
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 665–676,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Dependency Parsing as Head Selection

Xingxing Zhang, Jianpeng Cheng and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

{x.zhang,jianpeng.cheng}@ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

Conventional graph-based dependency
parsers guarantee a tree structure both
during training and inference. Instead, we
formalize dependency parsing as the prob-
lem of independently selecting the head
of each word in a sentence. Our model
which we call DENSE (as shorthand for
Dependency Neural Selection) produces
a distribution over possible heads for
each word using features obtained from
a bidirectional recurrent neural network.
Without enforcing structural constraints
during training, DENSE generates (at
inference time) trees for the overwhelm-
ing majority of sentences, while non-tree
outputs can be adjusted with a maximum
spanning tree algorithm. We evaluate
DENSE on four languages (English, Chi-
nese, Czech, and German) with varying
degrees of non-projectivity. Despite the
simplicity of the approach, our parsers are
on par with the state of the art.1

1 Introduction

Dependency parsing plays an important role in
many natural language applications, such as re-
lation extraction (Fundel et al., 2007), machine
translation (Carreras and Collins, 2009), language
modeling (Chelba et al., 1997; Zhang et al., 2016)
and ontology construction (Snow et al., 2005). De-
pendency parsers represent syntactic information
as a set of head-dependent relational arcs, typi-
cally constrained to form a tree. Practically all
models proposed for dependency parsing in recent
years can be described as graph-based (McDon-

1Our code is available at http://github.com/

XingxingZhang/dense_parser.

ald et al., 2005a) or transition-based (Yamada and
Matsumoto, 2003; Nivre et al., 2006b).

Graph-based dependency parsers are typically
arc-factored, where the score of a tree is defined
as the sum of the scores of all its arcs. An arc
is scored with a set of local features and a lin-
ear model, the parameters of which can be effec-
tively learned with online algorithms (Crammer
and Singer, 2001; Crammer and Singer, 2003; Fre-
und and Schapire, 1999; Collins, 2002). In or-
der to efficiently find the best scoring tree during
training and decoding, various maximization algo-
rithms have been developed (Eisner, 1996; Eisner,
2000; McDonald et al., 2005b). In general, graph-
based methods are optimized globally, using fea-
tures of single arcs in order to make the learn-
ing and inference tractable. Transition-based algo-
rithms factorize a tree into a set of parsing actions.
At each transition state, the parser scores a candi-
date action conditioned on the state of the transi-
tion system and the parsing history, and greedily
selects the highest-scoring action to execute. This
score is typically obtained with a classifier based
on non-local features defined over a rich history of
parsing decisions (Yamada and Matsumoto, 2003;
Zhang and Nivre, 2011).

Regardless of the algorithm used, most
well-known dependency parsers, such as the
MST-Parser (McDonald et al., 2005b) and the
MaltPaser (Nivre et al., 2006a), rely on exten-
sive feature engineering. Feature templates are
typically manually designed and aim at captur-
ing head-dependent relationships which are no-
toriously sparse and difficult to estimate. More
recently, a few approaches (Chen and Manning,
2014; Lei et al., 2014a; Kiperwasser and Gold-
berg, 2016) apply neural networks for learning
dense feature representations. The learned fea-
tures are subsequently used in a conventional
graph- or transition-based parser, or better de-

665

signed variants (Dyer et al., 2015).
In this work, we propose a simple neural

network-based model which learns to select the
head for each word in a sentence without enforc-
ing tree structured output. Our model which we
call DENSE (as shorthand for Dependency Neural
Selection) employs bidirectional recurrent neural
networks to learn feature representations for words
in a sentence. These features are subsequently
used to predict the head of each word. Although
there is nothing inherent in the model to enforce
tree-structured output, when tested on an English
dataset, it is able to generate trees for 95% of the
sentences, 87% of which are projective. The re-
maining non-tree (or non-projective) outputs are
post-processed with the Chu-Liu-Edmond (or Eis-
ner) algorithm. DENSE uses the head selection
procedure to estimate arc weights during training.
During testing, it essentially reduces to a standard
graph-based parser when it fails to produce tree (or
projective) output.

We evaluate our model on benchmark depen-
dency parsing corpora, representing four lan-
guages (English, Chinese, Czech, and German)
with varying degrees of non-projectivity. Despite
the simplicity of our approach, experiments show
that the resulting parsers are on par with the state
of the art.

