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Abstract

We consider the task of predicting how lit-
erary a text is, with a gold standard from
human ratings. Aside from a standard bi-
gram baseline, we apply rich syntactic tree
fragments, mined from the training set, and
a series of hand-picked features. Our model
is the first to distinguish degrees of highly
and less literary novels using a variety of
lexical and syntactic features, and explains
76.0 % of the variation in literary ratings.

1 Introduction

What makes a literary novel literary? This seems
first of all to be a value judgment; but to what ex-
tent is this judgment arbitrary, determined by social
factors, or predictable as a function of the text? The
last explanation is associated with the concept of
literariness, the hypothesized linguistic and formal
properties that distinguish literary language from
other language (Baldick, 2008). Although the defi-
nition and demarcation of literature is fundamental
to the field of literary studies, it has received sur-
prisingly little empirical study. Common wisdom
has it that literary distinction is attributed in social
communication about novels and that it lies mostly
outside of the text itself (Bourdieu, 1996), but an
increasing number of studies argue that in addition
to social and historical explanations, textual fea-
tures of various complexity may also contribute to
the perception of literature by readers (cf. Harris,
1995; McDonald, 2007). The current paper shows
that not only lexical features but also hierarchical
syntactic features and other textual characteristics
contribute to explaining judgments of literature.

Our main goal in this project is to answer the
following question: are there particular textual con-
ventions in literary novels that contribute to readers
judging them to be literary? We address this ques-

tion by building a model of literary evaluation to
estimate the contribution of textual factors. This
task has been considered before with a smaller set
of novels (restricted to thrillers and literary nov-
els), using bigrams (van Cranenburgh and Koolen,
2015). We extend this work by testing on a larger,
more diverse corpus, and by applying rich syn-
tactic features and several hand-picked features to
the task. This task is first of all relevant to liter-
ary studies—to reveal to what extent literature is
empirically associated with textual characteristics.
However, practical applications are also possible;
e.g., an automated model could help a literary pub-
lisher decide whether the work of a new author
fits its audience; or it could be used as part of a
recommender system for readers.

Literary language is arguably a subjective no-
tion. A gold standard could be based on the expert
opinions of critics and literary prizes, but we can
also consider the reader directly, which, in the form
of a crowdsourced survey, more easily provides
a statistically adequate number of responses. We
therefore base our gold standard on a large online
survey of readers with ratings of novels.

Literature comprises some of the most rich and
sophisticated language, yet stylometry typically
does not exploit linguistic information beyond
part-of-speech (POS) tags or grammar productions,
when syntax is involved at all (cf. e.g., Stamatatos
et al., 2009; Ashok et al., 2013). While our re-
sults confirm that simple features are highly effec-
tive, we also employ full syntactic analyses and
argue for their usefulness. We consider tree frag-
ments: arbitrarily-sized connected subgraphs of
parse trees (Swanson and Charniak, 2012; Bergsma
et al., 2012; van Cranenburgh, 2012). Such features
are central to the Data-Oriented Parsing frame-
work (Scha, 1990; Bod, 1992), which postulates
that language use derives from arbitrary chunks
(e.g., syntactic tree fragments) of previous lan-
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Figure 1: A parse tree fragment from Franzen, The
Corrections. Original sentence: something terrible
was going to happen.

guage experience. In our case, this suggests the
following hypothesis.

HYPOTHESIS 1: Literary authors employ a dis-
tinctive inventory of lexico-syntactic constructions
(e.g., a register) that marks literary language.

Next we provide an analysis of these construc-
tions which supports our second hypothesis.

HYPOTHESIS 2: Literary language invokes a
larger set of syntactic constructions when com-
pared to the language of non-literary novels, and
therefore more variety is observed in the parse tree
fragments whose occurrence frequencies are corre-
lated with literary ratings.

The support provided for these hypotheses sug-
gests that the notion of literature can be explained,
to a substantial extent, from textual factors, which
contradicts the belief that external, social factors
are more dominant than internal, textual factors.

