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Abstract

Most current approaches in phylogenetic
linguistics require as input multilingual
word lists partitioned into sets of etymo-
logically related words (cognates). Cog-
nate identification is so far done manu-
ally by experts, which is time consuming
and as of yet only available for a small
number of well-studied language families.
Automatizing this step will greatly ex-
pand the empirical scope of phylogenetic
methods in linguistics, as raw wordlists
(in phonetic transcription) are much easier
to obtain than wordlists in which cognate
words have been fully identified and an-
notated, even for under-studied languages.
A couple of different methods have been
proposed in the past, but they are ei-
ther disappointing regarding their perfor-
mance or not applicable to larger datasets.
Here we present a new approach that uses
support vector machines to unify diffe-
rent state-of-the-art methods for phonetic
alignment and cognate detection within a
single framework. Training and evaluat-
ing these method on a typologically broad
collection of gold-standard data shows it
to be superior to the existing state of the
art.

1 Introduction

Computational historical linguistics is a relatively
young sub-discipline of computational linguistics
which uses computational methods to uncover
how the world’s 7 000 human languages have de-
veloped into their current shape. The discipline
has made great strides in recent years. Excit-
ing progress has been made with regard to auto-
mated language classification (Bowern and Atkin-

son, 2012; Jäger, 2015), inference regarding the
time depth and geographic location of ancestral
language stages (Bouckaert et al., 2012), or the
identification of sound shifts and the reconstruc-
tion of ancestral word forms (Bouchard-Côté et
al., 2013), to mention just a few. Most of the
mentioned and related work relies on multilingual
word lists manually annotated for cognacy. Unlike
the classical NLP conception, cognate words are
here understood as words in different languages
which are etymologically related, that means, they
have regularly developed from a common ances-
tral form, such as both English tooth and Ger-
man Zahn ‘tooth’ that go back to an earlier Proto-
Germanic word tanT- with the same meaning.
Manual cognate classification is a slow and la-
bor intensive task requiring expertise in histori-
cal linguistics and intimate knowledge of the lan-
guage family under investigation. From a method-
ological perspective, it can further be problematic
to build phylogenetic inference on expert judg-
ments, as the expert annotators necessarily base
their judgments on certain hypotheses regarding
the internal structure of the language family in
question. In this way, the human-annotated cog-
nate sets bear the danger of circularity. Deploy-
ing automatically inferred cognate classes thus has
two advantages: it avoids the bias inherent in man-
ually collected expert judgments and it is appli-
cable to both well-studied and under-studied lan-
guage families.

In the typical scenario, the researcher has ob-
tained a collection of multilingual word lists in
phonetic transcription (e.g. from field research or
from dictionaries) and wants to classify them ac-
cording to cognacy. Such datasets usually cover
many languages and/or dialects (from scores to
hundreds or even thousands) but only a small num-
ber of concepts (often the 200-item or 100-item
Swadesh list or subsets thereof). The machine
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learning task is to perform cross-linguistic clus-
tering. There exists a growing body of gold stan-
dard data, i.e. multilingual word lists covering
between 40 and 210 concepts which are manu-
ally annotated for cognacy (see Methods section
for details). This suggests a supervised learn-
ing approach. The challenge here is quite diffe-
rent from most machine learning problems in NLP
though since the goal is not to identify and de-
ploy language-specific features based on a large
amount of mono- or bi-lingual resources. Rather,
the gold standard data have to be used to find
cross-linguistically informative features that gen-
eralize across arbitrary language families. In the
remainder of this paper we will propose such an
approach, drawing on and expanding related work
such as List (2014b) and Jäger and Sofroniev
(2016).

