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Abstract

The task of morphological analysis is to
produce a complete list of lemma+tag
analyses for a given word-form. We pro-
pose a discriminative string transduction
approach which exploits plain inflection
tables and raw text corpora, thus obviat-
ing the need for expert annotation. Ex-
periments on four languages demonstrate
that our system has much higher cover-
age than a hand-engineered FST analyzer,
and is more accurate than a state-of-the-art
morphological tagger.

1 Introduction

The task of morphological analysis is to anno-
tate a given word-form with its lemma and mor-
phological tag. Since word-forms are often am-
biguous, the goal is to produce a complete list
of correct analyses, which may involve not only
multiple inflections, but also distinct lemmas and
parts of speech (c.f. Table 1). Hand-built lexi-
cons, such as CELEX (Baayen et al., 1995), con-
tain this kind of information, but they exist only
for a small number of languages, are expensive to
create, and have limited coverage. Finite-state an-
alyzers, such as Morphisto (Zielinski and Simon,
2009) and Omorfi (Pirinen, 2015), provide an al-
ternative to lexicons, but their construction also
requires expert knowledge and substantial engi-
neering effort. Furthermore, they are often more
general than lexicons, although they may require a
lemmatic lexicon to ensure high precision.

Morphological tagging is a distinct but related
task, which aims at determining a single correct
analysis of a word-form within the context of a
sentence. Machine learning taggers, such as Mor-
fette (Chrupała et al., 2008) and Marmot (Müller
et al., 2013), are capable of achieving high tagging

accuracy, but they need to be trained on morpho-
logically annotated corpora, which are unavailable
for most languages. Often, morphological tag-
ging can be performed as a downstream applica-
tion of morphological analysis: tools such as Mar-
mot and the Zurich Dependency Parser (Sennrich
et al., 2009) have the functionality to incorporate
the output of a morphological analyzer to perform
morphological tagging.

In this paper, we propose a novel discrimina-
tive string transduction approach to morphologi-
cal analysis, which is designed to be trained on
plain inflection tables, thus obviating the need for
expert rule engineering or morphologically anno-
tated corpora. Inflection tables are available for
many languages on web sites such as Wiktionary,
thanks to crowd-sourcing efforts of moderately-
skilled native speakers.1 In addition, our system
is capable of leveraging raw unannotated corpora
to refine its analyses by re-ranking. The accu-
racy of the system on German approaches that
of a hand-engineered FST analyzer, while having
much higher coverage. The experimental results
on English, Dutch, German, and Spanish demon-
strate that it also more accurate than the analysis
module of a state-of-the-art morphological tagger.

2 Methods

Our approach to morphological analysis is based
on string transduction between a word-form (e.g.
lüfte) and an analysis composed of a lemma and a
tag (e.g. lüften+1SIE), where the tag corresponds
to the predicted inflection slot. Our system con-
sists of four modules: alignment, transduction, re-
ranking, and thresholding.

1The Unimorph Project (unimorph.org) provides inflec-
tion tables for more than 350 languages.
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Lemma POS Inflection Tag
luft Noun Nom. Pl. NP
luft Noun Acc. Pl. AP
luft Noun Gen. Pl. GP

lüften Verb 1st Sg. Ind. Pres. 1SIE
lüften Verb 1st Sg. Subj. Pres. 1SKE
lüften Verb 3rd Sg. Subj. Pres. 3SKE
lüften Verb Sg. Imperative RS

Table 1: An example of morphological analy-
sis: multiple correct interpretations of the German
word-form lüfte.

2.1 Alignment

For the training of the string transduction models,
we need aligned source-target pairs. Monotonic
alignments are inferred with a modified version
of the M2M (many-to-many) aligner of Jiampo-
jamarn et al. (2007), which maximizes the joint
likelihood of the aligned source and target sub-
string pairs using the Expectation-Maximization
algorithm. A transduction from a word-form
which happens to be shorter than its lemma (e.g.
lüfte/lüften) could be achieved by including an in-
sertion operation (e.g. ε → n). However, in or-
der to avoid a prohibitively expensive transduc-
tion model, we model insertion as a many-to-many
alignment, which bounds the transduction opera-
tion to its context.