2 Task, experimental setup

We consider a regression problem of a set of novels
and their literary ratings. These ratings have been
obtained in a large reader survey (about 14k partici-
pants),1 in which 401 recent, bestselling Dutch nov-
els (as well as works translated into Dutch) where
rated on a 7-point Likert scale from definitely not
to highly literary. The participants were presented
with the author and title of each novel, and pro-
vided ratings for novels they had read. The ratings
may have been influenced by well known authors
or titles, but this does not affect the results of this
paper because the machine learning models are not
given such information. The task we consider is
to predict the mean2 rating for each novel. We ex-

1The survey was part of The Riddle of Literary Quality, cf.
http://literaryquality.huygens.knaw.nl

2Strictly speaking the Likert scale is ordinal and calls for
the median, but the symmetric 7-point scale and the number of
ratings arguably makes using the mean permissible; the latter
provides more granularity and sensitivity to minority ratings.

clude 16 novels that have been rated by less than
50 participants. 91 % of the remaining novels have
a t-distributed 95 % confidence intervală 0.5; e.g.,
given a mean of 3, the confidence interval typically
ranges from 2.75 to 3.25. Therefore for our pur-
poses the ratings form a reliable consensus. Novels
rated as highly literary have smaller confidence in-
tervals, i.e., show a stronger consensus. Where a
binary distinction is needed, we call a rating of 5
or higher ‘literary.’

Since we aim to extract relevant features from
the texts themselves and the number of novels is
relatively small, we apply cross-validation, so as
to exploit the data to the fullest extent while main-
taining an out-of-sample approach. We divide the
corpus in 5 folds of roughly equal size, with the fol-
lowing constraints: (a) novels by the same author
must be in the same fold, since we want to rule out
any influence of author style on feature selection
or model validation; (b) the distribution of literary
ratings in each fold should be similar to the overall
distribution (stratification).

We control for length and potential particulari-
ties of the start of novels by considering sentences
1000–2000 of each novel. 18 novels with fewer
than 2000 sentences are excluded. Together with
the constraint of at least 50 ratings, this brings the
total number of novels we consider to 369.

We evaluate the effectiveness of the features us-
ing a ridge regression model, with 5-fold cross-
validation; we do not tune the regularization. The
results are presented incrementally, to illustrate the
contribution of each feature relative to the features
before it. This makes it possible to gauge the effec-
tive contribution of each feature while taking any
overlap into account.

We use R2 as the evaluation metric, expressing
the percentage of variance explained (perfect score
100); this shows the improvement of the predic-
tions over a baseline model that always predicts
the mean value (4.2, in this dataset). A mean base-
line model is therefore defined to have an R2 of 0.
Other baseline models, e.g., always predicting 3.5
or 7, attain negative R2 scores, since they perform
worse than the mean baseline. Similarly, a random
baseline will yield a negative expected R2.

3 Basic features

Sentence length, direct speech, vocabulary richness,
and compressibility are simple yet effective stylo-
metric features. We count direct speech sentences
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by matching on specific punctuation; this provides
a measure of the amount of dialogue versus nar-
rative text in the novel. Vocabulary richness is
defined as the proportion of words in a text that ap-
pear in the top 3000 most common words of a large
reference corpus (Sonar 500; Oostdijk et al., 2013);
this shows the proportion of difficult or unusual
words. Compressibility is defined as the bzip2
compression ratio of the texts; the intuition is that
a repetitive and predictable text will be highly com-
pressible. CLICHES is the number of cliché expres-
sions in the texts based on an external dataset of
6641 clichés (van Wingerden and Hendriks, 2015);
clichés, being marked as informal and unoriginal,
are expected to be more prevalent in non-literary
texts. Table 1 shows the results of these features.
Several other features were also evaluated but were
either not effective or did not achieve appreciable
improvements when these basic features are taken
into account; notably Flesch readability (Flesch,
1948), average dependency length (Gibson, 2000),
and D-level (Covington et al., 2006).

R2

MEAN SENT. LEN. 16.4
+ % DIRECT SPEECH SENTENCES 23.1
+ TOP 3000 VOCAB. 23.5
+ BZIP2 RATIO 24.4
+ CLICHES 30.0

Table 1: Basic features, incremental scores.

4 Automatically induced features

In this section we consider extracting syntactic fea-
tures, as well as three (sub)lexical baselines.

TOPICS is a set of 50 topic weights induced with
Latent Dirichlet Allocation (LDA; Blei et al., 2003)
from the corpus (for details, cf. Jautze et al., 2016).