2 Previous Work

Cognate detection is a partitioning task: a cluster-
ing task which does not necessarily assume a hi-
erarchy. An early approach (Dolgopolsky, 1964)
is based on the idea of sound classes: In order to
reduce the phonetic space and to guarantee compa-
rability across languages, sounds are clustered into
classes which frequently occur in correspondence
relation in genetically related languages. Dolgo-
polsky proposed a very rough sound class system,
proposing to group all consonants into ten classes
ignoring vowels. When converting all transcrip-
tions in the data to their respective sound classes,
one can use different criteria to assign words re-
sembling each other in their sound classes to the
same set of cognate words. Turchin et al. (2010)
further formalized this approach and employed a
modified sound class schema of 9 vowel classes to
test the Altaic hypothesis. Their Consonant Class
Matching (CCM) approach was reported to pro-
duce a low rate of false positives. Unfortunately,
the rate of false negatives is also very high (List,
2014b). This is especially due to the lack of flex-
ibility of the procedure, which hard-codes sounds
to classes, ignoring that sound change is usually
based on fine-grained transitions.

An alternative family of approaches to cognate
detection circumvents this problem by first cal-
culating distances or similarities between pairs
of words in the data, and then feeding those
scores to a flat clustering algorithm which parti-
tions the words into cognate sets. This workflow

is very common in evolutionary biology, where
it is used to detect homologous genes and pro-
teins (Bernardes et al., 2015). Two basic families
of partitioning algorithms can be distinguished:
hierarchical cluster algorithms and graph-based
algorithms. Hierarchical cluster algorithms are
based on classical agglomerative cluster algo-
rithms (Sokal and Michener, 1958), but terminate
when a user-defined threshold of average similari-
ties among clusters is reached. In graph-based par-
titioning algorithms (Andreopoulos et al., 2009),
words are represented as nodes in a network and
links between nodes represent similarities. When
clustering, links are added and removed until the
nodes are partitioned into homogeneous groups
(van Dongen, 2000).

More important than the clustering algorithm
one uses is the computation of pairwise simila-
rity scores between words. Here, different mea-
sures have been tested, ranging from simple string
distance metrics (Bergsma and Kondrak, 2007),
via enhanced sound-class-based alignment algo-
rithms (SCA, List 2014a), to iterative frameworks
in which segmental similarities between sounds
are either iteratively inferred from the data (Steiner
et al., 2011), or aggregated using machine learning
techniques (Hauer and Kondrak, 2011). Frame-
works may differ greatly regarding their under-
lying workflow. While the LexStat algorithm by
List (2014b) uses a permutation method to com-
pute individual segmental similarities between in-
dividual language pairs which are then fed to an
alignment algorithm, the PMI similarity approach
by Jäger (2013) infers general segmental similari-
ties between sounds from an exhaustive parameter
training procedure.

3 Materials

Benchmark data for training and testing was as-
sembled from different previous studies and con-
siderably enhanced by unifying semantic and pho-
netic representations and correcting numerous er-
rors in the datasets. Our collection was taken from
six major sources (Greenhill et al., 2008; Dunn,
2012; Wichmann and Holman, 2013; List, 2014b;
List et al., 2016b; Mennecier et al., 2016)1 and

1The Indo-European data from ielex.mpi.nl were
accessed on 4-26-2016. The Austronesian data from the Aus-
tronesian Basic Vocabulary Database (ABVD, language.
psy.auckland.ac.nz/austronesian/) were ac-
cessed on 12-2-2015. Among the 395 languages covered by
ABVD, we only used a randomly selected subset of 100 lan-
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Dataset Words Conc. Lang. Families Cog. Div.

ABVD (Greenhill
et al. 2008)

12414 210 100 Austronesian 3558 0.27

Afrasian (Militarev
2000)

790 40 21 Afro-Asiatic 355 0.42

Bai (Wang 2006) 1028 110 9 Sino-Tibetan 285 0.19
Chinese (Hu 2004) 2789 140 15 Sino-Tibetan 1189 0.40
Chinese (Bijng
Dxu 1964)

3632 179 18 Sino-Tibetan 1225 0.30

Huon (McElhanon
1967)

1176 84 14 Trans-New Guinea 537 0.41

IELex (Dunn 2012) 11479 208 52 Indo-European 2459 0.20
Japanese (Hattori
1973)