2 Related Work

Graph-based Parsing Graph-based depen-
dency parsers employ a model for scoring
possible dependency graphs for a given sen-
tence. The graphs are typically factored into
their component arcs and the score of a tree is
defined as the sum of its arcs. This factorization
enables tractable search for the highest scoring
graph structure which is commonly formulated
as the search for the maximum spanning tree
(MST). The Chu-Liu-Edmonds algorithm (Chu
and Liu, 1965; Edmonds, 1967; McDonald et
al., 2005b) is often used to extract the MST in
the case of non-projective trees, and the Eisner
algorithm (Eisner, 1996; Eisner, 2000) in the
case of projective trees. During training, weight
parameters of the scoring function can be learned
with margin-based algorithms (Crammer and
Singer, 2001; Crammer and Singer, 2003) or
the structured perceptron (Freund and Schapire,
1999; Collins, 2002). Beyond basic first-order
models, the literature offers a few examples of

higher-order models involving sibling and grand
parent relations (Carreras, 2007; Koo et al., 2010;
Zhang and McDonald, 2012). Although more
expressive, such models render both training and
inference more challenging.

Transition-based Parsing As the term implies,
transition-based parsers conceptualize the process
of transforming a sentence into a dependency tree
as a sequence of transitions. A transition sys-
tem typically includes a stack for storing partially
processed tokens, a buffer containing the remain-
ing input, and a set of arcs containing all depen-
dencies between tokens that have been added so
far (Nivre, 2003; Nivre et al., 2006b). A de-
pendency tree is constructed by manipulating the
stack and buffer, and appending arcs with prede-
termined operations. Most popular parsers em-
ploy an arc-standard (Yamada and Matsumoto,
2003; Nivre, 2004) or arc-eager transition system
(Nivre, 2008). Extensions of the latter include the
use of non-local training methods to avoid greedy
error propagation (Zhang and Clark, 2008; Huang
and Sagae, 2010; Zhang and Nivre, 2011; Gold-
berg and Nivre, 2012).

Neural Network-based Features Neural net-
work representations have a long history in syn-
tactic parsing (Mayberry and Miikkulainen, 1999;
Henderson, 2004; Titov and Henderson, 2007).
Recent work uses neural networks in lieu of
the linear classifiers typically employed in con-
ventional transition- or graph-based dependency
parsers. For example, Chen and Manning (2014)
use a feed forward neural network to learn fea-
tures for a transition-based parser, whereas Lei
et al. (2014a) do the same for a graph-based
parser. Lei et al. (2014b) apply tensor decompo-
sition to obtain word embeddings in their syntac-
tic roles, which they subsequently use in a graph-
based parser. Dyer et al. (2015) redesign com-
ponents of a transition-based system where the
buffer, stack, and action sequences are modeled
separately with stack long short-term memory net-
works. The hidden states of these LSTMs are con-
catenated and used as features to a final transi-
tion classifier. Kiperwasser and Goldberg (2016)
use bidirectional LSTMs to extract features for a
transition- and graph-based parser, whereas Cross
and Huang (2016) build a greedy arc-standard
parser using similar features.

In our work, we formalize dependency parsing

666

as the task of finding for each word in a sentence
its most probable head. Both head selection and
the features it is based on are learned using neu-
ral networks. The idea of modeling child-parent
relations independently dates back to Hall (2007)
who use an edge-factored model to generate k-best
parse trees which are subsequently reranked us-
ing a model based on rich global features. Later
Smith (2010) show that a head selection variant
of their loopy belief propagation parser performs
worse than a model which incorporates tree struc-
ture constraints. Our parser is conceptually sim-
pler: we rely on head selection to do most of
the work and decode the best tree directly with-
out using a reranker. In common with recent neu-
ral network-based dependency parsers, we aim to
alleviate the need for hand-crafting feature com-
binations. Beyond feature learning, we further
show that it is possible to simplify the training of
a graph-based dependency parser in the context of
bidirectional recurrent neural networks.

3 Dependency Parsing as Head Selection

In this section we present our parsing model,
DENSE, which tries to predict the head of each
word in a sentence. Specifically, the model takes
as input a sentence of length N and outputs N
〈head, dependent〉 arcs. We describe the model
focusing on unlabeled dependencies and then dis-
cuss how it can be straightforwardly extended to
the labeled setting. We begin by explaining how
words are represented in our model and then give
details on how DENSE makes predictions based
on these learned representations. Since there is
no guarantee that the outputs of DENSE are trees
(although they mostly are), we also discuss how
to extend DENSE in order to enforce projective
and non-projective tree outputs. Throughout this
paper, lowercase boldface letters denote vectors
(e.g., v or vi), uppercase boldface letters denote
matrices (e.g., M or Mb), and lowercase letters
denote scalars (e.g., w or wi).

