
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 349–355,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Neural Automatic Post-Editing Using Prior Alignment and Reranking

Santanu Pal1, Sudip Kumar Naskar2, Mihaela Vela1, Qun Liu3 and
Josef van Genabith1,4

1Saarland University, Saarbrücken, Germany
2Jadavpur University, Kolkata, India

3ADAPT Centre, School of Computing, Dublin City University, Ireland
4German Research Center for Artificial Intelligence (DFKI), Germany

1{santanu.pal, josef.vangenabith}@uni-saarland.de
1m.vela@mx.uni-saarland.de

2sudip.naskar@cse.jdvu.ac.in
3qun.liu@dcu.ie

Abstract

We present a second-stage machine trans-
lation (MT) system based on a neural ma-
chine translation (NMT) approach to au-
tomatic post-editing (APE) that improves
the translation quality provided by a first-
stage MT system. Our APE system
(APESym) is an extended version of an
attention based NMT model with bilingual
symmetry employing bidirectional mod-
els, mt → pe and pe → mt. APE
translations produced by our system show
statistically significant improvements over
the first-stage MT, phrase-based APE and
the best reported score on the WMT 2016
APE dataset by a previous neural APE
system. Re-ranking (APERerank) of the
n-best translations from the phrase-based
APE and APESym systems provides fur-
ther substantial improvements over the
symmetric neural APE model. Human
evaluation confirms that the APERerank

generated PE translations improve on the
previous best neural APE system at WMT
2016.

1 Introduction

The ultimate goal of MT systems is to provide
fully automatic publishable quality translations.
However, existing MT systems often fail to de-
liver this. To achieve sufficient quality, transla-
tions produced by MT systems often need to be
corrected by human translators. This task is re-
ferred to as post-editing (PE). PE is often under-
stood as the process of improving a translation
provided by an MT system with the minimum

amount of manual effort (TAUS Report, 2010).
Nonetheless, translations produced by MT sys-
tems have improved substantially and consistently
over the last two decades and are now widely used
in the translation and localization industry. To en-
hance the quality of automatic translation without
changing the original MT system itself, an addi-
tional plug-in post-processing module, e.g. a sec-
ond stage monolingual MT system (an APE sys-
tem), can be introduced. This may lead to a more
reasonable and feasible solution compared to re-
building the first-stage MT system. APE can be
defined as as an automatic method for improving
raw MT output, before performing actual human
post-editing (Knight and Chander, 1994). APE as-
sumes the availability of source texts (src), cor-
responding MT output (mt) and the human post-
edited (pe) version of mt. However, APE sys-
tems can also be built without the availability of
src, by using only sufficient amounts of target
side “mono-lingual” parallel mt–pe data. Usually
APE tasks focus on systematic errors made by first
stage MT systems, acting as an effective remedy to
some of the inaccuracies in raw MT output. APE
approaches cover a wide methodological range
such as SMT techniques (Simard et al., 2007a;
Simard et al., 2007b; Chatterjee et al., 2015; Pal
et al., 2015; Pal et al., 2016d) real time integra-
tion of post-editing in MT (Denkowski, 2015),
rule-based approaches to APE (Mareček et al.,
2011; Rosa et al., 2012), neural APE (Junczys-
Dowmunt and Grundkiewicz, 2016; Pal et al.,
2016b), multi-engine and multi-alignment APE
(Pal et al., 2016a), etc.

In this paper we present a neural network based
APE system to improve raw first-stage MT output
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quality. Our neural model of APE is based on the
work described in Cohn et al. (2016) which im-
plements structural alignment biases into an atten-
tion based bidirectional recurrent neural network
(RNN) MT model (Bahdanau et al., 2015). Cohn
et al. (2016) extends the attentional soft alignment
model to traditional word alignment models (IBM
models) and agreement over both translation di-
rections (in our case mt → pe and pe → mt)
to ensure better alignment consistency. We fol-
low Cohn et al. (2016) in encouraging our align-
ment models to be symmetric (Och and Ney, 2003)
in both translation directions with embedded prior
alignments. Different from Cohn et al. (2016),
we employed prior alignment computed by a hy-
brid multi-alignment approach. Evaluation results
show consistent improvements over the raw first-
stage MT system output and over the previous best
performing neural APE (Junczys-Dowmunt and
Grundkiewicz, 2016) on the WMT 2016 APE test
set. In addition we show that re-ranking n-best
output from baseline and enhanced PB-SMT APE
systems (Section 3) together with our neural APE
output provides further statistically significant im-
provements over all the other systems.

