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Abstract

We introduce the URIEL knowledge
base for massively multilingual NLP and
the lang2vec utility, which provides
information-rich vector identifications of
languages drawn from typological, ge-
ographical, and phylogenetic databases
that are normalized to have straightfor-
ward and consistent formats, naming,
and semantics. The goal of URIEL
and lang2vec is to enable multilingual
NLP, especially on less-resourced lan-
guages and make possible types of exper-
iments (especially but not exclusively re-
lated to NLP tasks) that are otherwise dif-
ficult or impossible due to the sparsity and
incommensurability of the data sources.
lang2vec vectors have been shown to
reduce perplexity in multilingual language
modeling, when compared to one-hot lan-
guage identification vectors.

1 Introduction

This article introduces lang2vec!, a database
and utility representing languages as information-
rich typological, phylogenetic, and geographical
vectors. lang2vec feature primarily represent
binary language facts (e.g., that negation precedes
the verb or is represented as a suffix, that the lan-
guage is part of the Germanic family, etc.) and are
sourced and predicted from a variety of linguis-
tic resources including WALS (Dryer and Haspel-
math, 2013), PHOIBLE (Moran et al., 2014), Eth-
nologue (Lewis et al., 2015), and Glottolog (Ham-
marstrom et al., 2015).

lwww.cs.cmu.edu/~dmortens/downloads/
uriel_lang2vec_latest.tar.xz
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Despite the heterogeneity of its sources,
lang2vec provides a simple interface with con-
sistent formats, featuring naming, language codes,
and feature semantics. 1ang2vec takes as its in-
put a list of ISO 639-3 codes and outputs a ma-
trix of [0.0, 1.0] feature values (like those in Table
1), allowing straightforward “plug and play” ex-
perimentation where different sources or types of
information can easily be combined or contrasted.

lang2vec is a release of the URIEL project,
a compendium of tools and resources to bet-
ter enable multilingual NLP, especially in less-
resourced languages where conventional NLP re-
sources like parallel corpora are limited.

2 Motivation

The recent success of “polyglot” models (Her-
mann and Blunsom, 2014; Faruqui and Dyer,
2014; Ammar et al., 2016; Tsvetkov et al., 2016;
Daiber et al., 2016), in which a language model
is trained on multiple languages and shares repre-
sentations across languages, represents a promis-
ing avenue for NLP, especially for less-resourced
languages, as these models appear to be able to
learn useful patterns from better-resourced lan-
guages even when training data in the target lan-
guage is limited.

Just as neural NLP raises many questions about
the best representations of words and sentences,
these models raise the question of the representa-
tion of languages. Tsvetkov et al. (2016) shows
that vectors that represent information about the
language outperform a simple “one-hot” represen-
tation where each language is represented by a 1 in
a single dimension. This result parallels the results
of other recent work in sound/character represen-
tation, in which vectors of linguistically-aware
features outperform one-hot character represen-
tations on some tasks (Bharadwaj et al., 2016;
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S_SUBIJECT- S_SUBIJECT- S_ADPOSITION- S_ADPOSITION-
_BEFORE_VERB _AFTER_VERB _BEFORE_NOUN _AFTER_NOUN
eng 1 0 1 0
mlg 0 1 1 0
kaz 1 0 0 1

Table 1: Truncated lang2vec syntax vectors for English, Malagasy, and Kazakh, representing binary
feature values converted from multi-class features in WALS (Dryer and Haspelmath, 2013) (§3.1), ex-
tracted by text-mining prose descriptions in Ethnologue (Lewis et al., 2015) (§3.1), and imputed by
k-nearest-neighbors classification from related, nearby, and similar languages (§4).

Training set baseline id id+phonology+inventory
Italian monolingual 4.36 — —
Italian, French, Romanian 5.73 493 4.24 (-26.0%)
Italian, French, Romanian, Hindi 5.88 4.98 4.41 (-25.0%)
Hindi monolingual 3.70 — —
Hindi, Tamil, Telegu 4.14 3.78 3.35 (-19.1%)
Hindi, Tamil, Telegu, English 4.29 3.82 3.42 (-20.3%)

Table 2: Perplexity of monoglot and polyglot language models in Italian and Hindi (Tsvetkov et
al., 2016), when the languages are not identified to the model (baseline), when the languages are
represented as one-hot vectors (id), and when languages are represented as lang2vec vectors

(id+phonology+inventory).

Rama, 2016).

Sample results from Tsvetkov et al. (2016) are
reproduced in Table 2, measuring the perplexity of
monolingual and polyglot models, trained on pro-
nunciation dictionaries in several languages and
tested on Italian and Hindi. We can see that train-
ing on a set of three similar languages, and a set
of four similar and dissimilar languages, raises
perplexity above the baseline monolingual model,
even when the language is identified to the model
by a one-hot (id) vector. However, perplexity is
lowered by the introduction of phonological fea-
ture vectors for each language (the phonology
and inventory vector types described in §3.1),
giving consistently lower perplexity than even the
monolingual baseline.

