with larger
amounts of parallel training data. When translat-
ing into the morphologically rich language, the
system fails at producing the unseen morpholog-
ical variants, leading to major translation errors.
Consider the Czech example in Table 1. A small
parallel corpus of 50K English-Czech sentences
contains only a single variant of the morphological
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’ case ‘ surface form | 50K 500K 5M 50M

1 ¢ésky . ° . .

2 ¢ések - ° ° °

3 ¢éskam - - ° °

4 Césky o o ° °

5 césky ) o o o

6 ¢éskach - ° ° °

7 ¢éskami - - - .
Table 1: Morphological variants of the Czech
lemma “¢éSka”. For differently sized corpora

(50K/500K/5M/50M), “e” indicates that the vari-
ant is present, and “o” that the same surface form
realization occurs, but in a different syntactic case.

NP

forms of the Czech lemma “¢éSka” (plural of En-
glish: “kneecap”), out of seven syntactically valid
cases. The situation improves as we add in more
training data (500K/5M/50M), but we can gener-
ally not expect the SMT system to learn all vari-
ants of each known lemma. In Czech, the number
of possible variants is even larger for other word
categories such as verbs or adjectives. Adjectives,
for instance, have different suffixes depending on
case, number, and gender of the governing noun.

In this paper, we propose an extension to
phrase-based SMT that allows the decoder to pro-
duce any morphological variant of all known lem-
mas. We design techniques for generating and
scoring unseen morphological variants fully inte-
grated into phrase-based search, with the decoder
being able to choose freely amongst all possible
morphological variants. Empirically, we observe
considerable gains in translation quality especially
under medium- to low-resource conditions.

2 Related Work

Translation into morphologically rich languages
is often tackled through “two-step”, i.e., separate
modules for morphological prediction and genera-
tion (Toutanova et al., 2008; Bojar and Kos, 2010;
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Fraser et al., 2012; Burlot et al., 2016). An impor-
tant problem is that lexical choice (of the lemma)
is carried out in a separate step from morphologi-
cal prediction.

Factored machine translation with separate
translation and generation models represents a
different approach, operating with a single-
step search. However, too many options
in decoding cause a blow-up of the search
space; and useful information is dropped when
modeling source_word—target_lemma and tar-
get_lemma—target_word separately.

Word forms not seen in parallel data are some-
times still available in monolingual data. Back-
translation (Bojar and Tamchyna, 2011) takes ad-
vantage of this. The monolingual target language
data is lemmatized, automatically translated to the
source language, and the translations are aligned
with the original, inflected target corpus to pro-
duce supplementary training data. Disadvantages
are both the computational expense and that the
back-translated text may contain errors.

Previous work on synthetic phrases by
Chahuneau et al. (2013) is most similar to our
work. They commit to generation of a single
candidate inflection of a lemma prior to decoding,
chosen only based on a hierarchical rule and
source-side information, a significant limitation.
We instead consider all morphological variants,
and we are able to use dynamically-generated
target-side context in choosing the correct variant,
which is critical for capturing phenomena such
as target-side verb-subject agreement, or the
agreement between a preposition marking case
and the case on the noun it marks.

3 Generating Unseen Morphological
Variants

We investigate an approach based on synthesized
morphological variants. A morphological genera-
tion tool is utilized to synthesize all valid morpho-
logical forms from target-side lemmas. The phrase
table is then augmented with additional entries to
provide complete coverage.

We process single target-word entries from the
baseline phrase table and feed the lemmatized tar-
get word into the morphological generation tool.
If its output contains morphological forms that are
not known as translations of the source side of
the phrase, we add these morphological variants as
new translation options. We consider two settings:
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feature type configurations

It

L, I+r, l4p, t, r+p
1(-3,3), t (-5,5)
It

It

1(-2),t(-2)

source indicator
source internal
source context

target indicator
target internal
target context

Table 2: Feature templates for the discrimina-
tive classifier: I (lemma), t (morphosyntactic tag),
r (syntactic role), p (lemma of dependency parent).
Numbers in parentheses indicate context size.

(1) word, where morphological word forms are
generated from phrase table entries of length 1 on
both source and target side, and (2.) mtu (for “min-
imal translation unit”), where the phrase source
side can have arbitrary length.

Morphological generation for Czech, for in-
stance, can be performed with the MorphoDiTa
toolkit (Strakova et al., 2014), which we will use
in our experiments. MorphoDiTa knows a dictio-
nary of most Czech lemmas and can generate all
their morphological variants (Hajic, 2004).