3.1 Word Representation

Let S = (w0, w1, . . . , wN) denote a sentence of
length N ; following common practice in the de-
pendency parsing literature (Kübler et al., 2009),
we add an artificial ROOT token represented byw0.
Analogously, let A = (a0,a1, . . . ,aN) denote the
representation of sentence S, with ai representing
word wi (0 ≤ i ≤ N). Besides encoding infor-

ROOT kids love candy

Phead(ROOT|love, S)

Phead(kids|love, S)
Phead(candy|love, S)

Figure 1: DENSE estimates the probability a word
being the head of another word based on bidirec-
tional LSTM representations for the two words.
Phead(ROOT|love, S) is the probability of ROOT

being the head of love (dotted arcs denote candi-
date heads; the solid arc is the goldstandard).

mation about each wi in isolation (e.g., its lexical
meaning or POS tag), ai must also encode wi’s
positional information within the sentence. Such
information has been shown to be important in de-
pendency parsing (McDonald et al., 2005a). For
example, in the following sentence:

ROOT a dog is chasing a cat

the head of the first a is dog, whereas the head of
the second a is cat. Without considering positional
information, a model cannot easily decide which a
(nearer or farther) to assign to dog.

Long short-term memory networks (Hochreiter
and Schmidhuber, 1997; LSTMs), a type of re-
current neural network with a more complex com-
putational unit, have proven effective at capturing
long-term dependencies. In our case LSTMs al-
low to represent each word on its own and within
a sequence leveraging long-range contextual infor-
mation. As shown in Figure 1, we first use a for-
ward LSTM (LSTMF) to read the sentence from
left to right and then a backward LSTM (LSTMB)
to read the sentence from right to left, so that the
entire sentence serves as context for each word:2

hF
i , c

F
i = LSTMF (xi,hF

i−1, c
F
i−1) (1)

hB
i , c

B
i = LSTMB(xi,hB

i+1, c
B
i+1) (2)

where xi is the feature vector of word wi, hF
i ∈

Rd and cF
i ∈ Rd are the hidden states and mem-

ory cells for the ith word wi in LSTMF and d is
2For more detail on LSTM networks, see e.g., Graves

(2012) or Goldberg (2016).

667

the hidden unit size. hF
i is also the representa-

tion for w0:i (wi and its left neighboring words)
and cF

i is an internal state maintained by LSTMF .
hB

i ∈ Rd and cB
i ∈ Rd are the hidden states and

memory cells for the backward LSTMB . Each to-
ken wi is represented by xi, the concatenation of
two vectors corresponding to wi’s lexical and POS
tag embeddings:

xi = [We · e(wi);Wt · e(ti)] (3)

where e(wi) and e(ti) are one-hot vector repre-
sentations of token wi and its POS tag ti; We ∈
Rs×|V | and Wt ∈ Rq×|T | are the word and POS
tag embedding matrices, where |V | is the vocab-
ulary size, s is the word embedding size, |T | is
the POS tag set size, and q the tag embedding
size. The hidden states of the forward and back-
ward LSTMs are concatenated to obtain ai, the fi-
nal representation of wi:

ai = [hF
i ;hB

i] i ∈ [0, N] (4)

Note that bidirectional LSTMs are one of many
possible ways of representing word wi. Alterna-
tive representations include embeddings obtained
from feed-forward neural networks (Chen and
Manning, 2014; Lei et al., 2014a), character-based
embeddings (Ballesteros et al., 2015), and more
conventional features such as those introduced in
McDonald et al. (2005a).

3.2 Head Selection
We now move on to discuss our formalization of
dependency parsing as head selection. We begin
with unlabeled dependencies and then explain how
the model can be extended to predict labeled ones.

In a dependency tree, a head can have multiple
dependents, whereas a dependent can have only
one head. Based on this fact, dependency pars-
ing can be formalized as follows. Given a sen-
tence S = (w0, w1, . . . , wN), we aim to find for
each word wi ∈ {w1, w2, . . . , wn} the most prob-
able head wj ∈ {w0, w1, . . . , wN}. For example,
in Figure 1, to find the head for the token love,
we calculate probabilities Phead(ROOT|love, S),
Phead(kids|love, S), and Phead(candy|love, S),
and select the highest. More formally, we estimate
the probability of token wj being the head of to-
ken wi in sentence S as:

Phead(wj |wi, S) =
exp(g(aj ,ai))∑N

k=0 exp(g(ak,ai))
(5)

where ai and aj are vector-based representations
of wi and wj , respectively (described in Sec-
tion 3.1); g(aj ,ai) is a neural network with a
single hidden layer that computes the associative
score between representations ai and aj :

g(aj ,ai) = v>a · tanh(Ua · aj + Wa · ai) (6)

where va ∈ R2d, Ua ∈ R2d×2d, and Wa ∈
R2d×2d are weight matrices of g. Note that the
candidate head wj can be the ROOT, while the de-
pendent wi cannot. Equations (5) and (6) com-
pute the probability of adding an arc between two
words, in a fashion similar to the neural atten-
tion mechanism in sequence-to-sequence models
(Bahdanau et al., 2015).