Providing such vectors for many languages,
however, is made difficult by the somewhat piece-
meal digital representation of language informa-
tion. There exist many information-rich sources
of language data, but each source covers differ-
ent sets of languages in different levels of detail,
has different formats and semantics (ranging from
binary features to trees to English prose descrip-
tions), uses different identifiers for languages and
different names for features, etc.

It does not take long in collecting a “polyglot”
experiment like those in Ammar et al. (2016),

Tsvetkov et al. (2016), or Daiber et al. (2016)
before one adds a language for which an ex-
pected feature is missing, present only in another
database or not present in any database; this prob-
lem is compounded when working on genuinely
less-studied languages. The initial motivation for
the URIEL knowledge base and the lang2vec
utility is to make such research easier, allow-
ing different sources of information to be easily
used together or as different experimental condi-
tions (e.g., is it better to provide this model in-
formation about the syntactic features of the lan-
guage, or the phylogenetic relationships between
the languages?). Standardizing the use of this
kind of information also makes it easier to repli-
cate and expand on previous work, without need-
ing to know how the authors processed, for exam-
ple, WALS feature classes or PHOIBLE invento-
ries into model input.

While 1ang2vec was originally conceived as
providing rich language representations to “poly-
glot” models, it can be utilized in a variety of
kinds of research projects (O’Horan et al., 2016):
helping to choose “bridge” or “pivot” languages
for cross-lingual transfer (Deri and Knight, 2016),
directly providing feature values to systems in-
terested in those specific features, or acting as
a dataset for the prediction of unknown or un-



recorded language facts (Daumé III and Camp-
bell, 2007; Daumé III, 2009; Coke et al., 2016).
By normalizing information from a variety of data
sources, it can also allow the comparison of re-
sources, due to format and semantic differences,
that were difficult to compare directly before, and
help to quantify knowledge gaps concerning world
languages.

3 Vector types

lang2vec offers a variety of vector representa-
tions of languages, of different types and derived
from different sources, but all reporting feature
values between 0.0 (generally representing the ab-
sence of a phenomenon or non-membership in a
class) and 1.0 (generally representing the pres-
ence of a phenomenon or membership in a class).
This normalization makes vectors from different
sources more easily interchangeable and more eas-
ily predictable for each other (£4).

As in SSWL (Collins and Kayne, 2011), differ-
ent features are not held to be mutually exclusive;
the features S_.SVO and S_SOV can both be 1 if
both orders are normally encountered in the lan-
guage.

Phylogeny, geography, and identity vectors are
complete—they have no missing values, due to the
nature of how they are calculated. The typological
features (syntax, phonology, and inventory), how-
ever, have missing values, reflecting the coverage
of the original sources; missing values are repre-
sented in the output as “~-"". Predicted typological
vectors (§4) attempt to impute these values based
on related, neighboring, and typologically similar
languages.

All vectors within the syntax, phonology,
and inventory categories have the same dimen-
sionality as other types of vectors in the same cat-
egory, even though the sources themselves may
only represent a subset of these values, to allow
straightforward element-wise comparison of val-
ues. (This way, when WALS happens not to con-
tain a feature value that SSWL does, they can eas-
ily be combined by a vector operation, without
needing to track down specific feature names or
go back to the original sources. In general, users
will probably want to use the union or average of
relevant sources, or use the knn predictions.)

10

3.1 Typological vectors

The syntax features are adapted (after conver-
sion to binary features) from the World Atlas of
Language Structures (WALS) (Dryer and Haspel-
math, 2013), directly from Syntactic Structures
of World Languages (Collins and Kayne, 2011)
(whose features are already binary), and indirectly
by text-mining the short prose descriptions on ty-
pological features in Ethnologue (Lewis et al.,
2015).2

The phonology features are adapted in the
same manner from WALS and Ethnologue.

The phonetic inventory features are adapted
from the PHOIBLE database, itself a collec-
tion and normalization of seven phonological
databases (Moran et al., 2014; Chanard, 2006;
Crothers et al., 1979; Hartell, 1993; Michael et
al., 2012; Maddieson and Precoda, 1990; Ra-
maswami, 1999). The PHOIBLE-based features
in lang2vec primarily represent the presence or
absence of natural classes of features (e.g., inter-
dental fricatives, voiced uvulars, etc.), with 1 rep-
resenting the presence of at least one sound of
that class and O representing absence. They are
derived from PHOIBLE’s phonetic inventories by
extracting each segment’s articulatory features us-
ing the PanPhon feature extractor (Mortensen et
al., 2016), and using these features to determine
the presense or absence of the relevant natural
classes.

3.2 Phylogeny vectors

The fam vectors express shared membership in
language families, according to the world lan-
guage family tree in Glottolog (Hammarstrém et
al., 2015). Each dimension represents a lan-
guage family or branch thereof (such as “Indo-
European” or “West Germanic” in Table 4).