1983 199 10 Japonic 456 0.15

Kadai (Peiros
1998)

400 40 12 Tai-Kadai 103 0.17

Kamasau (Sanders
1980)

271 36 8 Torricelli 60 0.10

Lolo-Burmese
(Peiros 1998)

570 40 15 Sino-Tibetan 101 0.12

Central Asian
(Manni et al. 2016)

15903 183 88 Altaic (Turkic),
Indo-European

895 0.05

Mayan (Brown
2008)

2841 100 30 Mayan 844 0.27

Miao-Yao (Peiros
1998)

208 36 6 Hmong-Mien 70 0.20

Mixe-Zoque
(Cysouw et al.
2006)

961 100 10 Mixe-Zoque 300 0.23

Mon-Khmer
(Peiros 1998)

1424 100 16 Austroasiatic 719 0.47

ObUgrian (Zhivlov
2011)

2006 110 21 Uralic 229 0.06

Tujia (Starostin
2013)

498 107 5 Sino-Tibetan 164 0.15

Table 1: Benchmark data used for the study. Items
on red background were used for testing, and the
rest for training. Items on white are available in
ASJP transcription; all others are available in IPA
transcription. The last column lists the diversity of
each dataset by dividing the number of actual cog-
nates by the number of potentially different cog-
nates (List 2014:188).

covers datasets ranging between 100 and 210 con-
cepts translated into 5 to 100 languages from 13
different language families.

Modifications introduced in the process of
preparing the datasets included (a) the correction
of errata (e.g. orthographic forms in place of pho-
netic representations), (b) the replacement of non-
IPA symbols with their IPA counterparts (e.g. t

˙→ ú or ’ → P), (c) the removal of non-IPA sym-
bols used to convey meta-information (e.g. %),
(d) removal of extraneous phonetic representation
variants, and (e) the removal of morphological
markers. In addition, all concept labels in the
different datasets were linked to the Concepticon
(http://concepticon.clld.org, List et
al. 2016a), a resource which links concept labels

guage since the computational effort would have been im-
practical otherwise. For all data sets, only entries containing
both a phonetic transcription and the cognate classification
were used.

Table 2: Sample entries for woman in IELex. The
cognate class identifier in the last column consists
of a the concept label and an arbitrary letter combi-
nation. If two words share the same cognate class
identifier, they are marked as cognate.

to standardized concept sets in order to ease the
exchange and standardization of cross-linguistic
datasets. A small sample of the entries extracted
from the IELex data is shown in Table 2 for illus-
tration.

4 Methods

Unlike many other supervised or semi-supervised
clustering tasks, the set of cluster labels to be in-
ferred is disjoint from the gold standard labels.
Therefore we chose a two-step procedure: (1)
A similarity score for each pair of synonymous
words from the same dataset is inferred using su-
pervised learning, and (2) these inferred similari-
ties are used as input for unsupervised clustering.

As for subtask (1), the relevant gold standard
information are the labels “cognate” and “not
cognate” for pairs of synonymous words. The
sub-goal is to predict a probability distribution
over these labels for unseen pairs of synonymous
words. This is achieved by training a Support
Vector Machine (SVM), followed by Platt scal-
ing (Platt, 1999). The SVM primarily operates on
two string similarity measure from the literature,
PMI similarity Jäger (2013) and LexStat simila-
rity (List, 2014b), which are both known to gen-
eralize well across languages and language fami-
lies. We also used some auxiliary features from
(Jäger and Sofroniev, 2016), which are derived
from string similarities. For the clustering sub-
task (2), we followed List et al. (2016b) and List et
al. (2017) in using the Infomap algorithm (Rosvall
and Bergstrom, 2008).

The gold standard data were split into a train-
ing set and a test set. Feature selection for sub-
task (1) and parameter training for subtask (2)
were achieved via cross-validation over the train-
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ing data. For evaluation, we trained an SVM on
all training data and used it to perform automatic
clustering on the test data.

The remainder of this section spells out these
steps in detail.

