
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 157–163,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Using the Output Embedding to Improve Language Models

Ofir Press and Lior Wolf
School of Computer Science
Tel-Aviv University, Israel

{ofir.press,wolf}@cs.tau.ac.il

Abstract

We study the topmost weight matrix of
neural network language models. We
show that this matrix constitutes a valid
word embedding. When training language
models, we recommend tying the input
embedding and this output embedding.
We analyze the resulting update rules and
show that the tied embedding evolves in
a more similar way to the output embed-
ding than to the input embedding in the
untied model. We also offer a new method
of regularizing the output embedding. Our
methods lead to a significant reduction in
perplexity, as we are able to show on a va-
riety of neural network language models.
Finally, we show that weight tying can re-
duce the size of neural translation models
to less than half of their original size with-
out harming their performance.

1 Introduction

In a common family of neural network language
models, the current input word is represented as
the vector c ∈ IRC and is projected to a dense
representation using a word embedding matrix U .
Some computation is then performed on the word
embedding U>c, which results in a vector of ac-
tivations h2. A second matrix V then projects h2

to a vector h3 containing one score per vocabulary
word: h3 = V h2. The vector of scores is then con-
verted to a vector of probability values p, which
represents the models’ prediction of the next word,
using the softmax function.

For example, in the LSTM-based language
models of (Sundermeyer et al., 2012; Zaremba
et al., 2014), for vocabulary of size C, the one-
hot encoding is used to represent the input c and
U ∈ IRC×H . An LSTM is then employed, which

results in an activation vector h2 that similarly to
U>c, is also in IRH . In this case, U and V are of
exactly the same size.

We call U the input embedding, and V the out-
put embedding. In both matrices, we expect rows
that correspond to similar words to be similar: for
the input embedding, we would like the network
to react similarly to synonyms, while in the out-
put embedding, we would like the scores of words
that are interchangeable to be similar (Mnih and
Teh, 2012).

While U and V can both serve as word embed-
dings, in the literature, only the former serves this
role. In this paper, we compare the quality of the
input embedding to that of the output embedding,
and we show that the latter can be used to improve
neural network language models. Our main results
are as follows: (i) We show that in the word2vec
skip-gram model, the output embedding is only
slightly inferior to the input embedding. This is
shown using metrics that are commonly used in or-
der to measure embedding quality. (ii) In recurrent
neural network based language models, the output
embedding outperforms the input embedding. (iii)
By tying the two embeddings together, i.e., enforc-
ing U = V , the joint embedding evolves in a more
similar way to the output embedding than to the in-
put embedding of the untied model. (iv) Tying the
input and output embeddings leads to an improve-
ment in the perplexity of various language mod-
els. This is true both when using dropout or when
not using it. (v) When not using dropout, we pro-
pose adding an additional projection P before V ,
and apply regularization to P . (vi) Weight tying
in neural translation models can reduce their size
(number of parameters) to less than half of their
original size without harming their performance.

157



2 Related Work

Neural network language models (NNLMs) assign
probabilities to word sequences. Their resurgence
was initiated by (Bengio et al., 2003). Recur-
rent neural networks were first used for language
modeling in (Mikolov et al., 2010) and (Pascanu
et al., 2013). The first model that implemented
language modeling with LSTMs (Hochreiter and
Schmidhuber, 1997) was (Sundermeyer et al.,
2012). Following that, (Zaremba et al., 2014) in-
troduced a dropout (Srivastava, 2013) augmented
NNLM. (Gal, 2015; Gal and Ghahramani, 2016)
proposed a new dropout method, which is referred
to as Bayesian Dropout below, that improves on
the results of (Zaremba et al., 2014).

The skip-gram word2vec model introduced
in (Mikolov et al., 2013a; Mikolov et al., 2013b)
learns representations of words. This model learns
a representation for each word in its vocabulary,
both in an input embedding matrix and in an out-
put embedding matrix. When training is com-
plete, the vectors that are returned are the input
embeddings. The output embedding is typically
ignored, although (Mitra et al., 2016; Mnih and
Kavukcuoglu, 2013) use both the output and input
embeddings of words in order to compute word
similarity. Recently, (Goldberg and Levy, 2014)
argued that the output embedding of the word2vec
skip-gram model needs to be different than the in-
put embedding.

