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Abstract

A major motivation for unsupervised mor-
phological analysis is to reduce the sparse
data problem in under-resourced languages.
Most previous work focuses on segmenting
surface forms into their constituent morphs
(e.g., taking: tak +ing), but surface form
segmentation does not solve the sparse data
problem as the analyses of take and taking
are not connected to each other. We extend
the MorphoChains system (Narasimhan et
al., 2015) to provide morphological anal-
yses that can abstract over spelling dif-
ferences in functionally similar morphs.
These analyses are not required to use all
the orthographic material of a word (stop-
ping: stop +ing), nor are they limited to
only that material (acidified: acid +ify
+ed). On average across six typologically
varied languages our system has a similar
or better F-score on EMMA (a measure of
underlying morpheme accuracy) than three
strong baselines; moreover, the total num-
ber of distinct morphemes identified by our
system is on average 12.8% lower than for
Morfessor (Virpioja et al., 2013), a state-
of-the-art surface segmentation system.

1 Introduction

Most previous work on unsupervised morphologi-
cal analysis has focused on the problem of segmen-
tation: segmenting surface forms into their con-
stituent morphs (Goldsmith, 2001; Creutz and La-
gus, 2007; Poon et al., 2009; Lee et al., 2011; Virpi-
oja et al., 2013; Sirts and Goldwater, 2013). How-
ever, the focus on surface segmentation is largely
due to ease of model definition and implementa-
tion rather than linguistic correctness. Even in lan-
guages with primarily concatenative morphology,
spelling (or phonological) changes often occur at

morpheme boundaries, so that a single morpheme
may have multiple surface forms. For example, the
past tense in English may surface as -ed (walked),
-d (baked), -ted (emitted), -ped (skipped), etc.

A major motivation for unsupervised morpholog-
ical analysis is to reduce the sparse data problem in
under-resourced languages. While surface segmen-
tation can help, the example above illustrates its
limitations: for more effective parameter sharing, a
system should recognize that -ed, -d, -ted, and -ped
share the same linguistic function. The importance
of identifying underlying morphemes rather than
surface morphs is widely recognized, for example
by the MorphoChallenge organizers, who in later
years provided datasets and evaluation measures to
encourage this deeper level of analysis (Kurimo et
al., 2010). Nevertheless, only a few systems have
attempted this task (Goldwater and Johnson, 2004;
Naradowsky and Goldwater, 2009), and as far as
we know, only one, the rule-based MORSEL (Lig-
nos et al., 2009; Lignos, 2010), has come close to
the level of performance achieved by segmentation
systems such as Morfessor (Virpioja et al., 2013).

We present a system that adapts the unsupervised
MorphoChains segmentation system (Narasimhan
et al., 2015) to provide morphological analyses that
aim to abstract over spelling differences in func-
tionally similar morphemes. Like MorphoChains,
our system uses an unsupervised log-linear model
whose parameters are learned using contrastive esti-
mation (Smith and Eisner, 2005). The original Mor-
phoChains system learns to identify child-parent
pairs of morphologically related words, where the
child (e.g., stopping) is formed from the parent
(stop) by adding an affix and possibly a spelling
transformation (both represented as features in the
model). However, these spelling transformations
are never used to output underlying morphemes,
instead the system just returns a segmentation by
post-processing the inferred child-parent pairs.

We extend the MorphoChains system in sev-
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eral ways: first, we use the spelling transforma-
tion features to output underlying morphemes for
each word rather than a segmentation; second, we
broaden the types of morphological changes that
can be identified to include compounds; and third,
we modify the set of features used in the log-linear
model to improve the overall performance. We eval-
uate using EMMA (Spiegler and Monson, 2010), a
measure that focuses on the identity rather than the
spelling of morphemes. On average across six typo-
logically varied languages (English, German, Turk-
ish, Finnish, Estonian, Arabic), our system outper-
forms both the original MorphoChains system and
the MORSEL system, and performs similarly to
the surface segmentation system Morfessor. These
results are (to our knowledge) the best to date from
a system for identifying underlying morphemes;
moreover, the total number of distinct morphemes
identified by our system is on average 12.8% lower
than for Morfessor, suggesting that it does a bet-
ter job of abstracting over surface spellings and
inducing a compact representation of the data.

2 Morphological Chains and Analyses

We base our work on the MorphoChains segmen-
tation system (Narasimhan et al., 2015),1 which
defines a morphological chain as a sequence of
child-parent pairs. Each pair consists of two mor-
phologically related words where the child must be
longer than the parent. To analyse a word we want
to find the best parent for that word; we do so recur-
sively until we conclude that the stop condition is
met (i.e. a word doesn’t have a morphological par-
ent). The word standardizes, for example, produces
the following chain:

standardizes→ standardize→ standard

which consists of the child-parent pairs (standard-
izes, standardize), (standardize, standard) and
(standard, NONE). Each child-parent pair is an-
notated with a type indicating the kind of trans-
formation that relates the child-parent pair. The
set of transformations defined by MorphoChains
is: suffixation as in (dogs, dog), prefixation as in
(undone, done), deletion as in (baked, bake)2, rep-
etition as in (stopped, stop), and modification as in

1We modified the implementation available at https:
//github.com/karthikncode/MorphoChain.