4.1 String Similarity Measures
Our strategy is to first calculate string similari-
ties and distances between pairs of words denot-
ing the same concept and then inferring a partition
of the corresponding words from those similari-
ties or distances via a partitioning algorithm. For
word comparison we utilize two recently proposed
string similarity measures.

The first string similarity measure is the one un-
derlying the above-mentioned LexStat algorithm
for automatic cognate detection (List, 2014b). The
core features of the string similarity produced by
the LexStat algorithm include (a) an enhanced
sound-class model of 28 symbols, including tone
symbols for the handling of South-East Asian tone
languages, (b) a linguistically informed scoring
function derived from frequently recurring direc-
tional sound change processes, and (c) a prosodic
tier which automatically defines a prosodic con-
text for each sound in a word and thus allows
for a rough handling of context. The LexStat al-
gorithm for determining string similarities can be
roughly divided into four stages. In a first stage,
words for the same concept in each language pair
are aligned, using the SCA algorithm for pho-
netic alignment (List, 2014b), both globally and
locally, and correspondences in the word pairs
with a promising score are retained. At the same
time, a randomized distribution of expected sound
correspondences is calculated, using a permuta-
tion method (Kessler, 2001) in which the wordlist
are shuffled, so that words denoting different con-
cepts, which are much more likely to be not cog-
nate, are aligned instead. In a second step, both
distributions are compared, and log-odds scores
(Durbin et al., 2002) for each segment pair sx,y

are calculated (List, 2014b, 181). In a third step,
the new scoring function is used to re-align the
words, using a semi-global alignment algorithm
which ignores prefixes or suffixes occurring in one
of two strings (Durbin et al., 2002), and the simi-
larity scores produced by classical alignment al-
gorithms are normalized to similarity scores using
the formula by Downey et al. (2008)

D =
2 · SAB

SA + SB
(1)

where SAB is the similarity score of an align-
ment of two words A and B produced by the SCA
method, and SA and SB are the similarity scores
produced by the alignment of A and B with them-
selves.2

In Jäger (2013) a data-driven method for deter-
mining string similarities is proposed which we
will refer to as PMI similarity, as it is based on the
notion of Pointwise Mutual Information between
phonetic segments. It has successfully been used
for phylogenetic inference in Jäger (2015). The
method operates on phonetic strings in ASJP tran-
scription (Brown et al., 2013) without diacritics,
i.e., each segment is assigned one out of only 41
sound classes.

The PMI score of two sound classes a, b is de-
fined as

PMI(a, b) .= log
s(a, b)
q(a)q(b)

, (2)

where s(a, b) is the probability of a and b being
aligned to each other in a pair of cognate words,
and q(a), q(b) are the probabilities of occurrence
of a and b respectively. Sound pairs with positive
PMI score provide evidence for cognacy, and vice
versa.

To estimate the likelihood of sound class align-
ments, a corpus of probable cognate pairs was
compiled from the ASJP data base3 using two
heuristics. First, a crude similarity measure be-
tween wordlists, based on Levenshtein distance,
was defined and the 1% of all ASJP doculect4 pairs
with highest similarity were kept as probably re-
lated. Second, the normalized Levenshtein dis-
tance was computed for all translation pairs from
probably related doculects. Those with a distance
below a certain threshold were considered as prob-
ably cognate. These probable cognate pairs were
used to estimate PMI scores. Subsequently, all
translation pairs were aligned via the Needleman-
Wunsch algorithm Needleman and Wunsch (1970)
using the PMI scores from the previous step as
weights. This resulted in a measure of string si-
milarity, and all pairs above a certain similarity

2The original LexStat algorithm uses distance scores by
subtracting the similarity score from 1.

3The ASJP database Wichmann et al. (2013), available
from http://asjp.clld.org/, is a collection of 40-
item Swadesh lists from more than 6,000 languages and di-
alects covering all regions of the globe.