3.3 Geography vectors

Although another component of URIEL (to be de-
scribed in a future publication) provides geograph-
ical distances between languages, geo vectors ex-
press geographical location with a fixed number
of dimensions and each dimension representing
the same feature even when different sets of lan-
guages are considered. Each dimension represents

Descriptions of well-studied typological features are of-
ten expressed formulaically in prose (“SVO”, “adjective be-
fore noun”, “(C)(C)v(C)”, etc.), and are relatively straightfor-
ward to extract given regular expressions and some Boolean
logic (e.g., if “CV” and not “CCV” and ...).



Vector type #Languages #Features #Data points Y% Coverage
Syntax (from sources)

syntax_wals 1808 98 78732 44%
syntax_sswl 230 33 6404 84%
syntax_ethnologue 1336 30 18105 45%
Syntax (averaged over sources)

syntax_avg 2654 103 94227 34%
Syntax (predicted)

syntax_knn 7970 103 820910 100%
Phonology (from sources)

phonology_wals 832 27 14358 64%
phonology_ethnologue 543 8 1017 23%
Phonology (averaged over sources)

phonology_avg 1296 28 15303 42%
Phonology (predicted)

phonology_knn 7970 28 223160 100%
Inventory (from sources)

inventory_phoible_aa 202 158 31916 100%
inventory_phoible_gm 428 158 67624 100%
inventory_phoible_ph 404 158 63832 100%
inventory_phoible_ra 100 158 15800 100%
inventory_phoible_saphon 334 158 52772 100%
inventory_phoible_spa 219 158 34602 100%
inventory_phoible_upsid 334 158 75050 100%
Inventory (averaged over sources)

inventory_avg 1715 158 270970 100%
Inventory (predicted)

inventory_knn 7970 158 1259260 100%

Table 3: Typological vectors available in Lang2vec, along with the number of languages and features,
the number of individual data points, and the percentage of those language/feature pairs for which that
data point exists.

Indo-European Germanic West Germanic Romance North Germanic
deu 1 1 1 0 0
eng 1 1 1 0 0
fra 1 0 0 1 0
swe 1 1 0 0 1
mlg 0 0 0 0 0

Table 4: Truncated 1 ang2vec phylogeny vectors for German, English, French, Swedish, and Malagasy,
where 1 represents membership in a particular language family or branch.
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the orthodromic distance—that is, the “great cir-
cle” distance—from the language in question to a
fixed point on the Earth’s surface. These distances
are expressed as a fraction of the Earth’s antipodal
distance, so that values will always be in between
0.0 (directly at the fixed point) and 1.0 (at the an-
tipode of the fixed point).

Figure 1: Example of a Fibonacci lattice over-
laid on the Earth’s surface, representing the “fixed
points” of a geo vector (§3.3). (Map data:
Google.)

The fixed points were derived by generating
a spherical Fibonacci lattice (Gonzélez, 2009;
Keinert et al., 2015), a technique that approxi-
mates with high precision a uniform distribution
of points on a sphere. Language points are derived
from Glottolog, WALS, and SSWL’s declarations
of language location.?

3.4 Identity vectors

The id vector is simply a one-hot vector iden-
tifying each language. These vectors can serve
as simple identifiers of languages to a system,
serve as the control in an experiment in introduc-
ing (say) typological information to a system, as
in Tsvetkov et al. (2016), or serve in combination
with other vectors (such as fam) that do not al-
ways identify a language uniquely.

4 Feature prediction

One of the major difficulties in using typological
features in multilingual processing is that many
languages, and many features of individual lan-
guages, happen to be missing from the databases.

31t should be emphasized that these points are abstractions
rather than precise facts; there is no one point on Earth that
best specifies “English”, and no definition of the “center” of
a language’s area would have a known and an unambiguous
answer for every language. About 2% of language codes had
no corresponding geographical information in any database;
we filled these in manually where possible.
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For example, no relevant syntactic features
from Slovak were available in any of the source
databases.* It is not a mystery, however, what sort
of language Slovak is; it is probably very similar
to Czech, somewhat similar to other West Slavic
languages, etc. Likewise, it is probably more sim-
ilar overall to nearby languages than far-away lan-
guages. °

The question of how we can best predict un-
known typological features is a larger question
(Daumé III and Campbell, 2007; Daumé I1I, 2009;
Coke et al., 2016) than this article can capture
in detail, but nonetheless we can offer a prelim-
inary attempt at providing practically useful ap-
proximations of missing features by a k-nearest-
neighbors approach. By taking an average of ge-
netic, geographical, and feature distances between
languages, and calculating a weighted 10-nearest-
neighbors classification, we can predict feature
missing values with an accuracy of 92.93% in 10-
fold cross-validation. (We will describe these pro-
cedures, the exact notions of distance involved, al-
ternative prediction methods that we also investi-
gated, and their results in more detail in a future
article.)

5 Conclusion

While there are many language-information re-
sources available to NLP, their heterogeneity in
format, semantics, language naming, and feature
naming makes it difficult to combine them, com-
pare them, and use them to predict missing val-
ues from each other. lang2vec aims to make
cross-source and cross-information-type experi-
ments straightforward by providing standardized,
normalized vectors representing a variety of infor-
mation types.
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