We modify the M2M aligner by allowing the
alignment to learn the likelihood of a generalized
identity alignment (i.e., i → i). Although inflec-
tion modifies some characters in a word, the ma-
jority of characters remain unchanged. This mod-
ification influences M2M towards small, single-
character alignments.

The alignment of tags (e.g. 1SIE) merits special
consideration. The tag is treated as a single indi-
visible unit, which is typically aligned to a sub-
string in the word-form that involves the corre-
sponding affix.2 We allow the maximum length
of the alignment substring to be longer for the tag
alignment than for the individual characters in the
lemma. After aligning the training data we record
all substring alignments that involve affixes and
tags. At test time, the source-target alignment is
implied by the substring transduction sequence.

2Although our method can handle multiple tags, one tag
is sufficient to represent the word-forms of the languages that
we consider in this paper. The only exception is the circumfix
of the German past participle.

s c h r e i b et
s c h r e i b en+2PKA X
s c h r e i b en+2PKE X
s c h r e i b en+3SIA ×
s c h r e i b en+3PIE ×
s c h r e i b en+2PIA X

Table 2: Example alignments of hypothetical anal-
yses of the German word-form schreibet. The
check marks indicate which of the analyses satisfy
the affix-match constraint.

We say that a lemma+tag analysis generated from
a word-form satisfies the affix-match constraint if
and only if the resulting affix-tag pair occurs in the
alignment of the training data. Table 2 shows the
alignments of five possible analyses to the corre-
sponding word-form schreibet, of which three sat-
isfy the affix-match constraint. Only analysis #2
(in bold) is correct.

2.2 Transduction

We train transduction models for transforming the
word-forms into analyses on the aligned source-
target pairs using a modified version of DI-
RECTL+ (Jiampojamarn et al., 2010). DIRECTL+
is a feature-rich, discriminative character trans-
ducer, which searches for a model-optimal se-
quence of character transformation rules for its
input. The core of the engine is a dynamic pro-
gramming algorithm capable of transducing many
consecutive characters in a single operation, also
known as a semi-Markov model. Using a struc-
tured version of the MIRA algorithm (McDonald
et al., 2005), training attempts to assign weights
to each feature so that its linear model separates
the gold-standard derivation from all others in its
search space.

DIRECTL+ uses a number of feature templates
to assess the quality of a rule: source context, tar-
get n-gram, and joint n-gram features. Context
features conjoin the rule with indicators for all
source character n-grams within a fixed window
of where the rule is being applied. Target n-grams
provide indicators on target character sequences,
describing the shape of the target as it is being pro-
duced, and may also be conjoined with our source
context features. Joint n-grams build indicators
on rule sequences, combining source and target
context, and memorizing frequently-used rule pat-
terns.
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Source Target
schreiben + 2PKA schriebet ×
schreiben + 2PKE schreibet X
schreiben + 3SIA schrieb ×
schrieben + 2PKE schriebet ×
schreiben + 2PIA schriebt ×

Table 3: Example source-target pairs of the inflec-
tor model. The check marks indicate which of the
analyses of the German word-form schreibet sat-
isfy the mirror constraint.

Following Toutanova and Cherry (2009), we
modify the out-of-the-box version of DIRECTL+
by augmenting it with an abstract copy feature
that indicates when a rule simply copies its source
characters into the target, e.g. b → b. The copy
feature has the effect of biasing the transducer
towards preserving the source characters during
transduction.

In addition to training an analyzer model that
transforms a word-form into an analysis, we also
train an inflector model that converts an analysis
back into a word-form. This opposite transforma-
tion corresponds to the task of morphological in-
flection (Cotterell et al., 2016). By deriving two
complementary models from the same training set,
we attempt to mimic the functionality of a genuine
finite-state transducer. We say that a lemma+tag
analysis generated by the analyzer model satis-
fies the mirror constraint if and only if the inflec-
tor model correctly reconstructs the original word-
form from the analysis by returning it as its top-1
prediction. Table 3 shows five possible analyses
of the word-form schreibet, of which only one sat-
isfies the mirror constraint. Only analysis #2 (in
bold) is correct.