We train our model by minimizing the neg-
ative log likelihood of the gold standard 〈head,
dependent〉 arcs in all training sentences:

J(θ) = − 1
|T |

∑
S∈T

NS∑
i=1

logPhead(h(wi)|wi, S) (7)

where T is the training set, h(wi) is wi’s gold
standard head3 within sentence S, and NS the
number of words in S (excluding ROOT). Dur-
ing inference, for each word wi (i ∈ [1, NS])
in S, we greedily choose the most likely head
wj (j ∈ [0, NS]):

wj = arg max
wj :j∈[0,NS]

Phead(wj |wi, S) (8)

Note that the prediction for each word wi is made
independently of the other words in the sentence.

Given our greedy inference method, there is no
guarantee that predicted 〈head, dependent〉 arcs
form a tree (maybe there are cycles). However,
we empirically observed that most outputs during
inference are indeed trees. For instance, on an En-
glish dataset, 95% of the arcs predicted on the de-
velopment set are trees, and 87% of them are pro-
jective, whereas on a Chinese dataset, 87% of the
arcs form trees, 73% of which are projective. This
indicates that although the model does not explic-
itly model tree structure during training, it is able
to figure out from the data (which consists of trees)
that it should predict them.

So far we have focused on unlabeled depen-
dencies, however it is relatively straightforward
to extend DENSE to produce labeled dependen-
cies. We basically train an additional classifier

3Note that h(wi) can be ROOT.

668

to predict labels for the arcs which have been
already identified. The classifier takes as input
features [ai;aj ;xi;xj] representing properties of
the arc 〈wj , wi〉. These consist of ai and aj ,
the LSTM-based representations for wi and wj

(see Equation (4)), and their word and part-of-
speech embeddings, xi and xj (see Equation (3)).
Specifically, we use a trained DENSE model to go
through the training corpus and generate features
and corresponding dependency labels as training
data. We employ a two-layer rectifier network
(Glorot et al., 2011) for the classification task.

3.3 Maximum Spanning Tree Algorithms

As mentioned earlier, greedy inference may not
produce well-formed trees. In this case, the out-
put of DENSE can be adjusted with a maximum
spanning tree algorithm. We use the Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967) for building non-projective trees and
the Eisner (1996) algorithm for projective ones.

Following McDonald et al. (2005b), we view
a sentence S = (w0 = ROOT, w1, . . . , wN) as a
graph GS = 〈VS , ES〉 with the sentence words
and the dummy root symbol as vertices and a di-
rected edge between every pair of distinct words
and from the root symbol to every word. The di-
rected graph GS is defined as:

VS = {w0 = ROOT, w1, . . . , wN}
ES = {〈i, j〉 : i 6= j, 〈i, j〉 ∈ [0, N]× [1, N]}

s(i, j) = Phead(wi|wj , S) 〈i, j〉 ∈ ES

where s(i, j) is the weight of edge 〈i, j〉
and Phead(wi|wj , S) is known. The problem of
dependency parsing now boils down to finding the
tree with the highest score which is equivalent to
finding a MST in GS (McDonald et al., 2005b).

Non-projective Parsing To build a non-
projective parser, we solve the MST problem with
the Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967). The algorithm selects for
each vertex (excluding ROOT) the in-coming edge
with the highest weight. If a tree results, it must
be the maximum spanning tree and the algorithm
terminates. Otherwise, there must be a cycle
which the algorithm identifies, contracts into a
single vertex and recalculates edge weights going
into and out of the cycle. The greedy inference
strategy described in Equation (8)) is essentially a
sub-procedure in the Chu-Liu-Edmonds algorithm

with the algorithm terminating after the first
iteration. In implementation, we only run the
Chu-Liu-Edmonds algorithm through graphs with
cycles, i.e., non-tree outputs.

Projective Parsing For projective parsing, we
solve the MST problem with the Eisner (1996) al-
gorithm. The time complexity of the Eisner al-
gorithm is O(N3), while checking if a tree is
projective can be done reasonably faster, with a
O(N logN) algorithm. Therefore, we only apply
the Eisner algorithm to the non-projective output
of our greedy inference strategy. Finally, it should
be noted that the training of our model does not
rely on the Chu-Liu-Edmonds or Eisner algorithm,
or any other graph-based algorithm. MST algo-
rithms are only used at test time to correct non-tree
outputs which are a minority; DENSE acquires
underlying tree structure constraints from the data
without an explicit learning algorithm.

4 Experiments

We evaluated our parser in a projective and non-
projective setting. In the following, we describe
the datasets we used and provide training details
for our models. We also present comparisons
against multiple previous systems and analyze the
parser’s output.

4.1 Datasets

In the projective setting, we assessed the perfor-
mance of our parser on the English Penn Treebank
(PTB) and the Chinese Treebank 5.1 (CTB). Our
experimental setup closely follows Chen and Man-
ning (2014) and Dyer et al. (2015).