4Doculect is a neutral term for a linguistic variety which
is documented in some coherent way, leaving the issue of
distinguishing between languages and dialects aside.
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(a) PMI scores between sound classes (Jäger 2015)
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(b) Joint distribution of string similarities (IPA training data)

Figure 1: PMI scores (a) and string similarities (b)
of cognate and non-cognate word pairs from the
training data.

threshold were treated as probable cognates in the
next step. This procedure was repeated ten times.
In the last step, app. 1.3 million probable cognate
pairs were used to estimate the final PMI scores.

The PMI scores thus obtained are visualized in
Figure 1a (numerical values are available from the
Supplementary Material of Jäger (2015)). The
aggregate PMI score of a pair of aligned strings
(where gaps may be inserted at any position) is de-
fined as the sum of the PMI scores of the aligned
symbol pairs. Matching a symbol with a gap in-
curs a penalty, with different penalties for initial
and non-initial positions in a sequence of consecu-
tive gaps.5 The similarity s(w1, w2) between two

5The values of the gap penalties were taken from Jäger
(2013), where the method of estimating them is described.

strings w1, w2 is then defined as minimal aggre-
gate PMI score for all possible alignments. It
can be computed efficiently via the Needleman-
Wunsch algorithm.

There are major conceptual differences on how
the two similarity measures are derived. LexStat
similarity estimates separate scores between each
pair of doculects, thus utilizing regular sound cor-
respondences, while PMI similarity uses the same
PMI scores regardless of the doculects compared.
LexStat alignments further capture a prosodic
tier which allows for a rough modeling of pho-
netic context and reflects theories on the impor-
tance of phonetic strength in sound change pro-
cesses (Geisler, 1992), while the parameters used
for computing PMI similarities are estimated in
a purely data-driven way without using specifi-
cally linguistic insights beyond the classification
of sounds into ASJP sound classes. The parame-
ters of the PMI framework are statistically esti-
mated using a large amount (more than 1 000 000
word pairs) of cross-linguistically diverse data. In
contrast, LexStat’s initial alignment algorithm is
based on manually assigned parameters, and the fi-
nal parameters are estimated empirically from the
word pairs in the doculects being compared, and
no external information is being applied. As a re-
sult, the algorithm needs a minimum of 100 con-
cepts to yield reliable results and it yields notably
better results with more than 200 words (List,
2014b; List, 2014a).

The joint distribution of LexStat and PMI string
similarities for cognate and non-cognate pairs
within our training set is visualized in Figure 1b.

Despite those differences, the two measures
capture a similar signal; for the data from List
(2014b) and List et al. (2016b), e.g., their corre-
lation is as high as 0.727. Also, both variables
are contain similar information about the binary
cognate/not cognate variable. Figure 2 shows the
Precision-Recall curves (cf. for instance Manning
and Schütze, 1999) for LexStat and PMI simila-
rity. While the curves are slightly different (Lex-
Stat achieves a higer precision for low recalls and
PMI for high recalls), the areas under the curve are
almost identical (0.893 for LexStat and 0.880 for
PMI).

4.2 Workflow

In this study, we utilized both string similarity
measures discussed above, as well as a collec-
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Figure 2: Precision-Recall curves for LexStat and
PMI string similarities, based on the evaluation of
the word pairs from the data by List (2014a).

tion of auxiliary predictors pertaining to the simi-
larity of the doculects compared and the differen-
tial diachronic stability of lexical meanings, to in-
fer cognate classifications. We chose a supervised
learning approach using a Support Vector Machine
(SVM) for this purpose. The overall workflow is
shown in Figure 3. It consists of two major parts.
During the first phase (the upper part in the fig-
ure shown in red), a SVM is trained on a set of
training data and then used to predict the proba-
bility of cognacy between pairs of words from a
set of test data. During the second phase (lower
part in the figure, shown in green), those probabil-
ities are used to cluster the words from the test set
into inferred cognacy classes. The system is eval-
uated by comparing the inferred classification with
the expert classification. We used the three largest
data sets at our disposal (cf. the datasets colored in
red in Table 1), ABVD, Central Asian, and IELex,
for testing and all other datasets for training.