When not restricted, the morphological gen-
erator also produces forms which do not match
in number, tense, degree of comparison, or even
negation. This may be undesirable and we there-
fore define a rag template. The tag template pre-
vents the generation of some forms of the given
Czech lemma. The template only allows freedom
in the following morphological categories: gender,
case, person, possessor’s number, and possessor’s
gender. All other attributes must match the orig-
inal Czech word form. The morphosyntax of the
English source is not used to impose further con-
straints. We will mark this configuration with an
asterisk (%) in our experiments.

4 Scoring Unseen Morphological
Variants

Assigning dependable model scores to synthesized
morphological forms is a primary challenge. Dur-
ing decoding, the artificially added phrase table
entries compete with baseline phrases that had
been directly extracted from the parallel training
data. The correct choice has to be determined in
search based on model scores.

A phrase-based model with linguistically moti-
vated factors (Koehn and Hoang, 2007) enables us
to achieve better generalization capabilities when
translating into a morphologically rich language.



newstest | 2014 2015 2016
system BLEU | BLEU | BLEU
baseline 50K 124 10.8 11.8

+ morph-vw-50K 12.2 10.6 11.8
+ synthetic (word) 134 11.3 12.5
+ morph-vw-50K 13.4 11.4 12.7
+ synthetic (wordx) 13.3 11.3 12.5
+ morph-vw-50K 13.3 11.3 12.7
+ synthetic (mtu) 13.5 11.5 12.7
+ morph-vw-50K 13.4 11.4 12.7
+ synthetic (mtux) 134 11.3 12.9
+ morph-vw-50K 13.5 11.5 13.1

Table 3: English—Czech experimental results us-
ing 50K training sentence pairs.

newstest | 2014 2015 2016
system BLEU | BLEU | BLEU
baseline SM 20.8 16.8 18.9

+ morph-vw-5M 20.9 16.8 19.0
+ synthetic (word) 20.9 17.0 19.0
+ morph-vw-5M 21.1 17.0 19.0
+ synthetic (wordx) 20.7 16.8 19.0
+ morph-vw-5M 20.4 16.4 18.7
+ synthetic (mtu) 20.6 17.2 19.0
+ morph-vw-5M 21.0 16.9 19.0
+ synthetic (mtux) 20.8 17.1 19.1
+ morph-vw-5M 20.9 16.8 19.0

Table 5: English—Czech experimental results us-
ing 5M training sentence pairs.

In our baseline systems, we already draw on lem-
mas and morphosyntactic tags as factors on the tar-
get side, in addition to word surface forms.! The
additional target-side factors allow us to integrate
features that independently model word sense (in
terms of the lemma) and morphological attributes
(in terms of the morphosyntactic tag). All our
translation engines (cf. Section 5) incorporate n-
gram LMs over lemmas and over morphosyntac-
tic tags, and an operation sequence model (OSM)
(Durrani et al., 2013) with lemmas on the target
side. These models counteract sparsity, and where
models over surface forms fail for unseen variants,
they still assign scores which are based on reliable
probability estimates.

When enhancing a system with synthesized
phrase table entries, we add further features. Since
the usual phrase translation and lexical translation
log-probabilities over surface forms cannot be es-
timated for unseen morphological variants, but all

"But note that our factored systems operate without a di-
vision into separate translation and generation models.
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newstest | 2014 2015 2016
system BLEU | BLEU | BLEU
baseline 500K 17.7 14.4 16.1

+ morph-vw-500K 17.6 14.4 16.5
+ synthetic (word) 18.1 14.7 16.4
+ morph-vw-500K 18.4 15.2 17.3
+ synthetic (wordx) 18.0 14.8 16.6
+ morph-vw-500K 18.2 14.9 17.0
+ synthetic (mtu) 18.1 14.8 16.6
+ morph-vw-500K 18.5 15.3 17.3
+ synthetic (mtux) 18.3 15.0 16.9
+ morph-vw-500K 18.6 154 17.4

Table 4: English—Czech experimental results us-
ing 500K training sentence pairs.

newstest | 2014 2015 2016
system BLEU | BLEU | BLEU
baseline 50M 22.3 18.1 20.5

+ morph-vw-50M 22.7 18.2 20.7
+ synthetic (word) 22.3 18.2 20.5
+ morph-vw-50M 22.3 18.1 20.5
+ synthetic (wordx) 22.3 18.1 20.4
+ morph-vw-50M 22.5 18.1 20.6
+ synthetic (mtu) 22.3 18.1 20.5
+ morph-vw-50M 22.7 18.3 20.8
+ synthetic (mtux) 22.3 17.9 20.3
+ morph-vw-50M 22.4 18.1 20.5

Table 6: English—Czech experimental results us-
ing 5S0M training sentence pairs.

new variants are generated from existing lemmas,
we utilize the corresponding log-probabilities over
target lemmas. Those can be extracted from the
parallel training data and added to the synthe-
sized entries. For baseline phrase table entries,
we retain their four baseline phrase translation
and lexical translation features, meaning that fea-
tures over target lemmas score synthesized entries
and features over surface forms score baseline en-
tries. The features have separate weights in the
model combination. Furthermore, a binary indi-
cator distinguishes baseline phrases from synthe-
sized phrases.