Furthermore, we use character and word n-gram
features. For words, bigrams present a good trade
off in terms of informativeness (a bigram frequency
is more specific than the frequency of an individ-
ual word) and sparsity (three or more consecutive
words results in a large number of n-gram types
with low frequencies). For character n-grams,
n “ 4 achieved good performance in previous
work (e.g., Stamatatos, 2006).

We note three limitations of n-grams. First, the
fixed n: larger or discontiguous chunks are not ex-
tracted. Combining n-grams does not help since
a linear model cannot capture feature interactions,
nor is the consecutive occurrence of two features

captured in the bag-of-words representation. Sec-
ond, larger n imply a combinatorial explosion of
possible features, which makes it desirable to se-
lect the most relevant features. Finally, word and
character n-grams are surface features without lin-
guistic abstraction. One way to overcome these
limitations is to turn to syntactic parse trees and
mine them for relevant features unrestricted in size.

Specifically, we consider tree fragments as fea-
tures, which are arbitrarily-sized fragments of parse
trees. If a parse tree is seen as consisting of a se-
quence of grammar productions, a tree fragment
is a connected subsequence thereof. Compared to
bag-of-word representations, tree fragments can
capture both syntactic and lexical elements; and
these combine to represent constructions with open
slots (e.g., to take NP into account), or sentence
templates (e.g., “Yes, but . . . ”, he said). Tree frag-
ments are thus a very rich source of features, and
larger or more abstract features may prove to be
more linguistically interpretable.

We present a data-driven method for extracting
and selecting tree fragments. Due to combinatorics,
there are an exponential number of possible frag-
ments given a parse tree. For this reason it is not
feasible to extract all fragments and select the rel-
evant ones later; we therefore use a strategy to di-
rectly select fragments for which there is evidence
of re-use by considering commonalities in pairs of
trees. This is done by extracting the largest com-
mon syntactic fragments from pairs of trees (San-
gati et al., 2010; van Cranenburgh, 2014). This
method is related to tree-kernel methods (Collins
and Duffy, 2002; Moschitti, 2006), with the dif-
ference that it extracts an explicit set of fragments.
The feature selection approach is based on rele-
vance and redundancy (Yu and Liu, 2004), similar
to Swanson and Charniak (2013). Kim et al. (2011)
also use tree fragments, for authorship attribution,
but with a frequent tree mining approach; the dif-
ference with our approach is that we extract the
largest fragments attested in each tree pair, which
are not necessarily the most frequent.

4.1 Preprocessing
We parse the 369 novels with Alpino (Bouma et
al., 2001). The parse trees include discontinuous
constituents, non-terminal labels consist of both
syntactic categories and function tags, selected
morphological features,3 and constituents are bina-

3The DCOI tag set (van Eynde, 2005) is fine grained; we
restrict the set to distinguish the 7 coarse POS tags, as well
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rized head-outward with a markovization of h=1,
v=1 (Klein and Manning, 2003).

For a fragment to be attested in a pair of parse
trees, its labels need to match exactly, including
the aforementioned categories, tags, and features.
The h “ 1 binarization implies that fragments
may contain partial constituents; i.e., a contiguous
sequence of children from an n-ary constituent.

Figure 1 shows an example parse tree; for brevity,
this tree is rendered without binarization. The
non-terminal labels consist of a syntactic category
(shown in red), followed by a function tag (green).
The part-of-speech tags additionally have morpho-
logical features (black) in square brackets. Some
labels contain percolated morphological features,
prefixed by a colon.

4.2 Mining syntactic tree fragments
The procedure is divided in two parts. The first part
concerns fragment extraction:

1. Given texts divided in folds F1 . . . Fn, each
Ci is the set of parse trees obtained from pars-
ing all texts in Fi. Extract the largest common
fragments of the parse trees in all pairs of
folds xCi, Cjy with i ă j. A common frag-
ment f of parse trees t1, t2 is a connected
subgraph of t1 and t2. The result is a set of
initial candidates that occur in at least two dif-
ferent texts, stored separately for each pair of
folds xCi, Cjy.