4.3 Support Vector Machine Training
Each data point during the first phase is a pair of
words w1, w2 (i.e., a pair of phonetic strings) from
doculects L1, L2 from data set S, both denoting
the same concept c. It is mapped to a vector of
values for the following features:6

1. LexStat string similarity between w1 and
w2 (computed with LingPy, List and Forkel,

6Features 2–5 are taken from (Jäger and Sofroniev, 2016).
The other features used there (calibrated PMI distances and
their logarithms, and the logarithm of doculect similarity) did
not improve results under cross-validation over the training
data.

word pair ➔ cognate? (yes/no)

word pair ➔ feature vectors

word pair ➔ predicted probability of cognacy

word ➔ inferred class label

string similarity computation

SVM training

SVM predictiontrained SVM

word pair ➔ distance

logarithmic 
transformation

infomap clustering

training
set

test 
set

evaluation

threshold 
training

threshold

word -> cognate set label

Figure 3: Workflow for supervised learning and
prediction. Boxes and ellipses represent data and
computations respectively.

2016) ,
2. PMI string similarity between w1 and w2,
3. doculect similarity between L1 and L2 as de-

fined in Jäger (2013),7

4. mean word length (measured in number of
segments) of words for concepts c within S.

5. correlation coefficient between PMI string
similarity and doculect similarity across all
word pairs denoting concept c within S.8

The marginal distributions for cognate and non-
cognate pairs of those features (for the data from
List (2014b) and List et al. (2016b)) is displayed in
Figure 4. It can be discerned from these plots that
word length is a negative predictor and the other
four features are positive predictors for cognacy.

7We refrain from recapitulating the full definition here for
reasons of space. Essentially this amounts to the average PMI
similarity between synonymous word pairs from L1 and L2.

8The last two features represent measures of the di-
achronic stability of concepts, based on Dellert and Buch
(2016).
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Figure 4: Distribution of features values for cog-
nate and non-cognate word pairs

The fact that word length is a negative predic-
tor of cognacy arguably results from the inter-
play of two known regularities. (1) Pagel et al.
(2007) present evidence that diachronic stability
of concepts is positively correlated with their us-
age frequency in modern corpora. (2) Accord-
ing to Zipf’s Law of Abbreviation (Zipf, 1935),
there is an negative correlation between the cor-
pus frequency of words and their lengths. Taken
together, this means that concepts usually being
expressed by short words tend to have a high usage
frequency and therefore tend to be diachronically
stable. Therefore we expect a higher proportion of
cognate pairs among concepts expressed by short
words than among those expressed by short words.

As the data points within the training set are mu-
tually non-independent, we randomly chose one
word pair per concept and data set for training the
SVM. During the training phase, we used cross-
validation over the data sets within the training set
(i.e., using one training data set for validation and
the other training data sets for SVM training) to
identify the optimal kernel and its optimal para-
meters. This was carried out by completing both
phases of the work flow and optimizing the Ad-
justed Rand Index (see Subsection 4.5) of the re-
sulting classification. Training and prediction was
carried out using the svm module from the Python
package sklearn (http://scikit-learn.
org/stable/modules/svm.html), which
is based on the LIBSVM library (Fan et al., 2005).
Predicting class membership probabilities from a
trained SVM was carried out using Platt scaling
(Platt, 1999) as implemented in sklearn (http:
//scikit-learn.org). This results in a pre-
dicted probability of cognacy p(w1, w2|c, S) for
each data point. The best cross-validation per-
formance was achieved with a linear kernel with
a penalty value of C = 0.82. Polynomial and
RBF-kernels performed slightly worse. Also, we
found that leaving out any subset of the features
decreases performance.

4.4 Cognate Set Partitioning

In order to cluster the words into sets of poten-
tially cognate words, we follow recent approaches
by List et al. (2016b) and List et al. (2017) in using
Infomap (Rosvall and Bergstrom, 2008), an algo-
rithm which was originally designed for the detec-
tion of communities in large social networks, to
detect “communities” of related words. Infomap
uses random walks in undirected networks to iden-
tify the best way to assign the nodes in the net-
work, that is, in our case, the words, to distinct
groups which form a homogeneous class.