As we show, tying the input and the output em-
beddings is indeed detrimental in word2vec. How-
ever, it improves performance in NNLMs.

In neural machine translation (NMT) mod-
els (Kalchbrenner and Blunsom, 2013; Cho et
al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2014), the decoder, which generates the trans-
lation of the input sentence in the target lan-
guage, is a language model that is conditioned on
both the previous words of the output sentence
and on the source sentence. State of the art re-
sults in NMT have recently been achieved by sys-
tems that segment the source and target words
into subword units (Sennrich et al., 2016a). One
such method (Sennrich et al., 2016b) is based on
the byte pair encoding (BPE) compression algo-
rithm (Gage, 1994). BPE segments rare words into
their more commonly appearing subwords.

Weight tying was previously used in the log-
bilinear model of (Mnih and Hinton, 2009), but the
decision to use it was not explained, and its effect

on the model’s performance was not tested. In-
dependently and concurrently with our work (Inan
et al., 2016) presented an explanation for weight
tying in NNLMs based on (Hinton et al., 2015).

3 Weight Tying

In this work, we employ three different model cat-
egories: NNLMs, the word2vec skip-gram model,
and NMT models. Weight tying is applied sim-
ilarly in all models. For translation models, we
also present a three-way weight tying method.

NNLM models contain an input embedding ma-
trix, two LSTM layers (h1 and h2), a third hidden
scores/logits layer h3, and a softmax layer. The
loss used during training is the cross entropy loss
without any regularization terms.

Following (Zaremba et al., 2014), we employ
two models: large and small. The large model em-
ploys dropout for regularization. The small model
is not regularized. Therefore, we propose the fol-
lowing regularization scheme. A projection matrix
P ∈ IRH×H is inserted before the output embed-
ding, i.e., h3 = V Ph2. The regularizing term
λ‖P‖2 is then added to the small model’s loss
function. In all of our experiments, λ = 0.15.

Projection regularization allows us to use the
same embedding (as both the input/output embed-
ding) with some adaptation that is under regular-
ization. It is, therefore, especially suited for WT.

While training a vanilla untied NNLM, at
timestep t, with current input word sequence
i1:t = [i1, ..., it] and current target output word
ot, the negative log likelihood loss is given by:
Lt = − log pt(ot|i1:t), where pt(ot|i1:t) =

exp (V >ot
h
(t)
2 )∑C

x=1 exp(V >x h
(t)
2 )

, Uk (Vk) is the kth row of U (V ),

which corresponds to word k, and h(t)
2 is the vector

of activations of the topmost LSTM layer’s output
at time t. For simplicity, we assume that at each
timestep t, it 6= ot. Optimization of the model is
performed using stochastic gradient descent.

The update for row k of the input embedding is:

∂Lt

∂Uk
=

{
(
∑C

x=1 pt(x|i1:t) · V >x − V >ot
)

∂h
(t)
2

∂Uit
k = it

0 k 6= it

For the output embedding, row k’s update is:
∂Lt

∂Vk
=

{
(pt(ot|i1:t)− 1)h

(t)
2 k = ot

pt(k|i1:t) · h(t)
2 k 6= ot

Therefore, in the untied model, at every timestep,
the only row that is updated in the input embed-
ding is the row Uit representing the current input

158



word. This means that vectors representing rare
words are updated only a small number of times.
The output embedding updates every row at each
timestep.

In tied NNLMs, we set U = V = S. The
update for each row in S is the sum of the updates
obtained for the two roles of S as both an input and
output embedding.

The update for row k 6= it is similar to the up-
date of row k in the untied NNLM’s output embed-
ding (the only difference being that U and V are
both replaced by a single matrix S). In this case,
there is no update from the input embedding role
of S.

