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Abstract

Noise Contrastive Estimation (NCE) is a
learning procedure that is regularly used
to train neural language models, since
it avoids the computational bottleneck
caused by the output softmax. In this pa-
per, we attempt to explain some of the
weaknesses of this objective function, and
to draw directions for further develop-
ments. Experiments on a small task show
the issues raised by the unigram noise
distribution, and that a context dependent
noise distribution, such as the bigram dis-
tribution, can solve these issues and pro-
vide stable and data-efficient learning.

1 Introduction

Statistical language models (LMs) play an impor-
tant role in many tasks, such as machine trans-
lation and speech recognition. Neural models,
with various neural architectures (Bengio et al.,
2001; Mikolov et al., 2010; Chelba et al., 2014;
Jozefowicz et al., 2016), have recently achieved
great success. However, most of these neural ar-
chitectures have a common issue: large output vo-
cabularies cause a computational bottleneck due to
the output normalization.

Different solutions have been proposed, as
shortlists (Schwenk, 2007), hierarchical soft-
max (Morin and Bengio, 2005; Mnih and Hin-
ton, 2009; Le et al., 2011), or self-normalisation
techniques (Devlin et al., 2014; Andreas et al.,
2015; Chen et al., 2016). Sampling-based tech-
niques explore a different solution, where a limited
number of negative examples are sampled to re-
duce the normalization cost. The resulting model
is theoretically unnormalized. Apart from impor-
tance sampling (Bengio and Sénécal, 2008; Jean et
al., 2015), the noise contrastive estimation (NCE)
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provides a simple and efficient sampling strategy,
which our work focuses on.

Introduced by (Gutmann and Hyvirinen, 2010),
NCE proposes an objective function that replaces
the conventional log-likelihood by a binary classi-
fication task, discriminating between the real ex-
amples provided by the data, and negative ex-
amples sampled from a chosen noise distribution.
This allows the model to learn indirectly from the
data distribution. NCE was first applied to lan-
guage modeling by (Mnih and Teh, 2012), and
then to various models, often in the context of ma-
chine translation (Vaswani et al., 2013; Baltescu
and Blunsom, 2015; Zoph et al., 2016). However,
recently, a comparative study of methods for train-
ing large vocabulary LMs (Chen et al., 2016) high-
lighted the inconsistency of NCE training when
dealing with very large vocabularies, showing very
different perplexity results for close loss values. In
another work (Jézefowicz et al., 2016), NCE was
shown far less data-efficient than the theoretically
similar importance sampling.

In this paper, we focus on a small task to provide
an in-depth analysis of the results. NCE relies on
the definition of an artificial classification task that
must be monitored. Indeed, using a unigram noise
distribution as usually advised leads to an ineffec-
tive solution, where the model almost systemati-
cally classifies words in the noise class. This can
be explained by the inability to sample rare words
from the noise distribution, yielding inconsistent
updates for the most frequent words. We explore
other noise distributions and show that designing a
more suitable classification task, with for instance
a simple bigram distribution, can efficiently cor-
rect the weaknesses of NCE.
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2 Theoretical background

A neural probabilistic language model with pa-
rameters 6 outputs, for an input context H, a con-
ditional distribution PQH for the next word, over
the vocabulary V. This conditional distribution is
defined using the softmax activation function:

exp sp(w, H)
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Here, sg(w, H) is a scoring function which de-
pends on the network architecture. The denomina-
tor is the partition function Z(H ), which is used to
ensure output scores are normalized into a proba-
bility distribution.

2.1

Maximum likelihood training is realized by mini-
mizing the negative log-likelihood. Parameter up-
dates will be made using this objective gradient

Maximum likelihood training
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increasing the positive output’s score, while de-
creasing the score of the rest of the vocabu-
lary. Unfortunately, both output normalization and
gradient computation require computation of the
score for every word in V, which is the bottleneck
during training, since it implies product of very
large matrices (|V| being usually anywhere from
tens to hundreds of thousand words).