The final key to our approach is using a discrim-
inative classifier (morph-vw, Vowpal Wabbit* for
Morphology) which can take context from both the
source side and the target side into account, as in
(Tamchyna et al., 2016). We design feature tem-
plates for the classifier that generalize to unseen
morphological variants, as listed in Table 2. “Indi-
cator” features are concatenations of words inside

https://hunch.net/~vw/



the phrase, “internal” features represent each word
in the phrase separately. Context features on the
source side capture a fixed-sized window around
the phrase. Target-side context is only to the left
of the current phrase. The feature set is designed to
force the classifier to learn two independent com-
ponents: semantic (choosing the right lemma) and
morphosyntactic (choosing the right tag, i.e., mor-
phological variant of a word). When scoring an
unseen morphological variant of a known word,
these two independent components should still be
able to assign meaningful scores to the translation.
Note that the features require lemmatization and
tagging on both sides and a dependency parse of
the source side.

5 Empirical Evaluation

For an empirical evaluation of our technique, we
build baseline phrase-based SMT engines using
Moses (Koehn et al., 2007). We then enrich
these baselines with linguistically motivated mor-
phological variants that are unseen in the paral-
lel training data, and we augment the model with
the discriminative classifier to guide morpholog-
ical selection during decoding. Different flavors
of synthetic morphological variants are compared,
each either combined with the discriminative clas-
sifier or standalone.

We choose English—Czech as a task that is rep-
resentative for machine translation from a mor-
phologically underspecified language into a mor-
phologically rich language.

5.1 Experimental Setup

We train a phrase-based translation system with
three factors on the target side of the translation
model (but no separate generation model). The
target factors are the word surface form, lemma,
and a morphosyntactic tag. We use the Czech posi-
tional tagset (Haji¢ and Hladka, 1998) which fully
describes the word’s morphological attributes. On
the source side we use only surface forms, except
for the discriminative classifier, which includes the
features as shown in Table 2.

We employ corpora that have been provided for
the English—Czech News translation shared task
at WMT16 (Bojar et al., 2016b), including the
CzEng parallel corpus (Bojar et al., 2016a). Word
alignments are created using fast_align (Dyer
et al., 2013) and symmetrized. We extract phrases
up to a maximum length of 7. The phrase table is
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baseline
+ synthetic (mtu) + morph-vw =

11.8

A, 2.7

50K

16.1

I, 17.3

18.9

A, 9.0
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5M
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BLEU
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Figure 1: Visualization of the English—Czech
translation quality on newstest2016, showing the
benefit of our approach under different training re-
source conditions (50K/500K/5M/50M).

pre-pruned by applying a minimum score thresh-
old of 0.0001 on the source-to-target phrase trans-
lation probability, and the decoder loads a maxi-
mum of 100 best translation options per distinct
source side. We use cube pruning in decoding.
Pop limit and stack limit for cube pruning are set
to 1000 for tuning and to 5000 for testing. The
distortion limit is 6. Weights are tuned on news-
test2013 with k-best MIRA (Cherry and Foster,
2012) over 200-best lists for 25 iterations. Transla-
tion quality is measured in BLEU (Papineni et al.,
2002) on three different test sets, newstest2014,
newstest2015, and newstest2016.3

Our training data amounts to around 50 mil-
lion bilingual sentences overall, but we conduct
sets of experiments with systems trained using
different fractions of this data (50K, 500K, 5M,
50M). Whereas English—Czech has good cover-
age in terms of training corpora, we simulate low-
and medium-resource conditions for the purpose
of drawing more general conclusions. Irrespec-
tive of this, we utilize the same large LMs in all
setups, assuming that proper amounts of target
language monolingual data can often be gathered,
even when parallel data is scarce. All other models
(including the morph-vw) are trained using only
the fraction of data as chosen for the respective
set of experiments, and synthesized phrase table
entries with generated morphological variants are
produced individually for each baseline phrase ta-
ble.

3We evaluate case-sensitive withmteval-v13a.pl -c,
comparing post-processed hypotheses against the raw refer-
ence.



input:

baseline:

now , six in 10 Republicans have a favorable view of Donald Trump .

ted’ , Sest v 10 republikani maj{ pfiznivy vyhled Donald Trump .

