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Abstract

We propose a framework that captures the
denotational probabilities of words and
phrases by embedding them in a vector
space, and present a method to induce such
an embedding from a dataset of denota-
tional probabilities. We show that our
model successfully predicts denotational
probabilities for unseen phrases, and that
its predictions are useful for textual entail-
ment datasets such as SICK and SNLI.

1 Introduction

In order to bridge the gap between vector-based
distributional approaches to lexical semantics that
are intended to capture which words occur in sim-
ilar contexts, and logic-based approaches to com-
positional semantics that are intended to capture
the truth conditions under which statements hold,
Young et al. (2014) introduced the concept of
“denotational similarity.” Denotational similarity
is intended to measure the similarity of simple,
declarative statements in terms of the similarity of
their truth conditions.

From classical truth-conditional semantics,
Young et al. borrowed the notion of the deno-
tation of a declarative sentence s, JsK, as the set
of possible worlds in which the sentence is true.
Young et al. apply this concept to the domain of
image descriptions by defining the visual denota-
tion of a sentence s as the set of images that s de-
scribes. The denotational probability of s, PJK(s),
is the number of images in the visual denotation
of s over the size of the corpus. Two sentences are
denotationally similar if the sets of images (possi-
ble worlds) they describe have a large overlap. For
example, “A woman is jogging on a beach” and
“A woman is running on a sandy shore” can of-
ten be used to describe the same scenario, so they

will have a large image overlap that corresponds
to high denotational similarity.

Given the above definitions, Young et al. es-
timate the denotational probabilities of phrases
from FLICKR30K, a corpus of 30,000 images,
each paired with five descriptive captions. Young
et al. (2014) and Lai and Hockenmaier (2014)
showed that these similarities are complementary
to standard distributional similarities, and poten-
tially more useful for semantic tasks that involve
entailment. However, the systems presented in
these papers were restricted to looking up the de-
notational similarities of frequent phrases in the
training data. In this paper, we go beyond this
prior work and define a model that can predict
the denotational probabilities of novel phrases and
sentences. Our experimental results indicate that
these predicted denotational probabilities are use-
ful for several textual entailment datasets.

2 Textual entailment in SICK and SNLI

The goal of textual entailment is to predict whether
a hypothesis sentence is true, false, or neither
based on the premise text (Dagan et al., 2013).
Due in part to the Recognizing Textual Entailment
(RTE) challenges (Dagan et al., 2006), the task of
textual entailment recognition has received a lot
of attention in recent years. Although full entail-
ment recognition systems typically require a com-
plete NLP pipeline, including coreference resolu-
tion, etc., this paper considers a simplified variant
of this task in which the premise and hypothesis
are each a single sentence. This simplified task
allows us to ignore the complexities that arise in
longer texts, and instead focus on the purely se-
mantic problem of how to represent the meaning
of sentences. This version of the textual entail-
ment task has been popularized by two datasets,
the Sentences Involving Compositional Knowl-
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edge (SICK) dataset (Marelli et al., 2014) and the
Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015), both of which involve
a 3-way classification for textual entailment.

SICK was created for SemEval 2014 based on
image caption data and video descriptions. The
premises and hypotheses are automatically gen-
erated from the original captions and so contain
some unintentional systematic patterns. Most ap-
proaches to SICK involve hand-engineered fea-
tures (Lai and Hockenmaier, 2014) or large col-
lections of entailment rules (Beltagy et al., 2015).

SNLI is the largest textual entailment dataset by
several orders of magnitude. It was created with
the goal of training neural network models for tex-
tual entailment. The premises in SNLI are cap-
tions from the FLICKR30K corpus (Young et al.,
2014). The hypotheses (entailed, contradictory, or
neutral in relation to the premise) were solicited
from workers on Mechanical Turk. Bowman et
al. (2015) initially illustrated the effectiveness of
LSTMs (Hochreiter and Schmidhuber, 1997) on
SNLI, and recent approaches have focused on im-
provements in neural network architectures. These
include sentence embedding models (Liu et al.,
2016; Munkhdalai and Yu, 2017a), neural atten-
tion models (Rocktäschel et al., 2016; Parikh et al.,
2016), and neural tree-based models (Munkhdalai
and Yu, 2017b; Chen et al., 2016). In contrast,
in this paper we focus on using a different input
representation, and demonstrate its effectiveness
when added to a standard neural network model
for textual entailment. We demonstrate that the re-
sults of the LSTM model of Bowman et al. (2015)
can be improved by adding a single feature based
on our predicted denotational probabilities. We
expect to see similar improvements when our pre-
dicted probabilities are added to more complex
neural network entailment models, but we leave
those experiments for future work.