2.2 Noise contrastive estimation

The idea behind noise contrastive estimation is to
learn the relative description of the data distribu-
tion P, to a reference noise distribution F,, by
learning their ratio Py/P,,. This is done by draw-
ing samples from the noise distribution and learn-
ing to discriminate between the two sets via a clas-
sification task. Considering a mixture of the data
and noise distribution, for each example w with
a context H from the data D, we draw k noise
samples from P, With the logistic regression,
we want to estimate the posterior probability of
which class C' (C' = 1 for the data, C = 0 for
the noise) the sample comes from. Since we want
to approach the data distribution with our model
of parameters 6 the conditional class probabilities
are:
PH(w|C =1) = P (w)
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and
P (w|C = 0) = P (w)

which gives posterior class probabilities:

Py (w)
P (w) + kP (w)

PH(C = 1]w) = 3)

which can be rewritten as:

PH
PH(C = 1|w) = oy, <log P@EZ;) &)
with:
_ 1
7k (1) = 1+ kexp(—u)

The reformulation obtained in equation 4 shows
that training a classifier based on a logistic re-
gression will estimate the log-ratio of the two dis-
tributions. This allows the learned distribution
to be unnormalized, as the partition function is
parametrized separately. A normalizing parame-
ter ¢ is added, as following:

PgH(w) = sg,(w, H) exp(cH)

However, this parametrization is context-
dependent. In (Mnih and Teh, 2012), the authors
argue that these context-dependent parameters ¢
can be put to zero, and that given the number of
free parameters, the output scores for each context
sg, (8, H) will self-normalize.

The objective function is given by maximizing
the log-likelihood of the true example w to belong
to class C' = 1 and the noise samples (w7 )1<j<k
to C = 0, which is, for one true examplelz

S0 (wa H)
so(w, H) + kPH (w)
kP (u?)
so(wf, H) + kP (w])
(5)
In order to obtain the global objective to maxi-
mize, we sum on all examples (H,w) € D:

Jo= Y Ji'(w)

H,weD
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(w) =log

(6)

'"We keep the notation sq (w, H) instead of sg, (w, H) for
readability.
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Figure 1: Comparative training of 3-grams neural language models with £ = 25 noise samples by
positive example, with the unigram, uniform, and bigram distribution as noise distributions. Data are
recorded over the first epoch. In the first column are shown minus the NCE score, and its fraction
concerning true data. In the middle, are shown the negative log-likelihood and the log of the partition
function. In the last column, are shown the mean posterior probabilities of classifying data as data, and

noise as noise.

3 Experimental set-up

Noise contrastive estimation offers theoretical
guarantees (Gutmann and Hyvirinen, 2010). First,
the maximum for a global objective defined on an
unlimited amount of data is reached for sy =
log P4, and is the only extrema under mild con-
ditions on the noise distribution. Secondly, the
parameters that maximize our experimental objec-
tive converge to * in probability as the amount of
data grows. Finally, as the number & of noise sam-
ples by example increases, the choice of the noise
distribution P,, has less impact on the estimation
accuracy. Still, the noise distribution should be
chosen close to the data distribution, to avoid a
too simplistic classification task which could stop
the learning process too early. To a certain extent,
we can describe it as a trade-off between the num-
ber of samples and the effort we need to put on a
’good’ noise distribution.

Considering these properties, we investigate the
impact of the noise distribution on the training of
language models. (Mnih and Teh, 2012) exper-
imented with uniform and unigram distributions,
while most of the subsequent literature used the
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unigram, excepted for (Zoph et al., 2016), who
used the uniform with a very large vocabulary.

To monitor the training process with Noise-
contrastive estimation, we report the average neg-
ative log-likelihood of the model, and its average
log-partition function (‘—11)‘ > logZ(H)). In

(H,w)eD
addition to the NCE score, we consider its true
data term, defined by log %, which
quantifies how well the model is able to recognize
examples from true data as such, and can be used
to estimate the posterior probabilities of each class

during training (as described in equation 3).

Training was made on a relatively short En-
glish corpus (news-commentary 2012) of 4.2M
words with a full vocabulary of ~ 70K words.
We trained simple feed-forward n-grams neural
language models with Tensorflow (Abadi et al.,
2015)?. Results are recorded on the training data®.

2As our goal is not performance, we choose a simple and
time-efficient model, with a context of 3 words, one hidden
layer, and embedding and hidden dimension of 50 and 100.
3We use a validation set to avoid overfitting.



4 Experiments and Results

The first series of experiments compares different
choices of noise distribution (uniform, unigram
and bigram) for various vocabulary sizes (from
~25K to the full vocabulary of ~70K words). Fig-
ure 1 gathers the evolution of different quantities
observed during the first training epoch when se-
lecting all words appearing more than once (~40K
words). The same trend is observed for all vocab-
ulary sizes.