For English, we adopted the Stanford basic de-
pendencies (SD) representation (De Marneffe et
al., 2006).4 We follow the standard splits of
PTB, sections 2–21 were used for training, sec-
tion 22 for development, and section 23 for test-
ing. POS tags were assigned using the Stanford
tagger (Toutanova et al., 2003) with an accuracy
of 97.3%. For Chinese, we follow the same split
of CTB5 introduced in Zhang and Clark (2008). In
particular, we used sections 001–815, 1001–1136
for training, sections 886–931, 1148–1151 for
development, and sections 816–885, 1137–1147
for testing. The original constituency trees in
CTB were converted to dependency trees with the

4We obtained SD representations using the Stanford
parser v.3.3.0.

669

Dataset # Sentences (%) Projective
English 39,832 99.9
Chinese 16,091 100.0
Czech 72,319 76.9
German 38,845 72.2

Table 1: Projective statistics on four datasets.
Number of sentences and percentage of projective
trees are calculated on the training set.

Penn2Malt tool.5 We used gold segmentation and
gold POS tags as in Chen and Manning (2014) and
Dyer et al. (2015).

In the non-projective setting, we assessed the
performance of our parser on Czech and German,
the largest non-projective datasets released as part
of the CoNLL 2006 multilingual dependency pars-
ing shared task. Since there is no official develop-
ment set in either dataset, we used the last 374/367
sentences in the Czech/German training set as de-
velopment data.6 Projective statistics of the four
datasets are summarized in Table 1.

4.2 Training Details

We trained our models on an Nvidia GPU card;
training takes one to two hours. Model parameters
were uniformly initialized to [−0.1, 0.1]. We used
Adam (Kingma and Ba, 2014) to optimize our
models with hyper-parameters recommended by
the authors (i.e., learning rate 0.001, first momen-
tum coefficient 0.9, and second momentum coef-
ficient 0.999). To alleviate the gradient exploding
problem, we rescaled the gradient when its norm
exceeded 5 (Pascanu et al., 2013). Dropout (Sri-
vastava et al., 2014) was applied to our model
with the strategy recommended in the literature
(Zaremba et al., 2014; Semeniuta et al., 2016).
On all datasets, we used two-layer LSTMs and set
d = s = 300, where d is the hidden unit size and
s is the word embedding size.

As in previous neural dependency parsing work
(Chen and Manning, 2014; Dyer et al., 2015),
we used pre-trained word vectors to initialize our
word embedding matrix We. For the PTB ex-
periments, we used 300 dimensional pre-trained
GloVe7 vectors (Pennington et al., 2014). For
the CTB experiments, we trained 300 dimensional

5http://stp.lingfil.uu.se/˜nivre/research/

Penn2Malt.html
6We make the number of sentences in the development

and test sets comparable.
7http://nlp.stanford.edu/projects/glove/

Dev Test
Parser UAS LAS UAS LAS

Bohnet10 — — 92.88 90.71
Martins13 — — 92.89 90.55
Z&M14 — — 93.22 91.02
Z&N11 — — 93.00 90.95
C&M14 92.00 89.70 91.80 89.60
Dyer15 93.20 90.90 93.10 90.90
Weiss15 — — 93.99 92.05
Andor16 — — 94.61 92.79
K&G16 graph — — 93.10 91.00
K&G16 trans — — 93.90 91.90
DENSE-Pei 90.77 88.35 90.39 88.05
DENSE-Pei+E 91.39 88.94 91.00 88.61
DENSE 94.17 91.82 94.02 91.84
DENSE+E 94.30 91.95 94.10 91.90

Table 2: Results on English dataset (PTB with
Stanford Dependencies). +E: we post-process
non-projective output with the Eisner algorithm.

GloVe vectors on the Chinese Gigaword corpus
which we segmented with the Stanford Chinese
Segmenter (Tseng et al., 2005). For Czech and
German, we did not use pre-trained word vectors.
The POS tag embedding size was set to q = 30
in the English experiments, q = 50 in the Chinese
experiments and q = 40 in both Czech and Ger-
man experiments.

4.3 Results

For both English and Chinese experiments, we
report unlabeled (UAS) and labeled attachment
scores (LAS) on the development and test sets; fol-
lowing Chen and Manning (2014) punctuation is
excluded from the evaluation.

Experimental results on PTB are shown in Ta-
ble 2. We compared our model with several recent
papers following the same evaluation protocol and
experimental settings. The first block in the table
contains mostly graph-based parsers which do not
use neural networks: Bohnet10 (Bohnet, 2010),
Martins13 (Martins et al., 2013), and Z&M14
(Zhang and McDonald, 2014). Z&N11 (Zhang
and Nivre, 2011) is a transition-based parser with
non-local features. Accuracy results for all four
parsers are reported in Weiss et al. (2015).