3 Vector space representations

Several related works have explored different ap-
proaches to learning vector space representations
that express entailment more directly. Kruszewski
et al. (2015) learn a mapping from an existing
distributional vector representation to a structured
Boolean vector representation that expresses en-
tailment as feature inclusion. They evaluate the
resulting representation on lexical entailment tasks
and on sentence entailment in SICK, but they re-

strict SICK to a binary task and their sentence
vectors result from simple composition functions
(e.g. addition) over their word representations.
Henderson and Popa (2016) learn a mapping
from an existing distributional vector representa-
tion to an entailment-based vector representation
that expresses whether information is known or
unknown. However, they only evaluate on lexical
semantic tasks such as hyponymy detection.

Other approaches explore the idea that it may
be more appropriate to represent a word as a re-
gion in space instead of a single point. Erk (2009)
presents a word vector representation in which the
hyponyms of a word are mapped to vectors that
exist within the boundaries of that word vector’s
region. Vilnis and McCallum (2015) use Gaussian
functions to map a word to a density over a latent
space. Both papers evaluate their models only on
lexical relationships.

4 Denotational similarities

In contrast to traditional distributional similarities,
Young et al. (2014) introduced the concept of “de-
notational similarities” to capture which expres-
sions can be used to describe similar situations.
Young et al. first define the visual denotation of
a sentence (or phrase) s, JsK, as the (sub)set of
images that s can describe. They estimate the
denotation of a phrase and the resulting similar-
ities from FLICKR30K, a corpus of 30,000 im-
ages, each paired with five descriptive captions.
In order to compute visual denotations from the
corpus, they define a set of normalization and re-
duction rules (e.g. lemmatization, dropping modi-
fiers, replacing nouns with their hypernyms, drop-
ping PPs, extracting NPs) that augment the origi-
nal FLICKR30K captions with a large number of
shorter, more generic phrases that are each associ-
ated with a subset of the FLICKR30K images.

The result is a large subsumption hierarchy over
phrases, which Young et al. call a denotation
graph (see Figure 1). The structure of the deno-
tation graph is similar to the idea of an entailment
graph (Berant et al., 2012). Each node in the de-
notation graph corresponds to a phrase s, associ-
ated with its denotation JsK, i.e. the set of im-
ages that correspond to the original captions from
which this phrase could be derived. For example,
the denotation of a phrase “woman jog on beach”
is the set of images in the corpus that depict a
woman jogging on a beach. Note that the deno-
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Figure 1: The denotation graph is a subsumption
hierarchy over phrases associated with images.

tation of a node (e.g. “woman jog on beach”) is
always a subset of the denotations of any of its an-
cestors (e.g. “woman jog”, “person jog”, “jog on
beach”, or “beach”).

The denotational probability of a phrase s,
PJK(s), is a Bernoulli random variable that corre-
sponds to the probability that a randomly drawn
image can be described by s. Given a denotation
graph over N images, PJK(s) = |JsK|

N . The joint
denotational probability of two phrases x and y,
PJK(x, y) = |JxK∩JyK|

N , indicates how likely it is
that a situation can be described by both x and
y. Young et al. propose to use pointwise mu-
tual information scores (akin to traditional distri-
butional similarities) and conditional probabilities
PJK(x|y) = |JxK∩JyK|

|JyK| as so-called denotational sim-
ilarities. In this paper, we will work with de-
notational conditional probabilities, as they are
intended to capture entailment-like relations that
hold due to commonsense knowledge, hyponymy,
etc. (what is the probability that x is true, given
that y can be said about this situation?). In an ideal
scenario, if the premise p entails the hypothesis
h, then the conditional probability P (h|p) is 1 (or
close to 1). Conversely, if h contradicts p, then the
conditional probability P (h|p) is close to 0. We
therefore stipulate that learning to predict the con-
ditional probability of one phrase h given another
phrase p would be helpful in predicting textual en-
tailment. We also note that by the definition of the
denotation graph, if x is an ancestor of y in the
graph, then y entails x and PJK(x|y) = 1.