2. Count occurrences of all fragments in all texts.

Fragment selection is done separately w.r.t. each
test fold. Given test fold i, we consider the frag-
ments found in training folds t1..nu z i; e.g., given
n “ 5, for test fold 1 we select only from the frag-
ments and their counts as observed in training folds
2–5. Given a set of fragments from training folds,
selection proceeds as follows:

1. Zero count threshold: remove fragments that
occur in less than 5 % of texts (too specific
to particular novels); frequency threshold: re-
move fragments that occur less than 50 times
across the corpus (too rare to reliably detect a
correlation with the ratings).

2. Relevance threshold: select fragments by con-
sidering the correlation of their counts with
the literary ratings of the novels in the train-
ing folds. Apply a simple linear regression

as infinite verbs, auxiliary verbs, proper nouns, subordinating
conjunctions, personal pronouns, and postpositions.

based on the Pearson correlation coefficient,
and use an F-test to filter out fragments whose
p-value4 ą 0.05. The F-test determines signif-
icance based on the number of datapoints N ,
and the correlation r; the effective threshold
is approximately |r| ą 0.11.

3. Redundancy removal: greedily select the most
relevant fragment and remove other fragments
that are too similar to it. Similarity is mea-
sured by computing the correlation coefficient
between the feature vectors of two fragments,
with a cutoff of |r| ą 0.5. Experiments where
this step was not applied indicated that it im-
proves performance.

Note that there is some risk of overfitting since
fragments are both extracted and selected from the
training set. However, this is mitigated by the fact
that fragments are extracted from pairs of folds,
while selection is constrained to fragments that
are attested and significantly correlated across the
whole training set.

The values for the thresholds were chosen man-
ually and not tuned, since the limited number of
novels is not enough to provide a proper tuning
set. Table 2 lists the number of fragments extracted
from folds 2–5 after each of these steps.

recurring fragments 3,193,952
occurs in ą 5% of texts 375,514
total freq. ą 50 across corpus 98,286
relevance: correlated s.t. p ă 0.05 30,044
redundancy: |r| ă 0.5 7,642

Table 2: The number of fragments in folds 2–5
after each filtering step.

4.3 Evaluation

Due to the large number of induced features, Sup-
port Vector Regression (SVR) is more effective
than ridge regression. We therefore train a linear
SVR model with the same cross-validation setup,
and feed its predictions to the ridge regression
model (i.e., stacking). Feature counts are turned
into relative frequencies. The model has two hyper-
parameters: C determines the regularization, and
ε is a threshold beyond which predictions are con-
sidered good enough during training. Instead of

4If we were actually testing hypotheses we would need to
apply Bonferroni correction to avoid the Family-Wise Error
due to multiple comparisons; however, since the regression
here is only a means to an end, we leave the p-values uncor-
rected.
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1 2 3 4 5 Mean

Word Bigrams 59.8 47.0 58.0 63.6 50.7 55.8
Char. 4-grams 58.6 50.4 54.2 65.0 56.2 56.9
Fragments 61.6 53.4 58.7 65.8 46.5 57.2

Table 3: Regression evaluation. R2 scores on the 5
cross-validation folds.

R2

BASIC FEATURES (TABLE 1) 30.0
+ TOPICS 52.2
+ BIGRAMS 59.5
+ CHAR. 4-GRAMS 59.9
+ FRAGMENTS 61.2

Table 4: Automatically induced features; incremen-
tal scores.

tuning these parameters we pick fixed values of
C=100 and ε=0, reducing regularization compared
to the default of C=1 and disabling the threshold.

Cf. Table 3 for the scores. The syntactic frag-
ments perform best, followed by char. 4-grams and
word bigrams. We report scores for each of the
5 folds separately because the variance between
folds is high. However, the differences between
the feature types are relatively consistent. The vari-
ance is not caused by the distribution of ratings,
since the folds were stratified on this. Nor can it
be explained by the agreement in ratings per novel,
since the 95 % confidence intervals of the indi-
vidual ratings for each novel were of comparable
width across the folds. Lastly, author gender, genre,
and whether the novel was translated do not differ
markedly across the folds. It seems most likely that
the novels simply differ in how predictable their
ratings are from textual features.