The main contributions of our research are (i)
an application of bilingual symmetry of the bidi-
rectional RNN for APE, (ii) using a hybrid multi-
alignment based approach for the prior align-
ments, (iii) a smart way of embedding word align-
ment information in neural APE, and (iv) applying
reranking for the APE task.

The remainder of the paper is structured as fol-
lows: Section 2 describes the our symmetric neu-
ral APE model. Section 3 describes the experi-
mental setup and presents the evaluation results.
Section 4 summarizes our work, draws conclu-
sions and presents avenues for for future work.

2 Symmetric Neural Automatic Post
Editing Using Prior Alignment

Below we describe bilingual symmetry of bidirec-
tional RNN with embedded prior word alignment
for APE.

2.1 Hybrid Prior Alignment

The monolingual mt–pe parallel corpus is first
word aligned using a hybrid word alignment
method based on the alignment combination of
three different statistical word alignment meth-
ods: (i) GIZA++ (Och, 2003) word alignment with

grow-diag-final-and (GDFA) heuristic (Koehn,
2010), (ii) Berkeley word alignment (Liang et al.,
2006), and (iii) SymGiza++ (Junczys-Dowmunt
and Szał, 2012) word alignment, as well as two
different edit distance based word aligners based
on Translation Edit Rate (TER) (Snover et al.,
2006) and METEOR (Lavie and Agarwal, 2007).
We follow the alignment strategy described in (Pal
et al., 2013; Pal et al., 2016a). The aligned word
pairs are added as additional training examples to
train our symmetric neural APE model. Each word
in the first stage MT output is assigned a unique
id (swid). Each mt–pe word alignment also gets
a unique identification number (aid) and a vec-
tor representation is generated for each such aid.
Given a swid, the neural APE model is trained to
generate a corresponding aid based on the context
swid appears in. The APE words are generated
from aid by looking up the hybrid prior alignment
look-up table (LUT). Neural MT jointly learns
alignment and translation. Replacing the source
and target words by swid and aid, respectively, im-
plicitly integrates the prior alignment and lessens
the burden of the attention model. Secondly, our
approach bears a resemblance to the sense embed-
ding approach (Li and Jurafsky, 2015) since an
embedding is generated for each (swid, aid) pair.

2.2 Symmetric Neural APE

Our symmetric neural APE model (APESym) is
inspired by the bilingual symmetry (Cohn et al.,
2016) of the bidirectional RNN based MT (Bah-
danau et al., 2015). Bilingual symmetry inferences
of both directional attention models are combined.
The bidirectional RNN is based on an encoder-
decoder architecture, where the first-stage MT
output is encoded into a distributed representa-
tion, followed by a decoding step which gener-
ates the APE translation. The encoder consists
of a forward RNN (h→i = f(h→i−1, ri)), which
reads in each input string x sequentially from x1

to xm at each time step i, and a backward RNN
(h←t = f(h←i+1, ri)), which reads in the opposite
direction, i.e., sequentially from xm to x1, f be-
ing an activation function, defined as an elemen-
twise logistic sigmoid with an LSTM unit. Here,
ri = σ(W rĒxi + U rhi−1), where Ē ∈ Rm×kx

is the word embedding matrix of the MT out-
put, W r ∈ Rm×n and U r ∈ Rn×n are weight
matrices, m is the word embedding dimensional-
ity and n represents the number of hidden units.
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kx and ky correspond to the vocabulary sizes of
source and target languages, respectively. The hid-
den state of the decoder at time t is computed as
ηt = f(ηt−1, yt−1, ct), where ct is the context vec-
tor computed as ct =

∑Tx
i=1 αtihi. Here, αti is the

weight of each hi and can be computed as in Equa-
tion 1

αti =
exp(eti)∑m

j=1 exp(etj)
(1)

where eti = a(ηt−1, hi) is a word alignment
model. Based on the input (mt) and output (pe)
sequence lengths, Tx and Ty, the alignment model
is computed Tx × Ty times as in Equation 2

a(ηt−1, hi) = vaT tanh(W aηt−1 + Uahi) (2)

where W a ∈ Rm×n, Ua ∈ Rn×2n and va ∈ Rn

are the weight matrices of n hidden units. T de-
notes the transpose of a matrix. Each hidden unit
ηt can be defined in Equation 3

ηt = tanh(W dEyt−1 + Udηt−1rt + Cct) (3)

where, rt = σ(W rEyt−1 + U rηt−1 + Crct) E
is the word embedding matrix for PE. W d,W r ∈
Rn×m, Ud, U r ∈ Rn×n and C,Cr ∈ Rn×2n

are weights. The joint training of the bilingual
symmetry models is established using symmetric
training with trace bonus, which is computed as
−tr(αmt→peαpe→mtT ). This involves optimizing
L as in Equation 4.