The second block in Table 2 presents re-
sults obtained from neural network-based parsers.
C&M14 (Chen and Manning, 2014) is a transition-
based parser using features learned with a feed

670

Dev Test
Parser UAS LAS UAS LAS

Z&N11 — — 86.00 84.40
Z&M14 — — 87.96 86.34
C&M14 84.00 82.40 83.90 82.40
Dyer15 87.20 85.90 87.20 85.70
K&G16 graph — — 86.60 85.10
K&G16 trans — — 87.60 86.10
DENSE-Pei 82.50 80.74 82.38 80.55
DENSE-Pei+E 83.40 81.63 83.46 81.65
DENSE 87.27 85.73 87.63 85.94
DENSE+E 87.35 85.85 87.84 86.15

Table 3: Results on Chinese dataset (CTB).
+E: we post-process non-projective outputs with
the Eisner algorithm.

PTB CTB
Parser Dev Test Dev Test
C&M14 43.35 40.93 32.75 32.20
Dyer15 51.94 50.70 39.72 37.23
DENSE 51.24 49.34 34.74 33.66
DENSE+E 52.47 50.79 36.49 35.13

Table 4: UEM results on PTB and CTB.

forward neural network. Although very fast,
its performance is inferior compared to graph-
based parsers or strong non-neural transition based
parsers (e.g., Z&N11). Dyer15 (Dyer et al., 2015)
uses (stack) LSTMs to model the states of the
buffer, the stack, and the action sequence of a tran-
sition system. Weiss15 (Weiss et al., 2015) is an-
other transition-based parser, with a more elabo-
rate training procedure. Features are learned with
a neural network model similar to C&M14, but
much larger with two layers. The hidden states of
the neural network are then used to train a struc-
tured perceptron for better beam search decod-
ing. Andor16 (Andor et al., 2016) is similar to
Weiss15, but uses a globally normalized training
algorithm instead.

Unlike all models above, DENSE does not use
any kind of transition- or graph-based algorithm
during training and inference. Nonetheless, it ob-
tains a UAS of 94.02%. Around 95% of the
model’s outputs after inference are trees, 87% of
which are projective. When we post-process the
remaining 13% of non-projective outputs with the
Eisner algorithm (DENSE+E), we obtain a slight
improvement on UAS (94.10%).

Kiperwasser and Goldberg (2016) extract fea-

Czech German
Parser UAS LAS UAS LAS

MST-1st 86.18 — 89.54 —
MST-2nd 87.30 — 90.14 —
Turbo-1st 87.66 — 90.52 —
Turbo-3rd 90.32 — 92.41 —
RBG-1st 87.90 — 90.24 —
RBG-3rd 90.50 — 91.97 —
DENSE-Pei 86.00 77.92 89.42 86.48
DENSE-Pei+CLE 86.52 78.42 89.52 86.58
DENSE 89.60 81.70 92.15 89.58
DENSE+CLE 89.68 81.72 92.19 89.60

Table 5: Non-projective results on the CoNLL
2006 dataset. +CLE: we post-process non-tree
outputs with the Chu-Liu-Edmonds algorithm.

tures from bidirectional LSTMs and feed them
to a graph- (K&G16 graph) and transition-based
parser (K&G16 trans). Their LSTMs are jointly
trained with the parser objective. DENSE yields
very similar performance to their transition-based
parser while it outperforms K&G16 graph. A key
difference between DENSE and K&G16 lies in the
training objective. The objective of DENSE is log-
likelihood based without tree structure constraints
(the model is trained to produce a distribution over
possible heads for each word, where each head
selection is independent), while K&G16 employ
a max-margin objective with tree structure con-
straints. Although our probabilistic objective is
non-structured, it is perhaps easier to train com-
pared to a margin-based one.

We also assessed the importance of the bidi-
rectional LSTM on its own by replacing our
LSTM-based features with those obtained from
a feed-forward network. Specifically, we used
the 1-order-atomic features introduced in Lei et
al. (2014a) which represent POS-tags, modifiers,
heads, and their relative positions. As can be seen
in Table 2 (DENSE-Pei), these features are less
effective compared to LSTM-based ones and the
contribution of the MST algorithm (Eisner) during
decoding is more pronounced (DENSE-Pei+E).
We observe similar trends in the Chinese, German,
and Czech datasets (see Tables 3 and 5).

Results on CTB follow a similar pattern. As
shown in Table 3, DENSE outperforms all previ-
ous neural models (see the test set columns) on
UAS and LAS. DENSE performs competitively
with Z&M14, a non-neural model with a com-

671

a. b.