The update for row k = it, is made up of a term
from the input embedding (case k = it) and a term
from the output embedding (case k 6= ot). The
second term grows linearly with pt(it|i1:t), which
is expected to be close to zero, since words sel-
dom appear twice in a row (the low probability
in the network was also verified experimentally).
The update that occurs in this case is, therefore,
mostly impacted by the update from the input em-
bedding role of S.

To conclude, in the tied NNLM, every row of S
is updated during each iteration, and for all rows
except one, this update is similar to the update of
the output embedding of the untied model. This
implies a greater degree of similarity of the tied
embedding to the untied model’s output embed-
ding than to its input embedding.

The analysis above focuses on NNLMs for
brevity. In word2vec, the update rules are simi-
lar, just that h(t)

2 is replaced by the identity func-
tion. As argued by (Goldberg and Levy, 2014), in
this case weight tying is not appropriate, because
if pt(it|i1:t) is close to zero then so is the norm
of the embedding of it. This argument does not
hold for NNLMs, since the LSTM layers cause a
decoupling of the input and output embedddings.

Finally, we evaluate the effect of weight ty-
ing in neural translation models. In this model:

pt(ot|i1:t, r) =
exp(V >ot

G(t))∑Ct
x=1 exp(V >x G(t))

where r =

(r1, ..., rN ) is the set of words in the source sen-
tence, U and V are the input and output embed-
dings of the decoder and W is the input embed-
ding of the encoder (in translation models U, V ∈
IRCt×H and W ∈ IRCs×H , where Cs / Ct is the
size of the vocabulary of the source / target). G(t)

is the decoder, which receives the context vector,
the embedding of the input word (it) in U , and its

Language Subwords Subwords Subwords
pairs only in source only in target in both
EN→FR 2K 7K 85K
EN→DE 3K 11K 80K

Table 1: Shared BPE subwords between pairs of languages.

previous state at each timestep. ct is the context
vector at timestep t, ct =

∑
j∈r atjhj , where atj

is the weight given to the jth annotation at time t:
atj = exp(etj)∑

k∈r exp(eik) , and etj = at(hj), where a is
the alignment model. F is the encoder which pro-
duces the sequence of annotations (h1, ..., hN ).

The output of the decoder is then projected to
a vector of scores using the output embedding:
lt = V G(t). The scores are then converted to prob-
ability values using the softmax function.

In our weight tied translation model, we tie the
input and output embeddings of the decoder.

We observed that when preprocessing the ACL
WMT 2014 EN→FR1 and WMT 2015 EN→DE2

datasets using BPE, many of the subwords ap-
peared in the vocabulary of both the source and
the target languages. Tab. 1 shows that up to
90% (85%) of BPE subwords between English and
French (German) are shared.

Based on this observation, we propose three-
way weight tying (TWWT), where the input em-
bedding of the decoder, the output embedding of
the decoder and the input embedding of the en-
coder are all tied. The single source/target vocab-
ulary of this model is the union of both the source
and target vocabularies. In this model, both in the
encoder and decoder, all subwords are embedded
in the same duo-lingual space.

4 Results

Our experiments study the quality of various em-
beddings, the similarity between them, and the
impact of tying them on the word2vec skip-gram
model, NNLMs, and NMT models.

4.1 Quality of Obtained Embeddings
In order to compare the various embeddings, we
pooled five embedding evaluation methods from
the literature. These evaluation methods involve
calculating pairwise (cosine) distances between
embeddings and correlating these distances with
human judgments of the strength of relationships
between concepts. We use: Simlex999 (Hill et al.,

1
http://statmt.org/wmt14/translation-task.html

2
http://statmt.org/wmt15/translation-task.html

159



Input Output Tied
Simlex999 0.30 0.29 0.17
Verb-143 0.41 0.34 0.12
MEN 0.66 0.61 0.50
Rare-Word 0.34 0.34 0.23
MTurk-771 0.59 0.54 0.37

Table 2: Comparison of input and output embeddings
learned by a word2vec skip-gram model. Results are also
shown for the tied word2vec model. Spearman’s correlation ρ
is reported for five word embedding evaluation benchmarks.