L = − log p(pe|mt)− log p(mt|pe) + γB (4)

where B links the two models as B =
sumj

∑
i α

mt→pe
i,j αpe→mt

j,i , where α are alignment
(attention) matrices of Tx × Ty dimensions. The
advantage of symmetrical alignment cells is that
they are normalized using softmax (values in
between 0 and 1), therefore, the trace term is
bounded above by min(Tx, Ty), representing per-
fect one-to-one alignments in both directions.

To train each directional attention model (mt→
pe and pe→ mt), we follow the work described in
Cohn et al. (2016), where absolute positional bias
between the MT and PE translation (as in IBM
Model 2), fertility relative position bias (as in IBM
Models 3, 4, 5) and HMM-based Alignment (Vo-
gel et al., 1996) are incorporated with an attention
based soft alignment model.

3 Experiments and Results

We carried out our experiments on the 12K
English–German WMT 2016 APE task training

data described in Bojar et al. (2016) and for some
experiments we also use the 4.5M artificially de-
veloped APE data described in Junczys-Dowmunt
and Grundkiewicz (2016). The training data con-
sists of English–German triplets containing source
English text (src) from the IT domain, corre-
sponding German translations (mt) from a first-
stage MT system and the corresponding human
post-edited version (pe). Development and test
data contain 1,000 and 2,000 triplets respectively.

We considered two baselines: (i) the raw MT
output provided by the first-stage MT system
serves as Baseline1 (WMTB1) and (ii) Baseline2
(WMTB2) is based on Statistical APE, a second-
stage phrase-based SMT system (Koehn et al.,
2007) built using MOSES1 with default settings
and trained on the 12K mt–pe training data.

In addition to the two baselines, we also com-
pared our attention based neural mt–pe symmet-
ric model (APESym) against the best performing
system (WMTBest) in the WMT 2016 APE task
and the standard log-linearmt–pe PB-SMT model
with hybrid prior alignment as described in Sec-
tion 2.1 (APEB2). APEB2 andAPESym models
are trained on 4.55M (4.5M + 12K + pre-aligned
word pairs) parallel mt–pe data. The pre-aligned
word pairs are obtained from the hybrid prior word
alignments (Section 2.1) of the 12K WMT APE
training data. For building our APEB2 system,
we set a maximum phrase length of 7 for the
translation model, and a 5-gram language model
was trained using KenLM (Heafield, 2011). Word
alignments between themt and pe (4.5M synthetic
mt-pe data + 12K WMT APE data) were estab-
lished using the Berkeley Aligner (Liang et al.,
2006), while word pairs from hybrid prior align-
ment (Section 2.1) between mt–pe (12K data)
were used for the additional training data to build
APEB2. The reordering model was trained with
the hierarchical, monotone, swap, left to right bidi-
rectional (hier-mslr-bidirectional) method (Galley
and Manning, 2008) and conditioned on both the
source and target language. Phrase pairs that oc-
cur only once in the training data are assigned an
unduly high probability mass (1) in the PB-SMT
framework. To compensate this shortcoming, we
performed smoothing of the phrase table using the
Good-Turing smoothing technique (Foster et al.,
2006). System tuning was carried out using Mini-
mum Error Rate Training (MERT) (Och, 2003).

1http://www.statmt.org/moses/
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For setting up our neural network, previous
to training the APESym model, we performed a
number of preprocessing steps on the mt–pe par-
allel training data. First, we prepare a LUT con-
taining mt–pe hybrid prior word alignment above
(Section 2.1) a certain lexical translation proba-
bility threshold (0.3). To ensure efficient use of
the hybrid prior alignment we replaced each mt
word by a unique identification number (swid)
and each pe word by a unique alignment identi-
fication number (aid) (cf. Section 2.1). After-
wards, to effectively reduce the number of un-
known words to zero, we follow a preprocess-
ing mechanism similar to Junczys-Dowmunt and
Grundkiewicz (2016). We built our APESym

model with a single-layer LSTM as encoder and
two-layer LSTM as decoder, using 1024 embed-
ding, 1024 hidden and 512 alignment dimensions.
Our neural APE model is trained end-to-end us-
ing stochastic gradient descent (SGD), allowing
up to 20 epochs. The development set was used for
regularization by early stopping, which terminated
training after 10 epochs. The APESym model
maintains bilingual symmetry, and the inferences
of both directional models are combined. In a bid
to further improve the translation quality, we also
preformed re-ranking (cf. APERerank in Table
1). For re-ranking2, we generated 100-best trans-
lations from each participating system (WMTB2

and APEB2) along with our APESym model. As
with the SMT based APE output, we added log
probability features from our neural models. Ad-
ditionally, we used the following features: n-gram
(n = 3...7) language model probability as well
as perplexity normalized by sentence length, min-
imum Bayes risk scores, and mt–pe length ratio.
We trained the re-ranking model on the develop-
ment set using MERT with 100-distinct best trans-
lations of each participating system which are op-
timized on BLEU.