11 14 17 20 23 26 28 32 38 118
PTB sentence length

89

90

91

92

93

94

95

96

U
A

S
 (

%
)

C&M14
DeNSe+E
Dyer15

5 9 14 18 22 26 30 37 49 116
PTB sentence length

80

81

82

83

84

85

86

87

88

89

90

91

92

93

U
A

S
 (

%
)

C&M14
DeNSe+E
Dyer15

CTBCTB

Figure 2: UAS against sentence length on PTB and CTB (development set). Sentences are sorted by
length in ascending order and divided equally into 10 bins. The horizontal axis is the length of the last
sentence in each bin.

plex high order decoding algorithm involving cube
pruning and strategies for encouraging diversity.
Post-processing the output of the parser with the
Eisner algorithm generally improves performance
(by 0.21%; see last row in Table 3). Again we
observe that 1-order-atomic features (Lei et al.,
2014a) are inferior compared to the LSTM. Ta-
ble 4 reports unlabeled sentence level exact match
(UEM) in Table 4 for English and Chinese. In-
terestingly, even when using the greedy inference
strategy, DENSE yields a UEM comparable to
Dyer15 on PTB. Finally, in Figure 2 we analyze
the performance of our parser on sentences of dif-
ferent length. On both PTB and CTB, DENSE

has an advantage on long sentences compared to
C&M14 and Dyer15.

For Czech and German, we closely follow the
evaluation setup of CoNLL 2006. We report
both UAS and LAS, although most previous work
has focused on UAS. Our results are summarized
in Table 5. We compare DENSE against three
non-projective graph-based dependency parsers:
the MST parser (McDonald et al., 2005b), the
Turbo parser (Martins et al., 2013), and the RBG
parser (Lei et al., 2014b). We show the per-
formance of these parsers in the first order set-
ting (e.g., MST-1st) and in higher order settings
(e.g., Turbo-3rd). The results of MST-1st, MST-
2nd, RBG-1st and RBG-3rd are reported in Lei et
al. (2014b) and the results of Turbo-1st and Turbo-
3rd are reported in Martins et al. (2013). We show
results for our parser with greedy inference (see
DENSE in the table) and when we use the Chu-

Before MST After MST
Dataset #Sent Tree Proj Tree Proj

PTB 1,700 95.1 86.6 100.0 100.0
CTB 803 87.0 73.1 100.0 100.0
Czech 374 87.7 65.5 100.0 72.7
German 367 96.7 67.3 100.0 68.1

Table 6: Percentage of trees and projective trees
on the development set before and after DENSE

uses a MST algorithm. On PTB and CTB, we use
the Eisner algorithm and on Czech and German,
we use the Chu-Liu-Edmonds algorithm.

Liu-Edmonds algorithm to post-process non-tree
outputs (DENSE+CLE).

As can been seen, DENSE outperforms all other
first (and second) order parsers on both German
and Czech. As in the projective experiments, we
observe slight a improvement (on both UAS and
LAS) when using a MST algorithm. On German,
DENSE is comparable with the best third-order
parser (Turbo-3rd), while on Czech it lags behind
Turbo-3rd and RBG-3rd. This is not surprising
considering that DENSE is a first-order parser and
only uses words and POS tags as features. Com-
parison systems use a plethora of hand-crafted fea-
tures and more sophisticated high-order decoding
algorithms. Finally, note that a version of DENSE

with features in (Lei et al., 2014a) is consistently
worse (see the second block in Table 5).

Our experimental results demonstrate that us-
ing a MST algorithm during inference can slightly
improve the model’s performance. We further ex-

672

amined the extent to which the MST algorithm is
necessary for producing dependency trees. Table 6
shows the percentage of trees before and after the
application of the MST algorithm across the four
languages. In the majority of cases DENSE out-
puts trees (ranging from 87.0% to 96.7%) and a
significant proportion of them are projective (rang-
ing from 65.5% to 86.6%). Therefore, only a small
proportion of outputs (14.0% on average) need
to be post-processed with the Eisner or Chu-Liu-
Edmonds algorithm.

5 Conclusions

In this work we presented DENSE, a neural de-
pendency parser which we train without a tran-
sition system or graph-based algorithm. Experi-
mental results show that DENSE achieves compet-
itive performance across four different languages
and can seamlessly transfer from a projective to a
non-projective parser simply by changing the post-
processing MST algorithm during inference. In
the future, we plan to increase the coverage of our
parser by using tri-training techniques (Li et al.,
2014) and multi-task learning (Luong et al., 2015).

Acknowledgments We would like to thank
Adam Lopez and Frank Keller for their valuable
feedback. We acknowledge the financial support
of the European Research Council (ERC; award
number 681760).

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2442–2452, Berlin, Germany.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learing Repre-
sentations, San Diego, California.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
359, Lisbon, Portugal.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings

of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China.

Xavier Carreras and Michael Collins. 2009. Non-
projective parsing for statistical machine translation.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
200–209, Singapore.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 957–961, Prague, Czech Re-
public.

