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Abstract

There is a relationship between what we
say and where we say it. Word embed-
dings are usually trained assuming that
semantically-similar words occur within
the same textual contexts. We investigate
the extent to which semantically-similar
words occur within the same geospatial
contexts. We enrich a corpus of ge-
olocated Twitter posts with physical data
derived from Google Places and Open-
StreetMap, and train word embeddings us-
ing the resulting geospatial contexts. In-
trinsic evaluation of the resulting vectors
shows that geographic context alone does
provide useful information about semantic
relatedness.

1 Introduction

Words follow geographic patterns of use. At times
the relationship is obvious; we would expect to
hear conversations about actors in and around a
movie theater. Other times the connection be-
tween location and topic is less clear; people are
more likely to tweet about something they love
from a bar than from home, but vice versa for
something they hate.1 Distributional semantics
is based on the theory that semantically similar
words occur within the same textual contexts. We
question the extent to which similar words occur
within the same geospatial contexts.

Previous work validates the relationship be-
tween the content of text and its physical origin.
Geographically-grounded models of language en-
able toponym resolution (DeLozier et al., 2015),

1Under our GEO30 word embeddings, the word love
is closer to the context GooglePlaces:bar than to high-
way:residential. The relationship is inverted for the word
hate.

document origin prediction, (Wing and Baldridge,
2011; Hong et al., 2012; Han et al., 2012b; Han
et al., 2013; Han et al., 2014) and tracking re-
gional variation in word use (Eisenstein et al.,
2010; Eisenstein et al., 2014; Bamman et al.,
2014; Huang et al., 2016). Our work differs
from earlier models; rather than modeling lan-
guage with respect to an absolute, physical loca-
tion (like a geographic bounding box), we model
language with respect to attributes describing a
type of location (like amenity:movie theater or
landuse:residential). This allows us to model the
impact of geospatial context independently of lan-
guage and region.

We enrich a corpus of geolocated tweets with
geospatial information describing the physical en-
vironment where they were posted. We use
the geospatial contexts to train geo-word embed-
dings with the skip-gram with negative sampling
(SKIPGRAM) model (Mikolov et al., 2013) as
adapted to support arbitrary contexts (Levy and
Goldberg, 2014). We then demonstrate the seman-
tic value of geospatial context in two ways. First,
using intrinsic methods of evaluation, we show
that the resulting geo-word embeddings them-
selves encode information about semantic related-
ness. Second, we present initial results suggest-
ing that because the embeddings are trained with
language-agnostic features, they give a potentially
useful signal about bilingual translation pairs.

2 Geo-enriching Tweets

We collected 6.2 million geolocated English
tweets in 20 metro areas from Jan-Mar 2016.2 The

2The metro areas, chosen based on high volume of ge-
olocated tweets collected during an initial trial period, were
Atlanta, Bandung, Bogota, Buenos Aires, Chicago, Dal-
las, Washington DC, Houston, Istanbul, Jakarta, Los An-
geles, London, Madrid, Mexico City, Miami, New York
City, Philadelphia, San Francisco Bay Area, Singapore, and
Toronto. We used only tweets explicitly tagged with geo-
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tokens in these tweets were normalized by con-
verting to lowercase, replacing @-mentions, num-
bers, and URLs with special symbols, and apply-
ing the lexical normalization dictionary of Han et
al. (2012a).

To enrich our collected tweets with geospa-
tial features, we used publicly-available geospatial
data from OpenStreetMap and the Google Places
API. OpenStreetMap (OSM) is a crowdsourced
mapping initiative. Users provide surveyed data
such as administrative boundaries, land use, and
road networks in their local area. In addition to ge-
ographic coordinates, each shape in the data set in-
cludes tags describing its type and attributes, such
as shop:convenience and building:retail for a con-
venience store. We downloaded metro extracts for
our 20 cities in shapefile format. To maximize
coverage, we supplemented the OSM data with
Google Places data from its web API, consisting of
places tagged with one or more types (i.e. aquar-
ium, ATM, etc).

We enrich each geolocated tweet by finding
the coordinates and tags for all OSM shapes and
Google Places located within 50m of the tweet’s
coordinates. The enumerated tags become geo-
graphic contexts for training word embeddings.
Figure 1 gives an example of geospatial data col-
lected for a single tweet.