Young et al. (2014) and Lai and Hockenmaier
(2014) show that denotational probabilities can be
at least as useful as traditional distributional sim-
ilarities for tasks that require semantic inference
such as entailment or textual similarity recogni-
tion. However, their systems can only use deno-

o x1

x2

y
x

P(X,Y)
P(X)

o x1

x2

y

zx

P(X,Y)

P(Y)

P(X)

Figure 2: An embedding space that expresses the
individual probability of events X and Y and the
joint probability P (X, Y ).

tational probabilities between phrases that already
exist in the denotation graph (i.e. phrases that
can be derived from the original FLICKR30K cap-
tions).

Here, we present a model that learns to pre-
dict denotational probabilities PJK(x) and PJK(x|y)
even for phrases it has not seen during training.
Our model is inspired by Vendrov et al. (2016),
who observed that a partial ordering � over the
vector representations of phrases can be used to
express an entailment relationship. They induce a
so-called order embedding for words and phrases
such that the vector x corresponding to phrase x
is smaller than the vector y, i.e. x � y, for
phrases y that are entailed by x, where � cor-
responds to the reversed product order on RN

+ (
x � y ⇔ xi ≥ yi∀i). They use their model
to predict entailment labels between pairs of sen-
tences, but it is only capable of making a binary
entailment decision.

5 An order embedding for probabilities

We generalize this idea to learn an embedding
space that expresses not only the binary relation
that phrase x is entailed by phrase y, but also the
probability that phrase x is true given phrase y.
Specifically, we learn a mapping from a phrase x
to an N -dimensional vector x ∈ RN

+ such that the
vector x = (x1, ..., xN ) defines the denotational
probability of x as PJK(x) = exp(−∑i xi). The
origin (the zero vector) therefore has probability
exp(0) = 1. Any other vector x that does not
lie on the origin (i.e. ∃ixi > 0) has probability
less than 1, and a vector x that is farther from the
origin than a vector y represents a phrase x that
has a smaller denotational probability than phrase
y. We can visualize this as each phrase vector oc-
cupying a region in the embedding space that is
proportional to the denotational probability of the
phrase. Figure 2 illustrates this in two dimensions.
The zero vector at the origin has a probability pro-

723



portional to the entire region of the positive or-
thant, while other points in the space correspond
to smaller regions and thus probabilities less than
1.

The joint probability PJK(x, y) in this embed-
ding space should be proportional to the size of
the intersection of the regions of x and y. There-
fore, we define the joint probability of two phrases
x and y to correspond to the vector z that is
the element-wise maximum of x and y: zi =
max(xi, yi). This allows us to compute the con-
ditional probability PJK(x|y) as follows:

PJK(x|y) =
PJK(x, y)
PJK(y)

=
exp(−∑i zi)
exp(−∑i yi)

= exp(
∑

i

yi −
∑

i

zi)

Shortcomings We note that this embedding
does not allow us to represent the negation of x as
a vector. We also cannot represent two phrases that
have completely disjoint denotations: in Figure 2,
the P (X) and P (Y ) regions will always intersect
and therefore the P (X, Y ) region will always have
an area greater than 0. In fact, in our embedding
space, the joint probability represented by the vec-
tor z will always be greater than or equal to the
product of the probabilities represented by the vec-
tors x and y. For any pair x = (x1, ..., xN ) and
y = (y1, ..., yN ), PJK(X, Y ) ≥ PJK(X)PJK(Y ):

PJK(X, Y ) = exp
(−∑

i

max(xi, yi)
)

≥ exp
(−∑

i

xi −
∑

i

yi

)
= PJK(X)PJK(Y )

(Equality holds when x and y are orthogo-
nal, and thus

∑
i xi +

∑
i yi =

∑
i max(xi, yi)).