2.3 Re-ranking

In order to produce multiple morphological anal-
yses, we take advantage of the capability of DI-
RECTL+ to output n-best lists of candidate target
strings. To promote the most likely lemma+tag
combinations, we re-rank the n-best lists using the
Liblinear SVM tool (Fan et al., 2008), converting
the classification task into the ranking task with
the method of Joachims (2002).

The re-ranker employs several features, which
are enumerated in Table 4. The first three features
consider the form of the predicted lemma. Fea-
ture 1 indicates whether the lemma occurs at least

Description Type
1 lemma in Corpus binary
2 LM score real
3 DIRECTL+ score real
4 affix match binary
5 no affix match binary
6 no affix match, top-1 binary
7 mirrored binary
8 not mirrored binary
9 not mirrored, top-1 binary

Table 4: Features of the re-ranker.

once in a text corpus. Feature 2 is set to the nor-
malized likelihood score of the lemma computed
with a 4-gram character language model that is de-
rived from the corpus. Feature 3 is the normalized
confidence score assigned by DIRECTL+.

Features 4-6 refer to the affix-match constraint
defined in Section 2.1, in order to promote anal-
yses that involve correct tags. Features 4 and 5
are complementary and indicate whether the align-
ment between the affix of the given word-form and
the tag of the predicted analysis was generated at
least once in the training data. Feature 6 accounts
for unusual affix-tag pairs that are unattested in the
training data: it fires if the affix-match constraint
in not satisfied but the analysis is deemed the most
likely by DIRECTL+.

Features 7-9 refer to the mirror constraint de-
fined in Section 2.2, in order to promote analy-
ses that the inflector model correctly transduces
back into the initial word-form. These three fea-
tures follow the same pattern as the affix-match
features.

2.4 Thresholding

Each word-form has at least one analysis, but the
number of correct analyses varies; for example,
lüfte has seven (Table 1). The system needs to de-
cide where to “draw the line” between the correct
and incorrect analyses in its n-best list. Apart from
the top-1 analysis, the candidate analyses are fil-
tered by a pair of thresholds which are defined as
percentages of the top analysis score. The thresh-
olds aim at reconciling two types of syncretism:
one that involves multiple inflections of the same
lemma, and the other that involves inflections of
different lemmas. The first threshold is uncondi-
tional: it allows any analysis with a sufficiently
high score. The second, lower threshold is con-

213



ditional: it only allows a relatively high-scoring
analysis if its lemma occurs in one of the anal-
yses that clear the first threshold. For example,
the fourth analysis in Table 3, schrieben + 2PKE,
needs to clear both thresholds, because its lemma
differs from the top-1 analysis, schreiben + 2PKA.
Both thresholds are tuned on a development set.

3 Experiments

In this section, we evaluate our morphological an-
alyzer on English, German, Dutch, and Spanish,
and compare our results to two other systems.

3.1 Data

We extract complete inflection tables for English,
German, and Dutch from the CELEX lexical
database (Baayen et al., 1995). The number of in-
flectional categories across verbs, nouns, and ad-
jectives is 16, 50, and 24, respectively, in the three
languages. However, in order to test whether an
analyzer can handle arbitrary word-forms, the data
is not separated according to distinct POS sets. For
consistency, we ignore German noun capitaliza-
tion.

The Spanish data is from Wiktionary inflection
tables, as provided by Durrett and DeNero (2013).
and includes 57 inflectional categories of Spanish
verbs. We convert accented characters to their un-
accented counterparts followed by a special sym-
bol (e.g. cantó→ canto’), with no loss of infor-
mation.