For each data set D and each concept c covered
in D, a network was constructed. The vertices are
all words from D denoting c. Two vertices are
connected if and only if the corresponding words
are predicted to be cognate with a probability ≥ θ
according to SVM prediction + Platt scaling. The
optimal value for θ was determined as 0.66 via
cross-validation over the training data. Infomap
was then applied to this network, resulting in an
assignment of class labels to vertices/words.
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data set Adjusted Rand Index B-Cubed Precision B-Cubed Recall B-Cubed F-Score
LexStat SVM LexStat SVM LexStat SVM LexStat SVM

aggregated 0.676 0.683 0.868 0.847 0.838 0.869 0.850 0.855
Austronesian 0.545 0.588 0.791 0.781 0.801 0.855 0.796 0.817
Central Asian 0.866 0.843 0.916 0.883 0.962 0.981 0.938 0.929
Indo-European 0.618 0.619 0.896 0.877 0.750 0.770 0.817 0.820

Table 3: Evaluation results on the test data for the benchmark method (LexStat) and our method (SVM)
according to Adjusted Rand Index and B-Cubed precision, recall, and F-score

aggregated Central-Asian Austronesian Indo-European

ARI precision recall F-score ARI precision recall F-score ARI precision recall F-score ARI precision recall F-score

-0.02

0.00

0.02

0.04

Figure 5: Evaluation results (difference between performance of our method and baseline). Green bars
indicate positive values (our method outperforms baseline) and red bars indicate negative values.

4.5 Evaluation

We used two evaluation measures to compare in-
ferred with expert classifications on the test data.
The Adjusted Rand Index (ARI, Hubert 1985) as-
sesses how much the equivalence relations in-
duced by two partitions coincide. It assumes real
values ≤ 1, where 1 means “perfect agreement”
and 0 means “degree of agreement expected by
chance”. Negative values may result when from
an agreement smaller than expected by chance.

B-Cubed scores (Bagga and Baldwin, 1998)
measure precision and recall of a partition analysis
compared against a gold standard by computing an
individual accuracy score for the cluster decisions
on each item in the data and then averaging the re-
sults. Hauer and Kondrak (2011) were the first to
introduce this measure to test the accuracy of mul-
tilingual cognate detection algorithms. In contrast
to pair scores such as ARI, B-Cubed scores have
the advantage of being independent of the evalua-
tion data itself. While pair-scores tend vary greatly
depending on dataset size and cognate density, B-
Cubed scores do not show this effect. They are
reported as precision and recall. A low B-Cubed
precision almost directly translates to the classi-
cal notion of a high amount of false positive cog-
nate judgments made by an algorithm, while low
B-Cubed recall points to a large amount of cognate
sets which were missed by an algorithm.

We took the original LexStat algorithm as a
baseline with which we compare our results.

LexStat provides a good baseline, since it was
shown to outperform alternative approaches like
the above-mentioned CCM approach (Turchin et
al., 2010), or clustering based on alternative string
similarity measures, like the normalized edit dis-
tance, or the normalized scores of the above-
mentioned SCA algorithm (List, 2014b). The
LexStat implementation in LingPy offers different
methods for cognate clustering. Since we em-
ployed Infomap for our SVM approach, and since
Infomap clustering was shown to work well with
LexStat similarities (List et al., 2017), we also
used Infomap as the cluster algorithm for the Lex-
Stat approach. Since Infomap requires a thresh-
old, we trained the threshold on our training data,
excluding short wordlists. Optimal results on the
training data was obtained with θ∗ = 0.57.