Therefore, the best we can do for disjoint phrases
is learn an embedding that assumes the phrases are
independent. In other words, we can map the dis-
joint phrases to two vectors whose computed joint
probability is the product of the individual phrase
probabilities.

Although our model cannot represent two
events with completely disjoint denotations, we
will see below that it is able to learn that some
phrase pairs have very low denotational condi-
tional probabilities. We note also that our model
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Figure 3: Our probability model architecture.
Each phrase is a sequence of word embeddings
that is passed through an LSTM to produce a 512d
vector representation for the premise and the hy-
pothesis. Both vectors are used to compute the
predicted conditional probability and calculate the
loss.

cannot express P (X) = 0 exactly, but can get ar-
bitrarily close in order to represent the probability
of a phrase that is extremely unlikely.

6 Our model for PJK(x) and PJK(x, y)

We train a neural network model to predict PJK(x),
PJK(y), and PJK(x|y) for phrases x and y. This
model consists of an LSTM that outputs a 512d
vector which is passed through an additional 512d
layer. We use 300d GloVe vectors (Pennington
et al., 2014) trained on 840B tokens as the word
embedding input to the LSTM. We use the same
model to represent both x and y regardless of
which phrase is the premise or the hypothesis.
Thus, we pass the sequence of word embeddings
for phrase x through the model to get x, and we
do the same for phrase y to get y. As previously
described, we sum the elements of x and y to get
the predicted denotational probabilities PJK(x) and
PJK(y). From x and y, we find the joint vector
z, which we use to compute the predicted denota-
tional conditional probability PJK(x|y) according
to the equation in Section 5. Figure 3 illustrates
the structure of our model.

Our training data consists of ordered phrase
pairs 〈x, y〉. We train our model to predict the
denotational probabilities of each phrase (PJK(x)
and PJK(y)) as well as the conditional probability
PJK(x|y). Typically the pair 〈y, x〉 will also appear
in the training data.

Our per-example loss is the sum of the cross en-
tropy losses for PJK(x), PJK(y), and PJK(x|y):
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L = −[PJK(x) log Q(x) + (1−PJK(x)) log
(
1−Q(x)

)]
−[PJK(y) log Q(y) + (1−PJK(y)) log

(
1−Q(y)

)]
−[PJK(x|y) log Q(x|y) + (1−PJK(x|y)) log

(
1−Q(x|y)

)]

We use the Adam optimizer with a learning rate
of 0.001, and a dropout rate of 0.5. These param-
eters were tuned on the development data.

Numerical issues In Section 5, we described the
probability vectors x as being in the positive or-
thant. However, in our implementation, we use
unnormalized log probabilities. This puts all of
our vectors in the negative orthant instead, but it
prevents the gradients from becoming too small
during training. To ensure that the vectors are
in RN− , we clip the values of the elements of x
so that xi ≤ 0. To compute log PJK(x), we
sum the elements of x and clip the sum to the
range (log(10−10),−0.0001) in order to avoid er-
rors caused by passing log(0) values to the loss
function. The conditional log probability is simply
log PJK(x|y) = log PJK(x, y) − log PJK(y), where
log PJK(x, y) is now the element-wise minimum:

log PJK(x, y) =
∑

i

min(xi, yi)

This element-wise minimum is a standard pool-
ing operation (we take the minimum instead of the
more common max pooling). Note that if xi > yi,
neither element xi nor yi is updated with respect
to the PJK(x|y) loss. Both xi and yi will always
be updated with respect to the PJK(x) and PJK(y)
components of the loss.

6.1 Training regime
To train our model, we use phrase pairs 〈x, y〉 from
the denotation graph generated on the training split
of the FLICKR30K corpus (Young et al., 2014).
We consider all 271,062 phrases that occur with at
least 10 images in the training split of the graph,
to ensure that the phrases are frequent enough that
their computed denotational probabilities are reli-
able. Since the FLICKR30K captions are lemma-
tized in order to construct the denotation graph, all
the phrases in the dataset described in this section
are lemmatized as well.