3.1 Automatic Evaluation

Table 1 provides a comparison of the base-
line WMTB1 , WMTB2 , WMTBest, APEB2,
APESym and the APERerank system. Automatic
evaluation was carried out in terms of BLEU (Pa-
pineni et al., 2002), METEOR and TER. Some
general trends can be observed across all met-
rics. Automatic post-editing, even trained on a
small amount of training data (WMTB2), pro-

2Our approach is inspired by Och et al. (2004).

vides improvements over raw MT output in gen-
eral. Additional training data, even artificially
generated, helps improve system performance
(compare APEB2 with WMTB2). Neural MT
performs better than PB-SMT based approaches
for the post-editing task on large amounts of
training data (compare WMTBest and APEB2

with WMTB2). Our APESym system based on
Cohn et al. (2016) with hybrid embedded prior
word alignment provides the best performance
among all the individual APE systems and sur-
passes the WMTBest system. The APERerank

system performs significantly better than all the
individual systems. The scores marked with * in
Table 1 indicate statistically significant improve-
ments (p < 0.01) as measured by bootstrap resam-
pling (Koehn, 2004) over the corresponding score
in the previous row. We observed that APESym

contributed to the majority (70.65%) of the trans-
lations selected by APERerank.

3.2 Human Evaluation

In order to assess the performance of the APE
system, we conducted experiments with hu-
man evaluators comparing our best APE system
(APERerank) against the WMT 2016 winning
APE system (WMTBest). Human evaluation was
carried out using CATaLog Online3 – an online
CAT tool (Pal et al., 2016c). Our human evalu-
ators were 18 undergraduate students enrolled in a
Translation Studies programme, attending a trans-
lation technologies class, including sessions on
MT and MT evaluation. All students were native
speakers of German with at least a B2 level of En-
glish. During evaluation students were presented
an English source sentence and two German MT
outputs (APERerank and WMTBest), the order-
ing of the MT outputs being alternated for each
presentation. They had to decide between the two
MT outputs by marking the translation they con-
sider of better quality in terms of both adequacy
and fluency. Each student received a set of 30
sentences for evaluation, with 20 sentences drawn
randomly and 10 sentences being common to all
students, allowing us to compare the distribution
of decisions across all sentences and the 10 com-
mon sentences. The outcome of the evaluation is
presented in Table 2. Assessors preferred the MT
output produced by APERerank in 58.5% cases

3http://santanu.appling.uni-saarland.
de/CATaLog/
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System Data BLEU↑ METEOR↑ TER↓
WMTB1 - 62.11 72.2 24.76
WMTB2 12K 63.47* 73.3* 24.64*

APEB2 5.1M 64.40* 73.7* 24.10*

WMTBest 5.1M 67.65* 76.1* 21.52*

APESym 5.1M 67.87* 76.3* 21.07*

APERerank 5.1M 69.90* 77.5* 20.70*

Table 1: Automatic evaluation results

and chose the WMTBest output for rest of the
cases (i.e., 41.5%). On the 10 common sentences
evaluated by all the evaluators, the results show
a similar trend (57.8% in favour of APERerank,
42.2% for WMTBest).

540 sentences 180 sentences
APERerank 58.5% 57.8%
WMTBest 41.5% 42.2%

Table 2: Selection of suggestions by assessors for
all sentences and for only the common sentences.

4 Conclusions and Future Work

In this paper we presented a neural APE model
that extends the attention based NMT model to tra-
ditional word alignment models and utilizes agree-
ment of bidirectional models for alignment sym-
metry. The attentions are encouraged to sym-
metrization in both translation directions. To the
best of our knowledge this is the first work on in-
tegrating hybrid prior alignment into NMT. Evalu-
ation results show significant improvements over
the first-stage raw MT system. Although the
APESym system provided only small (but sig-
nificant) improvements over WMTBest system,
re-ranking of the n-best outputs of the multiple
APE engines yields large improvements. Hu-
man evaluation also revealed the superiority of the
APERerank system over the WMTBest system.

As future work we plan to integrate source
knowledge into the neural APE framework. We
will also study further the use of standard word
alignment information to influence the attention
mechanism in neural APE.
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