3 Geo-Word Embeddings

SKIPGRAM learns latent fixed-length vector rep-
resentations vw and vc for each word and context
in a corpus such that vw · vc is highest for fre-
quently observed word-context pairs. Typically a
word’s context is modeled as a fixed-length win-
dow of words surrounding it. Levy and Gold-
berg (2014) generalized SKIPGRAM to accept ar-
bitrary contexts as input. We use their software
(word2vecf) to train word embeddings using
geospatial contexts.
word2vecf takes a list of (word, context)

pairs as input. We train 300-dimensional geo-word
embeddings denoted GEOD – where D indicates a
radius – as follows. For each length-n tweet, we
find all shapes within D meters of its origin and
enumerate the length-m list of the shapes’ geo-
graphic tags. The tweet in Figure 1, for example,
has m = 10 tags as context when training GEO30
embeddings. Under our model, each token in the
tweet shares the same contexts. Thus the input

graphic coordinates.

Radius
(m)

Intersecting Shapes Geographic Tags

15 line575 route:bus
line580 highway:tertiary

30 poly1903 building:yes,
GP:university

poly3301 building:university,
GP:university

poly5146 building:university,
GP:university

point7728 tourism:information,
poi:marker

50 poly5146 building:yes,
GP:university

point3971 highway:crossing
GooglePlaces2948 GP:bus station

Figure 1: Geoenriching an example tweet with ge-
ographic contexts at increasing radii D (meters).
For each D ∈ {15, 30, 50}, geographic contexts
include all tags belonging to shapes within D me-
ters of the origin. In this example there are 10 tags
for the tweet at D = 30m. GP denotes tags ob-
tained via Google Places; others are from Open-
StreetMap.

to word2vecf for training GEO30 embeddings
produced by the example tweet is an m× n list of
(word, context) pairs:

(it’s, route:bus),
(good, route:bus),
...
(#TechTuesday, poi:marker),
(#UPenn, poi:marker)

The mean number of tags (m) per tweet under
each threshold is 12.3 (GEO15), 21.9 (GEO30),
and 38.6 (GEO50). The mean number of tokens
(n) per tweet is 15.7.

4 Intrinsic Evaluation

To determine the extent to which geo-word em-
beddings capture useful semantic information, we
first evaluate their performance on three seman-
tic relatedness and four semantic similarity bench-
marks (listed in Table 1). In each case we calcu-
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late Spearman’s rank correlation between numer-
ical human judgements of semantic similarity or
relatedness for a large set of word pairs, and the
cosine similarity between the same word pairs un-
der the geo-word embedding models.

To understand the impact of geographic con-
texts on the embedding model, we compare
GEO15, GEO30, and GEO50 geo-word embed-
dings to the following baselines:

TEXT5: Using our corpus of geolocated tweets,
we train word embeddings with word2vecf us-
ing traditional linear bag-of-words contexts with
window width 5.

GEO30+TEXT5: We also evaluate the impact
of combining textual and geospatial contexts. We
train a model over the geolocated tweets corpus
using both the geospatial contexts from GEO30
and the textual contexts from TEXT5.

RAND30: Because our GEOD models assign
the same geospatial contexts to every token in
a tweet, we need to rule out the possibility that
GEOD models are simply capturing relatedness
between words that frequently appear in the same
tweets, like movie and theater. We implement
a random baseline model that captures similar-
ities arising from tweet co-location alone. For
each tweet, we enumerate the geospatial tags (i.e.
contexts) for shapes within 30m of the tweet ori-
gin. Then, before feeding the m × n list of
(word, context) pairs to word2vecf for train-
ing, we randomly map each tag type to a dif-
ferent tag type within the context vocabulary.
For example, route:bus could be mapped to
amenity:bank for input to the model. We redo
the random tag mapping for each tweet. In this
way, vectors for words that always appear together
within tweets are trained on the same set of associ-
ated contexts. But the randomly mapped contexts
do not model the geographic distribution of words.

4.1 Intrinsic Evaluation Results

Qualitatively, we find that strongly locational
words, like #nyc, and words frequently associated
with a type of place, like burger and baseball, tend
to have the most semantically and topically simi-
lar neighbors (Table 2) . Function words and oth-
ers with geographically independent use (i.e. man)
have less semantically-similar neighbors.