We include all phrase pairs where the two
phrases have at least one image in common. These
constitute 45 million phrase pairs 〈x, y〉 with
PJK(x|y) > 0. To train our model to predict

PJK(x|y) = 0, we include phrase pairs 〈x, y〉 that
have no images in common if N×PJK(x)PJK(y) ≥
N−1 (N is the total number of images), mean-
ing that x and y occur frequently enough that we
would expect them to co-occur at least once in the
data. This yields 2 million pairs where PJK(x|y) =
0. For additional examples of PJK(x|y) = 1,
we include phrase pairs that have an ancestor-
descendant relationship in the denotation graph.
We include all ancestor-descendant pairs where
each phrase occurs with at least 2 images, for an
additional 3 million phrase pairs.

For evaluation purposes, we first assign 5% of
the phrases to the development pool and 5% to the
test pool. The actual test data then consists of all
phrase pairs where at least one of the two phrases
comes from the test pool. The resulting test data
contains 10.6% unseen phrases by type and 51.2%
unseen phrases by token. All phrase pairs in the
test data contain at least one phrase that was un-
seen in the training or development data. The de-
velopment data was created the same way.

This dataset is available to download
at http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html.

We train our model on the training data (42
million phrase pairs) with batch size 512 for 10
epochs, and use the mean KL divergence on the
conditional probabilities in the development data
to select the best model. Since PJK(x|y) is a
Bernoulli distribution, we compute the KL diver-
gence for each phrase pair 〈x, y〉 as

DKL(P ||Q) = PJK(x|y) log
PJK(x|y)
Q(x|y)

+
(
1− PJK(x|y)

)
log

1− PJK(x|y)
1−Q(x|y)

where Q(x|y) is the conditional probability pre-
dicted by our model.

7 Predicting denotational probabilities

7.1 Prediction on new phrase pairs
We evaluate our model using 1) the KL di-
vergences DKL(P ||Q) of the gold individual
and conditional probabilities PJK(x) and PJK(x|y)
against the corresponding predicted probabilities
Q, and 2) the Pearson correlation r, which ex-
presses the correlation between two variables (the
per-item gold and predicted probabilities) as a
value between −1 (total negative correlation) and
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P (x) P (x|y)
KL r KL r

Training data 0.0003 0.998 0.017 0.974
Full test data 0.001 0.979 0.031 0.949
Unseen pairs 0.002 0.837 0.048 0.920
Unseen words 0.016 0.906 0.127 0.696

Table 1: Our model predicts the probability of un-
seen phrase pairs with high correlation to the gold
probabilities.
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(a) Predicted probability when PJK(x|y) = 0
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(b) Predicted probability when PJK(x|y) = 0

Figure 4: Predicted probabilities on denotational
phrase test data when PJK(x|y) = 0 is 0 or 1.
Black is the full test data and gray is the subset of
pairs where both phrases are unseen. Frequency is
represented as a percentage of the size of the data.

1 (total positive correlation). As described above,
we compute the KL divergence on a per-item ba-
sis, and report the mean over all items in the test
set.

Table 1 shows the performance of our trained
model on unseen test data. The full test data
consists of 4.6 million phrase pairs, all of which
contain at least one phrase that was not observed
in either the training or development data. Our
model does reasonably well at predicting these
conditional probabilities, reaching a correlation of
r = 0.949 with PJK(x|y) on the complete test data.
On the subset of 123,000 test phrase pairs where
both phrases are previously unseen, the model’s
predictions are almost as good at r = 0.920.

On the subset of 3,100 test phrase pairs where at

0
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0.3

1 2 3 4 5 6 7 8 9 10 11

Figure 5: Distribution of phrase lengths as a frac-
tion of the data size on the denotation graph phrase
training data.

least one word was unseen in training, the model’s
predictions are worse, predicting PJK(x|y) with a
correlation of r = 0.696. On the remaining test
pairs, the model predicts PJK(x|y) with a correla-
tion of r = 0.949.