In order to gauge to what extent these automati-
cally induced features are complementary, we com-
bine them in a single model together with the basic
features; cf. the scores in Table 4. Both charac-
ter 4-grams and syntactic fragments still provide a
relatively large improvement over the previous fea-
tures, taking into account the inherent diminishing
returns of adding more features.

Figure 2 shows a bar plot of the ten novels with
the largest prediction error with the fragment and
word bigram models. Of these novels, 9 are highly
literary and underestimated by the model. For the
other novel (Smeets, Afrekening) the literary rating
is overestimated by the model. Since this top 10
is based on the mean prediction from both models,
the error is large for both models. This does not

1 2 3 4 5 6 7

Barnes: Sense of an ending

Murakami: 1q84

Voskuil: Buurman

Franzen: Freedom

Murakami: Norwegian wood

Grunberg: Huid en haar

Voskuijl: Dorp

Smeets: Afrekening

Ammaniti: Me and you

Bakker: Omweg

true

pred_frag

pred_bigram

Figure 2: The ten novels with the largest prediction
error (using both fragments and bigrams).

Novel

residual
(true -
pred.)

mean
sent.
len.

% direct
speech

% Top
3000

vocab.
bzip2
ratio

Rosenboom: Zoete mond 0.075 23.5 24.7 0.80 0.31
Mortier: Godenslaap 0.705 24.9 25.2 0.77 0.34
Lewinsky: Johannistag 0.100 18.3 28.6 0.85 0.32
Eco: The Prague cemetery 0.148 24.5 15.7 0.79 0.33

Franzen: Freedom 2.154 16.2 56.8 0.84 0.33
Barnes: Sense of an ending 2.143 14.1 23.1 0.85 0.32
Voskuil: Buurman 2.117 7.66 58.0 0.89 0.28
Murakami: 1q84 1.870 12.3 20.4 0.84 0.32

Table 5: Comparison of baseline features for novels
with good (1–4) and bad (5–8) predictions.

change when the top 10 errors using only fragments
or bigrams is inspected; i.e., the hardest novels to
predict are hard with both feature types.

What could explain these errors? At first sight,
there is no obvious commonality between the liter-
ary novels that are predicted well, or between the
ones with a large error; e.g., whether the novels
have been translated or not does not explain the
error. A possible explanation is that the success-
fully predicted literary novels share a particular
(e.g., rich) writing style that sets them apart from
other novels, while the literary novels that are un-
derestimated by the model are not marked by such
a writing style. It is difficult to confirm this directly
by inspecting the model, since each prediction is
the sum of several thousand features, and the con-
tributions of these features form a long tail. If we
define the contribution of a feature as the absolute
value of its weight times its relative frequency in
the document, then in case of Barnes, The sense
of an ending, the top 100 features contribute only
34 % of the total prediction.

Table 5 gives the basic features for the top 4
literary novels with the largest error and contrasts
them with 4 literary novels which are well pre-
dicted. The most striking difference is sentence
length: the underestimated literary novels have
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Figure 3: Learning curve when varying training set
size. The error bars show the standard error.

markedly shorter sentences. Voskuil and Franzen
have a higher proportion of direct speech (they
are in fact the only literary novels in the top 10
novels with the most direct speech). Lastly, the
underestimated novels have a higher proportion of
common words (lower vocabulary richness). These
observations are compatible with the explanation
suggested above, that a subset of the literary novels
share a simple, readable writing style with non-
literary novels. Such a style may be more difficult
to detect than a literary style with long and complex
sentences, or rich vocabulary and phraseology, be-
cause a simple, well-crafted sentence may not offer
overt surface markers of stylization. Book reviews
appear to support this notion for The sense of an
ending: “A slow burn, measured but suspenseful,
this compact novel makes every slyly crafted sen-
tence count” (Tonkin, 2011); and “polished phras-
ings, elegant verbal exactness and epigrammatic
perceptions” (Kemp, 2011).

In order to test whether the amount of data is suf-
ficient to learn to predict the ratings, we construct
a learning curve for different training set sizes; cf.
Figure 3. The set of novels is shuffled once, so that
initial segments of different size represent random
samples. The novels are sampled in 5 % increments
(i.e., 20 models are trained). The graphs show the
cross-validated scores.