We can also qualitatively examine the ge-
ographic context embeddings vc output by
word2vecf. Recall that the SKIPGRAM objec-

Target Most similar (GEO30 ) Most similar (TEXT5)

baseball #baseball, softball,
marlins, nem, dodgers

softball, lacrosse,
#baseball, soccer,
tourney

history
natural, dinosaurs,
#naturalhistorymuseum,
museum, museums

#naturalhistorymuseum,
smithsonian’s,
#museumselfie,
#dinosaur, dinosaurs

#nyc

nyc, #newyorkcity,
#manhattan, #ny,

#ny, #iloveny,
#nyclife, #ilovenewyork,
#newyorknewyork

burger
, #burger, delicious,

,

#burger, , fries,
cheeseburger,
burgers

man have, that, years,
not, don’t

dude, guy, woman,
hugging, he

when like, my, but, so, it’s because, whenever, that,
tfw, sometimes

Table 2: Most similar words based on cosine sim-
ilarity of embeddings trained using geographic
contexts within a radius of 30m (GEO30) and tex-
tual contexts with a window of 5 words (TEXT5).

tive function pushes the vectors for frequently co-
occurring vc and vw close to one another in a
shared vector space. Thus we can find the words
(Table 4) and other contexts (Table 3) most closely
associated with each geographic context on the ba-
sis of cosine similarity. We find qualitatively that
the word-context and context-context associations
make intuitive sense.

In our intrinsic evaluation (Table 1), geo-word
embeddings outperformed the random baseline in
six of seven benchmarks. These results are sig-
nificant (p < .01) based on the Minimum Re-
quired Difference for Significance test of Rastogi
et al. (2015). This indicates that geospatial in-
formation does provide some useful semantic in-
formation. However, the GEOD embeddings un-
derperformed the TEXT5 embeddings in all cases.
And although the combined GEO30+TEXT5 em-
beddings outperformed the TEXT5 embeddings
in 2 of 3 semantic relatedness benchmarks, the
results were significant only in the case of the
MEN dataset (p < .05). This suggests, incon-
clusively, that geospatial contextual information
may improve the semantic relatedness content of
word embeddings in some cases, but that geospa-
tial context is no substitute for textual context in
capturing semantic relationships. Nevertheless,
geospatial context does provide some signal for
semantic relatedness that may be useful in com-
bination with other multimodal signals. Finally,
it should be noted that the Spearman correlation
achieved by all models in our tests is significantly
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Data Set Data Type Rand30 Geo15 Geo30 Geo50 Geo30+Text5 Text5 Ref
MEN rel 0.1372 0.319 0.337 0.298 0.5281 0.514 (Bruni et al., 2012)
MTURK-771 rel 0.0762 0.224 0.225 0.206 0.357 0.364 (Halawi and Dror, 2012)
WS353-R rel 0.0952 0.312 0.334 0.244 0.396 0.382 (Agirre et al., 2009)
WS353-S sim 0.0522 0.314 0.275 0.249 0.525 0.555 (Agirre et al., 2009)
RW sim 0.0122 0.176 0.167 0.167 0.323 0.3621 (Luong et al., 2013)
SCWS sim 0.3162 0.392 0.383 0.385 0.470 0.4991 (Huang et al., 2012)
SimLex sim 0.081 0.069 0.068 0.052 0.100 0.1921 (Hill et al., 2015)

1 Indicates a significant difference between TEXT5 and GEO30+TEXT5 results (p < 0.05, (Rastogi et al., 2015))
2 Indicates RAND30 results are significantly lower than any GEO or WORD embedding results (p < 0.01, (Rastogi et al., 2015))

Table 1: We calculate the Spearman correlation between pairwise human semantic similarity (sim) and
relatedness (rel) judgements, and cosine similarity of the associated word embeddings, over 7 benchmark
datasets.

Geographic context 5-most-similar contexts

GP.restaurant

GP.food,
GP.point of interest,
GP.establishment,
GP.cafe,
GP.bar

landuse.residential

boundary.postal code,
place.neighbourhood,
landuse.commercial,
landuse.retail,
operator.metro

amenity.place of worship

religion.christian,
building.church,
GP.place of worship,
GP.church,
religion.muslim

GP.home goods store

GP.furniture store,
GP.store,
GP.point of interest,
GP.establishment,
GP.electrician

Table 3: Most similar contexts, based on cosine
similarity of the associated GEO30 context vec-
tors.

below the current state-of-the-art; this is to be ex-
pected given the relatively small size of our train-
ing corpus (approx. 400M tokens).