We also analyze our model’s accuracy on phrase
pairs where the gold PJK(x|y) is either 0 or 1. The
latter case reflects an important property of the de-
notation graph, since PJK(x|y) = 1 when x is an
ancestor of y. More generally, we can interpret
PJK(h|p) = 1 as a confident prediction of entail-
ment, and PJK(h|p) = 0 as a confident prediction
of contradiction. Figure 4 shows the distribution
of predicted conditional probabilities for phrase
pairs where gold PJK(h|p) = 0 (top) and gold
PJK(h|p) = 1 (bottom). Our model’s predictions
on unseen phrase pairs (gray bars) are nearly as ac-
curate as its predictions on the full test data (black
bars).

7.2 Prediction on longer sentences

Our model up to this point has only been trained
on short phrases, since conditional probabilities in
the denotation graph are only reliable for phrases
that occur with multiple images (see Figure 5
for the distribution of phrase lengths in the train-
ing data). To improve our model’s performance
on longer sentences, we add the SNLI training
data (which has a mean sentence length of 11
words) to our training data. We train a new model
from scratch on a corpus consisting of the previ-
ously described 42 million phrase pairs and the
550,000 SNLI training sentence pairs (lemmatized
to match our phrase pairs). We do not train on
SICK because the corpus is much smaller and has
a different distribution of phenomena, including

726



explicit negation. We augment the SNLI data with
approximate gold denotational probabilities by as-
signing a probability PJK(S) = s/N to a sentence
S that occurs s times in the N training sentences.
We assign approximate gold conditional probabil-
ities for each sentence pair 〈p, h〉 according to the
entailment label: if p entails h, then P (h|p) = 0.9.
If p contradicts h, then P (h|p) = 0.001. Other-
wise, P (h|p) = 0.5.

Figure 6 shows the predicted probabilities on
the SNLI test data when our model is trained on
different distributions of data. The top row shows
the predictions of our model when trained only on
short phrases from the denotation graph. We ob-
serve that the median probabilities increase from
contradiction to neutral to entailment, even though
this model was only trained on short phrases with a
limited vocabulary. Given the training data, we did
not expect these probabilities to align cleanly with
the entailment labels, but even so, there is already
some information here to distinguish between en-
tailment classes.

The bottom row shows that when our model
is trained on both denotational phrases and SNLI
sentence pairs with approximate conditional prob-
abilities, its probability predictions for longer sen-
tences improve. This model’s predicted condi-
tional probabilities align much more closely with
the entailment class labels. Entailing sentence
pairs have high conditional probabilities (median
0.72), neutral sentence pairs have mid-range con-
ditional probabilities (median 0.46), and contra-
dictory sentence pairs have conditional probabil-
ities approaching 0 (median 0.19).

8 Predicting textual entailment

In Section 7.2, we trained our probability model
on both short phrase pairs for which we had gold
probabilities and longer SNLI sentence pairs for
which we estimated probabilities. We now eval-
uate the effectiveness of this model for textual
entailment, and demonstrate that these predicted
probabilities are informative features for predict-
ing entailment on both SICK and SNLI.

Model We first train an LSTM similar to the
100d LSTM that achieved the best accuracy of
the neural models in Bowman et al. (2015). It
takes GloVe word vectors as input and produces
100d sentence vectors for the premise and hypoth-
esis. The concatenated 200d sentence pair rep-
resentation from the LSTM passes through three

Model Test Acc.

Our LSTM 77.2
Our LSTM + CPR 78.2

Bowman et al. (2015) LSTM 77.2

Table 2: Entailment accuracy on SNLI (test).

Model Test Acc.

Our LSTM 81.5
Our LSTM + CPR 82.7

Bowman et al. (2015) transfer 80.8

Table 3: Entailment accuracy on SICK (test).

200d tanh layers and a softmax layer for 3-class
entailment classification. We train the LSTM on
the SNLI training data with batch size 512 for 10
epochs. We use the Adam optimizer with a learn-
ing rate of 0.001 and a dropout rate of 0.85, and
use the development data to select the best model.