The data is split into 80/10/10 train/dev/test
sets; for Spanish, we use the same splits as Dur-
rett and DeNero (2013). We eliminate duplicate
identical word-forms from the test data, and hold
out 20% of the development data to train the re-
ranker. The training instances are randomly shuf-
fled to eliminate potential biases.

For re-ranking, we extract word-form lists from
the first one million lines of the November 2, 2015
Wikipedia dump for the given language, and de-
rive our language models using the CMU Statisti-
cal Language Modeling Toolkit.3

3.2 Comparison to Morphisto

We first compare our German results against Mor-
phisto (Zielinski and Simon, 2009), an FST ana-
lyzer. Beyond morphological analysis, Morphisto
also performs some derivational analysis, convert-
ing compound segments back into lemmas. For a

3http://www.speech.cs.cmu.edu

fair comparison, we exclude compounds from the
test set. In addition, because the lexicon of Mor-
phisto has a limited coverage, we report micro-
averaged results in this section.

Table 5 shows that overall our system per-
forms much better on the test sets than the hand-
engineered Morphisto, which fails to analyze 43%
of the word-forms in the test set. If we disregard
the word-forms that Morphisto cannot handle, its
F-score is actually higher: 89.5% vs. 84.0%.

3.3 Comparison to Marmot

Marmot (Müller et al., 2013) is a state-of-the-
art, publicly available morphological tagger4, aug-
mented with a lemmatizing module (Müller et al.,
2015), which can also take advantage of unanno-
tated corpora. In order to make a fair comparison,
we train Marmot on the same data as our system,
with default parameters. Because Marmot is a
morphological tagger, rather than an analyzer, we
provide the training and test word-forms as single-
word sentences. In addition, we have modified
the source code to output a list of n-best analy-
ses instead of a single best analysis. No additional
re-ranking of the results is performed, as Marmot
already contains its own module for leveraging a
corpus, which is activated in these experiments.
Separate thresholds for each language are tuned on
the development sets. (c.f. Section 2.4).

Table 6 presents the results. We evaluate the
systems using macro-averaged precision, recall,
and F-score. Our system is consistently more ac-
curate, improving the F-score on each of the four
languages. Both systems make few mistakes on
Spanish verbs.

The English results stand out, with Marmot
achieving a higher recall at the cost of precision.
English contains more syncretic forms than the
other three languages: 3 different analyses per
word-form on average in the test set, compared to
1.9, 1.3, and 1.1 for German, Dutch, and Spanish,
respectively. Marmot’s edit-tree method of candi-
date selection favors fewer lemmas, which allows
the lemmatization module to run efficiently. On
the other hand, DIRECTL+ has no bias towards
lemmas or tags. This may be the reason of the
substantial difference between the two systems on
Dutch, where nearly a quarter of all syncretic test
word-forms involve multiple lemmas.

An example of an incorrect analysis is provided

4http://cistern.cis.lmu.de/marmot
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English German Dutch Spanish
P R F1 P R F1 P R F1 P R F1

DIRECTL+ 93.5 88.9 91.2 87.3 88.7 88.0 87.3 90.3 88.8 99.3 99.5 99.4
Marmot 87.5 94.3 90.8 85.3 88.5 86.9 81.3 84.7 82.9 99.2 98.9 99.1

Table 6: Macro-averaged results on four languages.

System P R F1
DIRECTL+ 78.7 92.6 85.1
Morphisto 65.1 52.7 58.2

Table 5: Micro-averaged results on German.

by Spanish lacremos. Both systems correctly iden-
tify it as a plural subjunctive form of the verb
lacrar. However, Marmot also outputs an al-
ternative analysis that involves a bizarre lemma
lacr. Our system is able to exclude this word-
form thanks to a low score from the character lan-
guage model, which is taken into consideration by
the re-ranker.

4 Conclusion

We have presented a transduction-based morpho-
logical analyzer that can be trained on plain inflec-
tion tables. Our system is highly accurate, and has
a much higher coverage than a carefully-crafted
FST analyzer. By eliminating the necessity of
expert-annotated data, our approach may lead to
the creation of analyzers for a wide variety of lan-
guages.
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