The graphs show that increasing the number of
novels has a large effect on performance. The curve
is steep up to 30 % of the training set, and the per-
formance keeps improving steadily but more slowly
up to the last data point. Since the performance is
relatively flat starting from 85 %, we can conclude
that the k-fold cross-validation with k “ 5 provides
an adequate estimate of the model’s performance if

R2

BASIC FEATURES (TABLE 1) 30.0
+ AUTO. INDUCED FEAT. (TABLE 4) 61.2
+ GENRE 74.3
+ TRANSLATED 74.0
+ AUTHOR GENDER 76.0

Table 6: Metadata features; incremental scores.

it were trained on the full dataset; if the model was
still gaining performance significantly with more
training data, the cross-validation score would un-
derestimate the true prediction performance.

A similar experiment was performed varying the
number of features. Here the performance plateaus
quickly and reaches an R2 of 53.0 % at 40 %, and
grows only slightly from that point.

5 Metadata features

In addition to textual features, we also include three
(categorical) metadata features not extracted from
the text, but still an inherent feature of the novel
in question: GENRE, TRANSLATED, and AUTHOR

GENDER; cf. Table 6 for the results. Figure 4 shows
a visualization of the predictions in a scatter plot.

GENRE is the coarse genre classification Fiction,
Suspense, Romantic, Other, derived from the pub-
lisher’s categorization. Genre alone is already a
strong predictor, with an R2 of 58.3 on its own.
However, this score is arguably misleading, be-
cause the predictions are very coarse due to the
discrete nature of the feature.

A striking result is that the variables AUTHOR

GENDER and TRANSLATED increase the score, but
only when they are both present. Inspecting the
mean ratings shows that translated novels by female
authors have an average rating of 3.8, while origi-
nally Dutch male authors are rated 5.0 on average;
the ratings of the other combinations lie in between
these extremes. This explains why the combination
works better than either feature on its own, but due
to possible biases inherent in the makeup of the
corpus, such as which female or translated authors
are published and selected for the corpus, no con-
clusions on the influence of gender or translation
should be drawn from these datapoints.

6 Previous work

Table 7 shows an overview of previous work on the
task of predicting the (literary) quality of novels.
Note that the datasets and targets differ, therefore
none of the results are directly comparable. For
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Figure 4: A scatter plot of regression predictions and actual literary ratings. Original/translated titles.
Note the histograms beside the axes showing the distribution of ratings (top) and predictions (right).

example, regression is a more difficult task than
binary classification, and recognizing the differ-
ence between an average and highly literary novel
is more difficult than distinguishing either from a
different domain or genre (e.g., newswire).

Louwerse et al. (2008) discriminate literature
from other texts using Latent Semantic Analysis.
Ashok et al. (2013) use bigrams, POS tags, and
grammar productions to predict the popularity of
Gutenberg texts. van Cranenburgh and Koolen
(2015) predict the literary ratings of texts, as in
the present paper, but only using bigrams, and on a
smaller, less diverse corpus. Compared to previous
work, this paper gives a more precise estimate of
how well shades of literariness can be predicted
from a diverse range of features, including larger
and more abstract syntactic constructions.

7 Analysis of selected tree fragments

An advantage of parse tree fragments is that they
offer opportunities for interpretation in terms of
linguistic aspects as well as basic distributional
aspects such as shape and size.

Figure 5 shows three fragments ranked highly

Binary
classification

Dataset, task Acc.

Louwerse et al.
(2008)

119 all-time literary classics
and 55 other texts, literary
novels vs. non-fiction/sci-fi

87.4

Ashok et al. (2013) 800 19th century novels,
low vs. high download
count

75.7

van Cranenburgh
and Koolen (2015)

146 recent novels, low vs.
high survey ratings

90.4

Regression result Dataset, task R2

van Cranenburgh
and Koolen (2015)

146 recent novels,
survey ratings

61.3

This work 401 recent novels,
survey ratings

76.0

Table 7: Overview of previous work on modeling
(literary) quality of novels.

by the correlation metric, as extracted from the
first fold. The first fragment shows an incomplete
constituent, indicated by the ellipses as first and
last leaves. Such incomplete fragments are made
possible by the binarization scheme (cf. Sec. 4.1).