Next, we take the output vector produced by
the LSTM for each sentence pair and append our
predicted PJK(h|p) value (the probability of the
hypothesis given the premise). We train another
classifier that passes this 201d vector through two
tanh layers with a dropout rate of 0.5 and a final
3-class softmax classification layer. Holding the
parameters of the LSTM fixed, we train this model
for 10 epochs on the SNLI training data with batch
size 512.

Results Table 2 contains our results on SNLI.
Our baseline LSTM achieves the same 77.2% ac-
curacy reported by Bowman et al. (2015), whereas
a classifier that combines the output of this LSTM
with only a single feature from the output of our
probability model improves to 78.2% accuracy.

We use the same approach to evaluate the ef-
fectiveness of our predictions on SICK (Table 3).
SICK does not have enough data to train an
LSTM, so we combine the SICK and SNLI train-
ing data to train both the LSTM and the final
model. When we add the predicted conditional
probability as a single feature for each SICK
sentence pair, performance increases from 81.5%
to 82.7% accuracy. This approach outperforms
the transfer learning approach of Bowman et al.
(2015), which was also trained on both SICK and
SNLI.
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entail1 neutral1 contradict1 entail2 neutral2 contradict2

0 183 0.0543349168646081 301 0.0935073004038521 403 0.124497991967871 40 0.0118764845605701 52 0.016618728028124 762 0.235403151065802
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Figure 6: Predicted conditional probabilities P (h|p) for SNLI sentence pairs (test) by entailment label, as
a percentage of pairs with that label. Top: predictions from the model trained only on short denotational
phrases. Bottom: predictions from the model trained on both short denotational phrases and SNLI.

Premise Hypothesis G P

1 person walk on trail in
woods

in forest 1.0 1.0

2 group of person bike group of person ride 0.9 0.8
3 adult sing while play in-

strument
adult play guitar 0.8 0.8

4 person sit on bench out-
side

on park bench 0.4 0.4

5 tennis player hit ball person swing 0.2 0.2
6 girl sleep on pillow 0.1 0.2
7 man practice martial art person kick person 0.1 0.3
8 person skateboard on

ramp
man ride skateboard 0.2 0.2

9 busy intersection city street 0.3 0.2
10person dive into swim

pool
person fly through air 0.1 0.1

11sit at bench adult read book 0.1 0.1
12person leap into air jump over obstacle 0.0 0.0
13person talk on phone man ride skateboard 0.0 0.0

Table 4: Gold and predicted conditional proba-
bilities from the denotational phrase development
data.

9 Discussion

Section 7 has demonstrated that we can success-
fully learn to predict denotational probabilities for
phrases that we have not encountered during train-
ing and for longer sentences. Section 8 has illus-
trated the utility of these probabilities by showing
that a single feature based on our model’s pre-
dicted conditional denotational probabilities im-
proves the accuracy of an LSTM on SICK and
SNLI by 1 percentage point or more. Although we
were not able to evaluate the impact on more com-
plex, recently proposed neural network models,

Premise Hypothesis Gold Pred

skier on snowy hill athlete 1.00 0.99
pitcher throw ball mound 0.53 0.84
golf ball athlete 0.53 0.66
person point man point 0.48 0.41
in front of computer person look 0.36 0.21

Table 5: Gold and predicted conditional probabil-
ities from unseen pairs in the denotational phrase
development data.

this improvement is quite encouraging. We note in
particular that we only have accurate denotational
probabilities for the short phrases from the denota-
tion graph (mostly 6 words or fewer), which have a
limited vocabulary compared to the full SNLI data
(there are 5263 word types in the denotation graph
training data, while the lemmatized SNLI training
data has a vocabulary of 31,739 word types).