For the three noise distributions, the NCE score
seems to converge. However, for the unigram dis-
tribution, the log-partition function does not de-
crease, thus neither does the log-likelihood. Inter-
estingly, the posterior classification probabilities
shown in the third column reveal a very ineffec-
tive behaviour: almost all the positive examples
are classified in the noise class.

On the contrary, the use of the uniform distribu-
tion yields more consistent results, despite the fact
that it is slow to learn.

Finally, learning with the bigram noise distribu-
tion shows a very consistent behaviour with a log
partition function converging steadily to zero, as
well as a negative log-likelihood on par with MLE
training. It is moreover very data-efficient, com-
pared to the uniform distribution.

k | 25 100 200 500 |
Uniform 209 105 81 7.1
Unigram 29.7 329 305 185
Unigram (o = 0.25) | 25.0 8.1 6.9 6.6
Bigram 66 65 65 65

Table 1: Negative log-likelihood after one epoch
of training with a full vocabulary, for various noise
distributions and a varying number of noise sam-
ples k

Table 1 shows the negative log-likelihood
reached after one epoch of training, for a vary-
ing number of noise samples. For the sake of
efficiency with context-independant noise distri-
butions, we used for these experiments the NCE
implementation native to Tensorflow, for which
the noise samples are re-used for all the positive
examples in the training batch. While this cer-
tainly lowers the performance of the algorithm, we
believe it still demonstrates how importantly the
convergence speed is impacted by the number of
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noise samples for context-independant noise dis-
tributions, compared to the bigram distribution.

However, using the bigram distribution implies
to maintain bigram counts. This can be costly
with a large vocabulary size, but not prohibitive.
We thus make further experiments with context-
independent noise distributions.

A common trick, when using any kind of neg-
ative sampling, is to employ a distortion coeffi-
cient 0 < a < 1 to smooth the unigram distri-
bution, by raising every count ¢(w) to c(w)®, as
it is done in (Mikolov et al., 2013). We can then
try to get the good’ of each distribution, which
is a balance between the sampling of frequent and
rare words as noise, while staying close to the data.
Results are shown on figure 2. Distortion heavily
influences how the model converges: being closer
to the uniform distribution makes training easier,
while retaining the unigram distribution’s shape is
still needed. This is also shown in table 1.

To get a better idea of the differences between
those distributions, we first examine the ability of
the models to recognize positive examples as such
for a portion of the vocabulary containing the most
frequent words. The two top graphs of figure 3
show that both the uniform and a distorted uni-
gram distribution help the model to learn to clas-
sify the 1000 most frequent words, while almost
no information seems to be kept on the rest (which
represents ~ i of the training data). However,
the model using a distorted unigram seems a little
more balanced in what it learns, for about the same
average performance. The third graph shows that
its log-partition function is behaving quite better,
which explains the negative log-likelihood gap ob-
served in figure 2 between these two distributions.
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Figure 2: Comparative training of full vocabulary
models with £ = 100 noise samples for a varying
distortion, on 5 epochs.
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Figure 3: Mean posterior probabilities of recog-
nizing true examples coming from the training
data as such, for the 1K most frequent words,
the rest of the vocabulary, and the average, for
a uniform and a unigram distribution with dis-
tortion. The bottom graph shows the two log-
partition functions. Training is done on full vo-
cabulary models, with k& = 100 noise samples, on
5 epochs.

These results show how changing the shape of
the noise distribution can positively affect train-
ing: using distortion allows to smooth the uni-
gram distribution, avoiding to sample only fre-
quent words, while reaching a better negative log-
likelihood than with a uniform distribution. How-
ever, as indicated by table 1, models trained with a
bigram noise distribution need far less noise sam-
ples or data.
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5 Conclusion

Given the difficulty to train neural language mod-
els with NCE for large vocabularies, this paper
aimed to get a better understanding of its mech-
anisms and weaknesses. Our results indicate that
the theoretical trade-off between the number of
noise samples and the effort we need to put on
a ’good’ noise distribution is verified in practice.
It also impacts the quantity of training data re-
quired, and the training stability. Notably, a con-
text dependent noise distribution yields a satisfac-
tory classification task, along with a faster and
steadier training. In the future, we project to work
on an intermediate context-dependent noise dis-
tribution, which would be able to scale well with
large vocabularies.
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