PTB text8
Embedding In Out Tied In Out Tied
Simlex999 0.02 0.13 0.14 0.17 0.27 0.28
Verb143 0.12 0.37 0.32 0.20 0.35 0.42
MEN 0.11 0.21 0.26 0.26 0.50 0.50
Rare-Word 0.28 0.38 0.36 0.14 0.15 0.17
MTurk771 0.17 0.28 0.30 0.26 0.48 0.45

Table 3: Comparison of the input/output embeddings of the
small model from (Zaremba et al., 2014) and the embeddings
from our weight tied variant. Spearman’s correlation ρ is pre-
sented.

2016), Verb-143 (Baker et al., 2014), MEN (Bruni
et al., 2014), Rare-Word (Luong et al., 2013) and
MTurk-771 (Halawi et al., 2012).

We begin by training both the tied and untied
word2vec models on the text83 dataset, using a
vocabulary consisting only of words that appear
at least five times. As can be seen in Tab. 2,
the output embedding is almost as good as the
input embedding. As expected, the embedding
of the tied model is not competitive. The situa-
tion is different when training the small NNLM
model on either the Penn Treebank (Marcus et
al., 1993) or text8 datasets (for PTB, we used the
same train/validation/test set split and vocabulary
as (Mikolov et al., 2011), while on text8 we used
the split/vocabulary from (Mikolov et al., 2014)).
These results are presented in Tab. 3. In this case,
the input embedding is far inferior to the output
embedding. The tied embedding is comparable to
the output embedding.

A natural question given these results and the
analysis in Sec. 3 is whether the word embedding
in the weight tied NNLM model is more similar to
the input embedding or to the output embedding
of the original model. We, therefore, run the fol-
lowing experiment: First, for each embedding, we
compute the cosine distances between each pair of
words. We then compute Spearman’s rank corre-
lation between these vectors of distances. As can
be seen in Tab. 4, the results are consistent with

3
http://mattmahoney.net/dc/textdata

A B ρ(A,B) ρ(A,B) ρ(A,B)
word2vec NNLM(S) NNLM(L)

In Out 0.77 0.13 0.16
In Tied 0.19 0.31 0.45
Out Tied 0.39 0.65 0.77

Table 4: Spearman’s rank correlation ρ of similarity values
between all pairs of words evaluated for the different embed-
dings: input/output embeddings (of the untied model) and the
embeddings of our tied model. We show the results for both
the word2vec models and the small and large NNLM models
from (Zaremba et al., 2014).

Model Size Train Val. Test
Large (Zaremba et al., 2014) 66M 37.8 82.2 78.4
Large + Weight Tying 51M 48.5 77.7 74.3
Large + BD (Gal, 2015) + WD 66M 24.3 78.1 75.2
Large + BD + WT 51M 28.2 75.8 73.2
RHN (Zilly et al., 2016) + BD 32M 67.4 71.2 68.5
RHN + BD + WT 24M 74.1 68.1 66.0

Table 5: Word level perplexity (lower is better) on PTB
and size (number of parameters) of models that use either
dropout (baseline model) or Bayesian dropout (BD). WD –
weight decay.

our analysis and the results of Tab. 2 and Tab. 3:
for word2vec the input and output embeddings are
similar to each other and differ from the tied em-
bedding; for the NNLM models, the output em-
bedding and the tied embeddings are similar, the
input embedding is somewhat similar to the tied
embedding, and differs considerably from the out-
put embedding.

4.2 Neural Network Language Models

We next study the effect of tying the embeddings
on the perplexity obtained by the NNLM models.
Following (Zaremba et al., 2014), we study two
NNLMs. The two models differ mostly in the size
of the LSTM layers. In the small model, both
LSTM layers contain 200 units and in the large
model, both contain 1500 units. In addition, the
large model uses three dropout layers, one placed
right before the first LSTM layer, one between h1

and h2 and one right after h2. The dropout proba-
bility is 0.65. For both the small and large models,
we use the same hyperparameters (i.e. weight ini-
tialization, learning rate schedule, batch size) as
in (Zaremba et al., 2014).