5 Translation Prediction

Our intrinsic evaluation established that geospa-
tial context provides semantic information about
words, but it is weaker than information provided
by textual context. So a natural question to ask
is whether geospatial context can be useful in any
setting. One potential strength of word embed-
dings trained using geospatial contexts is that the
features are language-independent. Thus we in-

Geospatial context Most similar words (GEO30)

GP.aquarium , , ,
#aquarium, #jellyfish

natural.peak #hike, overlook, #hiking,
coit, mulholland

amenity.museum
history, #dinosaur,
#naturalhistorymuseum,
american, natural

GP.bowling alley , saray, bowling,
idarts, #bowling

religion.muslim camii, masjid, sultan,
mosque, ahmed

man made.bridge

#bridge, #manhattanbridge,
#brooklynbridge, #eastriver,

Table 4: Most similar words for target contexts,
based on cosine similarity of their associated
GEO30 word and context vectors.

fer that training geo-word embeddings jointly over
two languages might yield translation pairs that
are close to one another in vector space. This type
of model could be applicable in a low-resource
language setting where large parallel texts are un-
available but geolocated text is. To test this hy-
pothesis, we collect an additional 236k geolocated
Turkish tweets and re-train GEO30, TEXT5, and
GEO30+TEXT5 vectors on the larger set.

Similar to Irvine and Callison-Burch (2013), we
use a supervised method to make a binary trans-
lation prediction for Turkish-English word pairs.
We build a dataset of positive Turkish-English
word pairs by all Turkish words in a Turkish-
English dictionary (Pavlick et al., 2014) that ap-
pear in our vector vocabulary and do not translate
to the same word in English (528 words in total).
We add these words and their translations to our
dataset as positive examples. Then, for each Turk-
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ish word in the dataset we also select a random
English word and add this pair as a negative ex-
ample. Our resulting data set has 1056 word pairs,
50% of which are correct translations. We split
this into 80% train and 20% test examples.

We construct a logistic regression model, where
the input for each word pair is the difference be-
tween its Turkish and English word vectors, vf −
ve. We evaluate the results using precision, recall,
and F-score of positive translation predictions.

Table 5 gives our results, which we compare to
a model that makes a random guess for each word
pair. Combining geographic and textual contexts
to train embeddings leads to better translation per-
formance than using textual or geospatial contexts
in isolation. In particular, with a seed dictionary
of just 528 Turkish words and monolingual text of
just 236k tweets, our supervised method is able to
predict correct translation pairs with 67.8% preci-
sion. While the not signficant under McNemar’s
test (p=0.07), they are suggestive that geospatial
contextual information may provide a useful sig-
nal for bilingual lexicon induction when used in
combination with other methods, as in Irvine and
Callison-Burch (2013).

Vector Precision Recall FScore
Text5 0.600 0.574 0.587
Geo30 0.570 0.542 0.556
Geo30+Text5 0.678 0.588 0.630
Random 0.500 0.500 0.500

Table 5: We make a binary translation prediction
for Turkish-English word pairs using their embed-
dings in a simple logistic regression model.

6 Conclusion

Typically word embeddings are generated using
the text surrounding a word as context from which
to derive semantic information. We explored what
happens when we use the geospatial context – in-
formation about the physical location where text
originates – instead. Intrinsic evaluation of word
embeddings trained over a set of geolocated Twit-
ter data, using geospatial information derived from
OpenStreetMap and the Google Places API as
context, indicated that the geospatial context does
encode information about semantic relatedness.

We also suggested an extrinsic evaluation
method for geo-word embeddings: predicting
translation pairs without bilingual parallel cor-
pora. Our experiments suggested that while

geospatial context is not as semantically-rich as
textual context, it does provide useful semantic re-
latedness information that may be complementary
as part of a multimodal model. As future work,
another extrinsic evaluation task that may be ap-
propriate for geo-word embeddings is geolocation
prediction.
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