Table 8 shows a breakdown of fragment types in
the first fold. In contrast with n-grams, we also see
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Figure 5: Three fragments whose frequencies in the first fold have a high correlation with the literary
ratings. Note the different scales on the y-axis. From left to right; Blue: complex NP with comma; Green:
quoted speech; Red: Adjunct PP with indefinite article.

fully lexicalized 1,321
syntactic (no lexical items) 2,283
mixed 4,038

discontinuous 684
discontinuous substitution site 396

total 7,642

Table 8: Breakdown of fragment types selected in
the first fold.

a large proportion of purely syntactic fragments,
and fragments mixing both lexical elements and
substitution sites. In the case of discontinuous frag-
ments, it turns out that the majority has a positive
correlation; this might be due to being associated
with more complex constructions.

Figure 6 shows a breakdown by fragment size
(defined as number of non-terminals), distinguish-
ing fragments that are positively versus negatively
correlated with the literary ratings.

Note that 1 and 3 are special cases correspond-
ing to lexical (e.g., DTÑ the) and binary grammar
productions (e.g., NPÑ DT N), respectively. The
fragments with 2, 4, and 6 non-terminals are not as
common because an even number implies the pres-
ence of unary nodes. Except for fragments of size
1, the frontier of fragments can consist of either
substitution sites or terminals (since we distinguish
only the number of non-terminals). On the one
hand smaller fragments corresponding to one or
two grammar productions are most common, and
are predominantly positively correlated with the

1 3 5 7 9 11 13 15 17 19 21

fragment size (non-terminals)
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Figure 6: Breakdown by fragment size (number of
non-terminals).

literary ratings. On the other hand there is a sig-
nificant negative correlation between fragment size
and literary ratings (r “ ´0.2, p ă 0.001); i.e.,
smaller fragments tend to be positively correlated
with the literary ratings.

It is striking that there are more positively than
negatively correlated fragments, while literary nov-
els are a minority in the corpus (88 out of 369
novels are rated 5 or higher). Additionally, the
breakdown by size shows that the larger number
of positively correlated fragments is due to a large
number of small fragments of size 3 and 5; however,
combinatorially, the number of possible fragment
types grows exponentially with size (as reflected
in the initial set of recurring fragments), so larger
fragment types would be expected to be more nu-
merous. In effect, the selected negatively corre-
lated fragments ignore this distribution by being
relatively uniform with respect to size, while the
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Figure 7: Breakdown by category (above) and func-
tion tag (below) of fragment root (top 15 labels).

literary fragments actually show the opposite dis-
tribution.

What could explain the peak of positively corre-
lated, small fragments? In order to investigate the
peak of small fragments, we inspect the 40 frag-
ments of size 3 with the highest correlations. These
fragments contain indicators of unusual or more
complex sentence structure:

• DU, dp: discourse phenomena for which no
specific relation can be assigned (e.g., dis-
course relations beyond the sentence level).

• appositive NPs, e.g., ‘John the artist.’
• a complex NP, e.g., containing punctuation,

nested NPs, or PPs.
• an NP containing an adjective used nominally

or an infinitive verb.

On the other hand, most non-literary fragments are
top-level productions containing ROOT or clause-
level labels, for example to introduce direct speech.

Another way of analyzing the selected fragments
is by frequency. When we consider the total fre-
quencies of selected fragments across the corpus,
there is a range of 50 to 107,270. The bulk of frag-
ments have a low frequency (before fragment selec-
tion 2 is by far the most dominant frequency), but
the tail is very long. Except for the fact that there is
a larger number of positively correlated fragments,
the histograms have a very similar shape.

Lastly, Figure 7 shows a breakdown by the syn-

tactic categories and function tags of the root node
of the fragments. The positively correlated frag-
ments are spread over a larger variety of both syn-
tactic categories and function tags. This means that
for most labels, the number of positively correlated
fragments is higher; the exceptions are ROOT, SV1
(a verb-initial phrase, not part of the top 15), and
the absence of a function tag (indicative of a non-
terminal directly under the root node). All of these
exceptions point to a tendency for negatively corre-
lated fragments to represent templates of complete
sentences.