In addition to training our models on PTB and
text8, following (Miyamoto and Cho, 2016), we
also compare the performance of the NNLMs on
the BBC (Greene and Cunningham, 2006) and
IMDB (Maas et al., 2011) datasets, each of which
we process and split into a train/validation/test

160



Model Size Train Val. Test
KN 5-gram 141
RNN 123
LSTM 117
Stack RNN 8.48M 110
FOFE-FNN 108
Noisy LSTM 4.65M 111.7 108.0
Deep RNN 6.16M 107.5
Small model 4.65M 38.0 120.7 114.5
Small + WT 2.65M 36.4 117.5 112.4
Small + PR 4.69M 50.8 116.0 111.7
Small + WT + PR 2.69M 53.5 104.9 100.9

Table 6: Word level perplexity on PTB and size for mod-
els that do not use dropout. The compared models are:
KN 5-gram (Mikolov et al., 2011), RNN (Mikolov et al.,
2011), LSTM (Graves, 2013), Stack / Deep RNN (Pas-
canu et al., 2013), FOFE-FNN (Zhang et al., 2015), Noisy
LSTM (Gülçehre et al., 2016), and the small model from
(Zaremba et al., 2014). The last three models are our models,
which extend the small model. PR – projection regulariza-
tion.

Model Small S + WT S + PR S + WT + PR

te
xt

8 Train 90.4 95.6 92.6 95.3
Val. - - - -
Test 195.3 187.1 199.0 183.2

IM
D

B Train 71.3 75.4 72.0 72.9
Val. 94.1 94.6 94.0 91.2
Test 94.3 94.8 94.4 91.5

B
B

C Train 28.6 30.1 42.5 45.7
Val. 103.6 99.4 104.9 96.4
Test 110.8 106.8 108.7 98.9

Table 7: Word level perplexity on the text8, IMDB and
BBC datasets. The last three models are our models, which
extend the small model (S) of (Zaremba et al., 2014).

split (we use the same vocabularies as (Miyamoto
and Cho, 2016)).

In the first experiment, which was conducted
on the PTB dataset, we compare the perplexity
obtained by the large NNLM model and our ver-
sion in which the input and output embeddings are
tied. As can be seen in Tab. 5, weight tying sig-
nificantly reduces perplexity on both the valida-
tion set and the test set, but not on the training set.
This indicates less overfitting, as expected due to
the reduction in the number of parameters. Re-
cently, (Gal and Ghahramani, 2016), proposed a
modified model that uses Bayesian dropout and
weight decay. They obtained improved perfor-
mance. When the embeddings of this model are
tied, a similar amount of improvement is gained.
We tried this with and without weight decay and
got similar results in both cases, with slight im-
provement in the latter model. Finally, by re-
placing the LSTM with a recurrent highway net-
work (Zilly et al., 2016), state of the art results are
achieved when applying weight tying. The contri-

Size Validation Test
EN→FR Baseline 168M 29.49 33.13

Decoder WT 122M 29.47 33.26
TWWT 80M 29.43 33.46

EN→DE Baseline 165M 20.96 16.79
Decoder WT 119M 21.09 16.54
TWWT 79M 21.02 17.15

Table 8: Size (number of parameters) and BLEU score of
various translation models. TWWT – three-way weight tying.

bution of WT is also significant in this model.

Perplexity results are often reported separately
for models with and without dropout. In Tab. 6, we
report the results of the small NNLM model, that
does not utilize dropout, on PTB. As can be seen,
both WT and projection regularization (PR) im-
prove the results. When combining both methods
together, state of the art results are obtained. An
analog table for text8, IMDB and BBC is Tab. 7,
which shows a significant reduction in perplexity
across these datasets when both PR and WT are
used. PR does not help the large models, which
employ dropout for regularization.

4.3 Neural Machine Translation

Finally, we study the impact of weight tying in at-
tention based NMT models, using the DL4MT4

implementation. We train our EN→FR models
on the parallel corpora provided by ACL WMT
2014. We use the data as processed by (Cho et al.,
2014) using the data selection method of (Axelrod
et al., 2011). For EN→DE we train on data from
the translation task of WMT 2015, validate on
newstest2013 and test on newstest2014 and new-
stest2015. Following (Sennrich et al., 2016b) we
learn the BPE segmentation on the union of the
vocabularies that we are translating from and to
(we use BPE with 89500 merge operations). All
models were trained using Adadelta (Zeiler, 2012)
for 300K updates, have a hidden layer size of 1000
and all embedding layers are of size 500.