5 Results and Outlook

The evaluation results are given in Table 3, and
the differences to the baseline are visualized in
Figure 5. On average, the SVM-based classifi-
cation shows a superior performance when com-
pared to the baseline (an improvement of 0.7%
ARI and 0.5% B-cubed F-score). This is mostly
due to a substantial improvement for the Austrone-
sian data (4.3% ARI/2.1% B-cubed F-score). Our
method slightly outperforms the baseline for Indo-
European but is minimally inferior when applied
to the Central Asian data. While this might seem a
minor improvement only, it is worth exploring on
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Figure 6: Performance of our method and the
benchmark, depending on length of wordlists.
Each dot represents one dataset/method pair. The
x-axis shows the numer of concepts covered in this
dataset and the y-axis the Adjusted Rand Index.
Solid lines represent smoothed interpolations us-
ing Generalized Additive Models.

what type of data our method makes progress.

The plot in Figure 6 shows the dependency of
performance (ARI) on the number concepts per
data base for the training data. While this re-
sult has to be taken with a grain of salt as it in-
volves the data used for model fitting, the pattern
is both plausible and striking. It shows that our
method clearly outperforms LexStat if the num-
ber of concepts is smaller than 100. This finding
is unsurprising since LexStat depends on regular
sound correspondences. If those cannot be reliably
inferred due to data sparseness, its performance
drops. Our method is more robust here as it makes
use of the PMI string similarity which does not
rely on language-specific information. This may
also explain the performance on the Austronesian
data: although it covers 210 concepts across 100
languages, the languages contain many gaps, and
many languages have only 100 words if not even
less.

In order to get a clearer impression on where
our algorithm failed, we compared false positives
and negatives in the Indo-European data (Dunn,
2012), which has been investigated in deep de-
tail during the last 200 years. While a quantita-
tive comparison of part of speech and word length
did not reveal any strong correlations with the

accuracy of our approach, a qualitative analysis
showed that false positives produced by our ap-
proach are usually due to language-specific fac-
tors. Among the factors triggering false nega-
tives, there are specific morphological processes
involving complex paradigms, such as Proto-Indo-
European *séh2wel- ‘sun’, which shows many suf-
fixes in its descendant forms, and specific in-
stances of sound change, involving words that
were drastically changed (cf. English four vs.
French quatre). False positives are not only due
to chance similarities (compare English much with
Spanish mucho), but also due to words which
share morphological elements but are marked as
non-cognate in our gold standard (cf. Dutch man
vs. German Ehemann ‘husband’), and errors in
the gold standard (cf. Upper Sorbian powjaz vs.
Lower Sorbian powrjoz ‘rope’, wrongly marked as
non-cognate in the gold standard).

The classical methods for the identification of
cognate words in genetically related languages are
based on the general idea that relatedness can be
rigorously proven. This requires that the lan-
guages under investigation have retained enough
similarity to identify regular sound correspon-
dences. The further we go back in time, how-
ever, the less similarities we find. The fact that
an algorithm like LexStat, which closely mimics
the classical comparative method in historical lin-
guistics, needs at least 100 (if not more) concepts
in order to yield a satisfying performance reflects
this problem of data sparseness in historical lin-
guistics. One could argue that a serious analysis in
historical linguistics should never be carried out if
data are too sparse. As an alternative to this agnos-
tic attitude, however, one could also try to work on
methods that go beyond the classical framework,
adding a probabilistic component, where data are
too sparse to yield undisputable proof. In this pa-
per, we have tried to make a first step into this
direction by testing the power of machine learn-
ing approaches with state-of-the-art measures for
string similarity in quantitative historical linguis-
tics. The fact that our approach outperforms exist-
ing automatic approaches shows that this direction
could prove fruitful in future research.
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yīnkù [Phonological database of Chinese dialects].
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Supplementary Material

The supplementary material can be down-
loaded from https://zenodo.org/badge/
latestdoi/77850709. and gives all datasets
used for this study along with the results, the
source code needed for the replication of the
study, and instructions on how to apply the
software. If you find errors in the code or
want to suggest improvements, please turn to
our GitHub repository at https://github.
com/evolaemp/svmcc. In order to browse
through the data and results interactively, have
a look at the project website accompanying
this publication at http://www.evolaemp.
uni-tuebingen.de/svmcc/.
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