Ciprian Chelba, David Engle, Frederick Jelinek, Victor
Jimenez, Sanjeev Khudanpur, Lidia Mangu, Harry
Printz, Eric Ristad, Ronald Rosenfeld, Andreas Stol-
cke, and Dekai Wu. 1997. Structure and per-
formance of a dependency language model. In
Fifth European Conference on Speech Communica-
tion and Technology, EUROSPEECH 1997, Rhodes,
Greece.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On
shortest arborescence of a directed graph. Scientia
Sinica, 14(10):1396.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the 2002 Conference on Empirical Methods in
Natural Language Processing, pages 1–8.

Koby Crammer and Yoram Singer. 2001. On the algo-
rithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Re-
search, 2:265–292.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951–991.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
lstm. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 32–37, Berlin, Ger-
many.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Proceedings of LREC, volume 6, pages
449–454, Genoa, Italy.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual

673

Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B,
71(4):233–240.

Jason Eisner. 1996. Efficient normal-form parsing
for combinatory categorial grammar. In Proceed-
ings of the 34th Annual Meeting of the Association
for Computational Linguistics, pages 79–86, Santa
Cruz, California, USA.

Jason Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In Advances in prob-
abilistic and other parsing technologies, pages 29–
61. Springer.

Yoav Freund and Robert E Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine learning, 37(3):277–296.

Katrin Fundel, Robert Küffner, and Ralf Zimmer.
2007. Relation extraction using dependency parse
trees. Bioinformatics, 23(3):365–371.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 315–323, Cadiz, Spain.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In Pro-
ceedings of COLING 2012, pages 959–976, Mum-
bai, India.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research, 57:345–420.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks. Studies in Com-
putational Intelligence. Springer.

Keith Hall. 2007. K-best spanning tree parsing. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 392–
399, Prague, Czech Republic.

James Henderson. 2004. Discriminative training of
a neural network statistical parser. In Proceedings
of the 42nd Meeting of the Association for Compu-
tational Linguistics (ACL’04), Main Volume, pages
95–102, Barcelona, Spain.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1077–
1086, Uppsala, Sweden.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1288–1298, Cambridge, MA.

Sandra Kübler, Ryan McDonald, Joakim Nivre, and
Graeme Hirst. 2009. Dependency Parsing. Mor-
gan and Claypool Publishers.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014a. Low-rank tensors for scor-
ing dependency structures. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1381–1391, Baltimore, Maryland.

Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. 2014b. Low-rank tensors for scoring de-
pendency structures. In Proceedings of the ACL.
Baltimore, Maryland.

Zhenghua Li, Min Zhang, and Wenliang Chen.
2014. Ambiguity-aware ensemble training for semi-
supervised dependency parsing. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 457–467, Baltimore, Maryland.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task se-
quence to sequence learning. In Proceedings of the
4th International Conference on Learning Represen-
tations, San Juan, Puerto Rico.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
617–622, Sofia, Bulgaria.

Marshall R. Mayberry and Risto Miikkulainen. 1999.
SardSrn: A neural network shift-reduce parser. In
In Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence, pages 820–825,
Stockholm, Sweden.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics, pages 91–98, Ann Arbor, Michigan.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural

674

Language Processing, pages 523–530, Vancouver,
British Columbia, Canada.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of LREC, vol-
ume 6, Genoa, Italy.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, and Svetoslav Marinov. 2006b. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL-X), pages 221–225, New York City.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technolo-
gies, pages 149–160, Nancy, France.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether, pages 50–57, Barcelona, Spain.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning, pages
1310–1318, Atlanta, Georgia.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2016. Recurrent dropout without memory
loss. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, pages 1757–1766, Osaka,
Japan.

David Arthur Smith. 2010. Efficient inference for trees
and alignments: modeling monolingual and bilin-
gual syntax with hard and soft constraints and latent
variables. Johns Hopkins University.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems 17, pages 1297–1304, Vancouver,
British Columbia.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ivan Titov and James Henderson. 2007. Constituent
parsing with incremental sigmoid belief networks.
In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 632–
639, Prague, Czech Republic.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of HLT-NAACL 2003, pages 173–
180, Edmonton, Canada.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A condi-
tional random field word segmenter for Sighan bake-
off 2005. In Proceedings of the 4th SIGHAN work-
shop on Chinese language Processing, pages 168–
171, Jeju Island, Korea.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing,
China.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Sta-
tistical dependency analysis with support vector ma-
chines. In Proceedings of the 8th Workshop on Pars-
ing Technologies, pages 195–206, Nancy, France.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–
571, Honolulu, Hawaii.

Hao Zhang and Ryan McDonald. 2012. Generalized
higher-order dependency parsing with cube prun-
ing. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 320–331, Jeju Island, Korea.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 656–661, Baltimore,
Maryland.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA.

675

Xingxing Zhang, Liang Lu, and Mirella Lapata. 2016.
Top-down tree long short-term memory networks.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 310–320, San Diego, California.

676