8 Conclusion

The answer to the main research question is that
literary judgments are non-arbitrary and can be ex-
plained to a large extent from the text itself: there is
an intrinsic literariness to literary texts. Our model
employs an ensemble of textual features that show
a cumulative improvement on predictions, achiev-
ing a total score of 76.0 % variation explained. This
result is remarkably robust: not just broad genre
distinctions, but also finer distinctions in the ratings
are predicted.

The experiments showed one clear pattern: lit-
erary language tends to use a larger set of syntac-
tic constructions than the language of non-literary
novels. This also provides evidence for the hypoth-
esis that literature employs a specific inventory of
constructions. All evidence points to a notion of
literature which to a substantial extent can be ex-
plained purely from internal, textual factors, rather
than being determined by external, social factors.

Code and details of the experimental setup
are available at https://github.com/
andreasvc/literariness
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and Ineke Schuurman. 2013. The construction of a
500-million-word reference corpus of contemporary
written dutch. In Essential speech and language
technology for Dutch, pages 219–247. Springer.

Federico Sangati, Willem Zuidema, and Rens Bod.
2010. Efficiently extract recurring tree frag-
ments from large treebanks. In Proceedings of
LREC, pages 219–226. http://dare.uva.nl/
record/371504.

Remko Scha. 1990. Language theory and lan-
guage technology; competence and performance. In
Q.A.M. de Kort and G.L.J. Leerdam, editors, Com-
putertoepassingen in de Neerlandistiek, pages 7–
22. LVVN, Almere, the Netherlands. Original ti-
tle: Taaltheorie en taaltechnologie; competence en
performance. English translation: http://iaaa.
nl/rs/LeerdamE.html.

Efstathios Stamatatos. 2006. Ensemble-based au-
thor identification using character n-grams. In Pro-
ceedings of the 3rd International Workshop on Text-
based Information Retrieval, pages 41–46. http:
//ceur-ws.org/Vol-205/paper8.pdf.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Amer-
ican Society for Information Science and Technol-
ogy, 60(3):538–556. http://dx.doi.org/10.
1002/asi.21001.

1237



Benjamin Swanson and Eugene Charniak. 2012.
Native language detection with tree substitution
grammars. In Proceedings of ACL, pages
193–197. http://aclweb.org/anthology/
P12-2038.

Ben Swanson and Eugene Charniak. 2013. Extracting
the native language signal for second language ac-
quisition. In Proceedings of NAACL-HLT, pages 85–
94. http://aclweb.org/anthology/N13-
1009.

Boyd Tonkin. 2011. The sense of an ending, by Julian
Barnes. Book review, The Independent, August 5.
http://www.independent.co.uk/arts-
entertainment/books/reviews/the-
sense-of-an-ending-by-julian-
barnes-2331767.html.

Andreas van Cranenburgh and Corina Koolen. 2015.
Identifying literary texts with bigrams. In Proc. of
workshop Computational Linguistics for Litera-
ture, pages 58–67. http://aclweb.org/
anthology/W15-0707.

Andreas van Cranenburgh. 2012. Literary au-
thorship attribution with phrase-structure fragments.
In Proceedings of CLFL, pages 59–63. Re-
vised version: http://andreasvc.github.
io/clfl2012.pdf.

Andreas van Cranenburgh. 2014. Extraction
of phrase-structure fragments with a linear
average time tree kernel. Computational
Linguistics in the Netherlands Journal, 4:3–
16. http://www.clinjournal.org/
sites/default/files/01-Cranenburgh-
CLIN2014.pdf.

Frank van Eynde. 2005. Part of speech tagging
en lemmatisering van het D-COI corpus. Transl.:
POS tagging and lemmatization of the D-COI cor-
pus, tech report, July 2005. http://www.ccl.
kuleuven.ac.be/Papers/DCOIpos.pdf.

Wouter van Wingerden and Pepijn Hendriks. 2015.
Dat Hoor Je Mij Niet Zeggen: De allerbeste
taalclichés. Thomas Rap, Amsterdam. Transl.: You
didn’t hear me say that: The very best linguistic
clichés.

Lei Yu and Huan Liu. 2004. Efficient fea-
ture selection via analysis of relevance and redun-
dancy. Journal of Machine Learning Research,
5:1205–1224. http://jmlr.org/papers/
volume5/yu04a/yu04a.pdf.

1238