NOW, SiX iRjocation 10 Republicans.,o. have a_favorable outlook Donald,,.,, Trump ,on, .

+ synthetic (mtu) + morph-vw:

ted’ , Sest do deseti republikdnti md pfiznivy nazor na Donalda Trumpa .

now, six into tengen, Republicansgen have a_favorable opinion of Donaldac. Trumpac. -

Figure 2: Example outputs of 500K system variants. Each translation has a corresponding gloss in italics.
Errors are marked in bold. Synthetic phrase translations are underlined.

5.2 Experimental Results and Analysis

Translation results are reported in Tables 3 to 6.
Our method is effective at improving BLEU espe-
cially in the low- and medium-resource settings,
but shows only slight gains in the SM and 50M
scenarios. Overall, mtu leads to better results than
word. When we also add translations to phrases
with multiple input words, we give the system
more leeway in phrasal segmentation and our syn-
thetic phrases can perhaps be applied more easily.

In the 50K and 500K settings, we obtain consid-
erable improvements even without using the dis-
criminative model. This suggests that our scor-
ing scheme based on lemmas is indeed effective
for the synthetic phrase pairs. Additionally, model
features such as the OSM with target-side lemmas
as well as the LMs over lemmas and over mor-
phosyntactic tags seem to cope with the synthetic
word forms reasonably well. However, when we
do use the classifier, we obtain a small but consis-
tent further improvement.

Figure 1 visualizes the BLEU scores achieved
under the four training resource conditions with
the baseline system and with the system extended
via synthesized morphological word forms (in the
mtu variant) plus the discriminative classifier, re-
spectively.

In order to better understand why the improve-
ments fall off as we increase training data size,
we measure target-side out-of-vocabulary (OOV)
rates of the various settings. Our aim is to quan-
tify the potential improvement that our method can
bring. Table 7 shows the statistics: at 50K, the
baseline OOV rate is nearly 17 % and our tech-
nique successfully reduces it to less than 10 %.
The relative reduction of the OOV rate is quite
steady as training data size increases.

Figure 2 illustrates the effect of our technique in
a medium-size setting (500K). The baseline sys-
tem is forced to use the incorrect nominative case
due to the lack of required surface forms. Our
method provides these inflections (“republikdni”,
“Trumpa”) and produces a mostly grammatical
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#phrases OOV (target)
setup full| filtered types‘ tokens
baseline 50K 1.6M| 02M|45.8%|16.6%

+ synthetic (word) T78M| 39M|26.7%| 9.9 %
+ synthetic (wordx) 21M| 05M|35.0%|12.5%
+ synthetic (mtu) 190M| 57M|262%| 9.7%
+ synthetic (mtux) 3.0M| 0.7M|345%|12.3%
baseline 500K 145M| 1.4M|21.0%| 7.1%
+ synthetic (word) 443M| 16.0M|119%| 42%
+ synthetic (wordx) 169M| 25M|[152%| 52%
+ synthetic (mtu) 1344M| 258M|11.6%| 4.1%
+ synthetic (mtux) 240M| 33M|149%| 5.1%
baseline SM 1266 M| 74M| 9.1%| 3.1%
+ synthetic (word) 2544M| 58.0M| 58%| 22%
+ synthetic (wordx)| 137.1M| 114M| 6.7%| 2.4%
+ synthetic (mtu) 9533M|1059M| 5.7%| 2.1 %
+ synthetic (mtux) 192.1M| 15.0M| 6.6%| 2.4%
baseline 50M 996.5M| 23.4M| 49%| 1.7%
+ synthetic (word) |14152M|1222M| 3.6%| 1.3%
+ synthetic (wordx)|1030.7M| 304M| 4.0%| 1.4%
+ synthetic (mtu) |6256.2M (287.4M| 3.5%| 1.3%
+ synthetic (mtux) [1414.1M| 426M| 39%| 1.4%

Table 7: Phrase table statistics. We report sizes of
the full phrase tables as well as after filtering to-
wards the newstest2016 source. Target-side OOV
rates are calculated by comparing newstest2016
references against the filtered phrase tables.

translation (but is still unable to correctly translate
the preposition “in”).

6 Conclusion

We have studied the important problem of mod-
eling all morphological variants of our SMT sys-
tem’s vocabulary. We showed that we can aug-
ment our system’s vocabulary with the missing
variants and that we can effectively score these
variants using a discriminative lexicon utilizing
both source and target context. We have shown
that this leads to substantial BLEU score improve-
ments, particularly on small to medium resource
translation tasks. Given the limited training data
available for translation to many morphologically
rich languages, our approach is widely applicable.
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