Tab. 8 shows that even though the weight tied
models have about 28% fewer parameters than the
baseline models, their performance is similar. This
is also the case for the three-way weight tied mod-
els, even though they have about 52% fewer pa-
rameters than their untied counterparts.

4
https://github.com/nyu-dl/dl4mt-tutorial

161



References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain data
selection. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 355–362, Edinburgh, Scotland, UK., July.
Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Simon Baker, Roi Reichart, and Anna Korhonen. 2014.
An unsupervised model for instance level subcate-
gorization acquisition. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 278–289. Asso-
ciation for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155,
March.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni.
2014. Multimodal distributional semantics. J. Ar-
tif. Intell. Res.(JAIR), 49(1-47).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar, October. Association for Com-
putational Linguistics.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal, 12(2):23–38.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout
as a Bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the
33rd International Conference on Machine Learning
(ICML-16).

Yarin Gal. 2015. A Theoretically Grounded Appli-
cation of Dropout in Recurrent Neural Networks.
arXiv preprint arXiv:1512.05287.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Alex Graves. 2013. Generating sequences
with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Derek Greene and Pádraig Cunningham. 2006. Prac-
tical solutions to the problem of diagonal dom-
inance in kernel document clustering. In Proc.
23rd International Conference on Machine learning
(ICML’06), pages 377–384. ACM Press.

Çaglar Gülçehre, Marcin Moczulski, Misha Denil, and
Yoshua Bengio. 2016. Noisy activation functions.
arXiv preprint arXiv:1603.00391.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of
word relatedness with constraints. In Proceedings of
the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1406–
1414.

Felix Hill, Roi Reichart, and Anna Korhonen. 2016.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780, November.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. arXiv
preprint arXiv:1611.01462.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA, October. Association for Compu-
tational Linguistics.

Thang Luong, Richard Socher, and Christopher Man-
ning, 2013. Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning,
chapter Better Word Representations with Recursive
Neural Networks for Morphology, pages 104–113.
Association for Computational Linguistics.

L. Andrew Maas, E. Raymond Daly, T. Peter Pham,
Dan Huang, Y. Andrew Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150. Asso-
ciation for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Com-
put. Linguist., 19(2):313–330, June.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048.

162



Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
5528–5531. IEEE.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Tomas Mikolov, Armand Joulin, Sumit Chopra,
Michaël Mathieu, and Marc’Aurelio Ranzato. 2014.
Learning longer memory in recurrent neural net-
works. arXiv preprint arXiv:1412.7753.

Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and
Rich Caruana. 2016. A dual embedding space
model for document ranking. arXiv preprint
arXiv:1602.01137.

Yasumasa Miyamoto and Kyunghyun Cho. 2016.
Gated word-character recurrent language model. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1992–1997. Association for Computational Linguis-
tics.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In
Advances in neural information processing systems,
pages 1081–1088.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Advances in Neural Information Pro-
cessing Systems, pages 2265–2273.

Andriy Mnih and Yee Whye Teh. 2012. A fast and
simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426.

Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2013. How to construct
deep recurrent neural networks. arXiv preprint
arXiv:1312.6026.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for wmt 16. arXiv preprint arXiv:1606.02891.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of ACL.

Nitish Srivastava. 2013. Improving Neural Net-
works with Dropout. Master’s thesis, University of
Toronto, Toronto, Canada, January.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In Interspeech, pages 194–197, Portland, OR, USA,
September.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou,
and Li-Rong Dai. 2015. A fixed-size encoding
method for variable-length sequences with its ap-
plication to neural network language models. arXiv
preprint arXiv:1505.01504.

Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k,
and Jürgen Schmidhuber. 2016. Recurrent highway
networks. arXiv preprint arXiv:1607.03474.

163