We examine examples of predicted conditional
probabilities for phrase and sentence pairs to an-
alyze our model’s strengths and weaknesses. Ta-
ble 4 has example predictions from the denotation
phrase development data. Our model correctly
predicts high conditional probability for entailed
phrase pairs even when there is no direct hyper-
nym involved, as in example 2, and for closely re-
lated phrases that are not strictly entailing, as in
example 3. Our model also predicts reasonable
probabilities for events that frequently co-occur
but are not required to do so, such as example 7.
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Premise Hypothesis CPR
E

nt
ai

lm
en

t
1 A person rides his bicycle in the sand beside the ocean. A person is on a beach. 0.88
2 Two women having drinks and smoking cigarettes at the bar. Two women are at a bar. 0.86
3 A senior is waiting at the window of a restaurant that serves

sandwiches.
A person waits to be served his food. 0.61

4 A man with a shopping cart is studying the shelves in a super-
market aisle.

There is a man inside a supermarket. 0.47

5 The two farmers are working on a piece of John Deere equip-
ment.

John Deere equipment is being worked on by two
farmers.

0.16

N
eu

tr
al

6 A group of young people with instruments are on stage. People are playing music. 0.86
7 Two doctors perform surgery on patient. Two doctors are performing surgery on a man. 0.56
8 Two young boys of opposing teams play football, while wear-

ing full protection uniforms and helmets.
Boys scoring a touchdown. 0.30

9 Two men on bicycles competing in a race. Men are riding bicycles on the street. 0.24

C
on

tr
ad

ic
tio

n 10 Two women having drinks and smoking cigarettes at the bar. Three women are at a bar. 0.79
11 A man in a black shirt is playing a guitar. The man is wearing a blue shirt. 0.47
12 An Asian woman sitting outside an outdoor market stall. A woman sitting in an indoor market. 0.22
13 A white dog with long hair jumps to catch a red and green toy. A white dog with long hair is swimming underwater. 0.09
14 Two women are embracing while holding to go packages. The men are fighting outside a deli. 0.06

Table 6: Predicted conditional probabilities for sentence pairs from the SNLI development data.

In examples 10 and 11, our model predicts low
probabilities for occasionally co-occurring events,
which are still more likely than the improbable co-
occurrence in example 13. Table 5 demonstrates
similar patterns for pairs where both phrases were
unseen.

Table 6 has examples of predicted conditional
probabilities for sentence pairs from the SNLI de-
velopment data. Some cases of entailment are
straightforward, so predicting high conditional
probability is relatively easy. This is the case
with example 2, which simply involves dropping
words from the premise to reach the hypothesis.
In other cases, our model correctly predicts high
conditional probability for an entailed hypothe-
sis that does not have such obvious word-to-word
correspondence with the premise, such as exam-
ple 1. Our model’s predictions are less accu-
rate when the sentence structure differs substan-
tially between premise and hypothesis, or when
there are many unknown words, as in example 5.
For neutral pairs, our model usually predicts mid-
range probabilities, but there are some exceptions.
In example 6, it is not certain that the people are
playing music, but it is a reasonable assumption
from the premise. It makes sense that in this case,
our model assigns this hypothesis a higher condi-
tional probability given the premise than for most
neutral sentence pairs. In example 7, we might
guess that the patient is a man with 50% proba-
bility, so the predicted conditional probability of
our model seems reasonable. Our model cannot
reason about numbers and quantities, as example

10 shows. It also fails to predict in example 11
that a man wearing a black shirt is probably not
wearing a blue shirt as well. However, our model
does correctly predict low probabilities for some
contradictory examples that have reasonably high
word overlap, as in example 13. Finally, exam-
ple 14 shows that our model can correctly predict
very low conditional probability for sentences that
share no common subject matter.

10 Conclusion

We have presented a framework for represent-
ing denotational probabilities in a vector space,
and demonstrated that we can successfully train a
neural network model to predict these probabili-
ties for new phrases. We have shown that when
also trained on longer sentences with approximate
probabilities, our model can learn reasonable rep-
resentations for these longer sentences. We have
also shown that our model’s predicted probabil-
ities are useful for textual entailment, and pro-
vide additional gains in performance when added
to existing competitive textual entailment classi-
fiers. Future work will examine whether the em-
beddings our model learns can be used directly by
these classifiers, and explore how to incorporate
negation into our model.
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Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255,
Austin, Texas, November.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.
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