2The system could in principle learn that bake is the parent
of baked with type suffix, which would imply the analysis bake
+d. However, we hope it learns instead the type delete, which
implies the (correct) analysis bake +ed. Similar alternative
analyses are possible for the other example types shown.

Word MorphoChains Our Model
stopping stopp +ing stop +ing
doubled double +d double +ed
acidified acid +ifi +ed acid +ify +ed

Table 1: Examples outputs of two models.

(worried, worry). We add a sixth type, compound-
ing as in (darkroom, room). The delete, repeat, and
modify types all assume the change occurs to the
final character of the stem, while compounding can
simply concatenate the two stems, or can introduce
an extra character (as in higher-rate or German
schilddruese +n+ krebs (‘thyroid cancer’).

Any word (undone) has many possible parents,
some linguistically plausible (undo, done) and
others not (und, ndone). Our system, like Mor-
phoChains, learns a log-linear model to discrimi-
nate plausible from implausible parents amongst
the complete parent candidate set for each word.
The candidate set is generated by taking all possible
splits of the word and applying all possible transfor-
mation types. For example, some parent candidates
for the word dogs include (dog, suffix), (do, suffix),
(gs, prefix), (doga, delete), (dogb, delete), (doe,
delete), and (doe, modify). The last two imply
analyses of doe +gs and doe +s, respectively.

The examples above indicate how analyses can
be induced recursively by tracking the transfor-
mation type and orthographic change associated
with each parent-child pair. However, the original
MorphoChains algorithm did not do so, instead
it only used the transformation types to predict
morph boundaries. Table 1 contrasts the word seg-
mentation into morphs produced by the original
MorphoChains model and the morpheme analysis
produced by our model. Table 2 provides additional
examples of our recursive analysis process.

2.1 Model
We predict child-parent pairs using a log-linear
model, following Narasimhan et al. (2015). The
model consists of a set of features represented by a
feature vector φ :W ×Z → Rd, whereW is a set
of words and Z is the set of (parent, type) pairs
for words inW . The model defines the conditional
probability of a particular (parent, type) pair z ∈
Z given word w ∈ W as:

P (z|w) =
eθ·φ(w,z)∑

z′∈C(w) e
θ·φ(w,z′) , z ∈ C(w) (1)
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Step Word Child-Parent Pair Type Change Analysis
1 acidified (acidified, acidify) modify add +ed +ed
2 (acidify, acid) suffix add +ify +ify +ed
3 (acid, NONE) stop add acid acid +ify +ed
1 doubled (doubled, double) delete add +ed +ed
2 (double, NONE) stop add double double +ed
1 higher-rate (higher-rate, rate) compound keep higher
2 (rate, NONE) stop add rate rate
3 (higher, high) suffix add +er +er rate
4 (high, NONE) stop add high high +er rate

Table 2: Examples of step-by-step derivations of morphological analysis of English words.

where C(w) ⊂ Z denotes the set of parent candi-
dates for w and θ is a weight vector.

Our goal is to learn the feature weights in an
unsupervised fashion. Following Narasimhan et al.
(2015), we do so using Contrastive Estimation (CE)
(Smith and Eisner, 2005). In CE every training ex-
ample w ∈ W serves as both a positive example
and a set of implied negative examples—strings
that are similar to w but don’t occur in the corpus.
The negative examples are the source of the proba-
bility mass allocated to the positive examples. The
word w and its negative examples constitute the
neighbourhood N (w) of w.

Given the list of wordsW and their neighbour-
hoods, the CE likelihood is defined as:

LCE(θ,W) =∏
w∗∈W

∑
z∈C(w∗) e

θ·φ(w∗,z)∑
w∈N(w∗)

∑
z∈C(w) e

θ·φ(w,z)
. (2)

We use the same neighbourhood functions as
Narasimhan et al. (2015). Specifically, for each
word w in the corpusW , we create neighbours in
two ways: by swapping two adjacent characters of
w (walking→walkign) and by swapping two pairs
of adjacent characters, where one pair is at the be-
ginning of the word, and the other at the end of the
word (walking→awlkign).

We use LBFGS-B (Zhu et al., 1997) to optimize
the regularized log-likelihood of the model:

LLCE(θ,W) =
∑
w∗∈W

log
∑

z∈C(w∗)

eθ·φ(w∗,z)

−log
∑

w∈N(w∗)

∑
z∈C(w)

eθ·φ(w,z)

− λ‖θ‖2 (3)

2.2 Features
MorphoChains used a rich set of features from
which we have kept some, discarded others and
added new ones to improve overall performance.
This section describes our set of features, with ex-
amples shown in Table 3.

Presence in Training Data We want fea-
tures that signal which parents are valid words.
Narasimhan et al. (2015) used each word’s log fre-
quency. However the majority of words in the train-
ing data (word frequency lists) occur only once,
which makes their frequency information unreli-
able.3 Instead, we use an out-of-vocabulary feature
(OOV) for parents that don’t occur in the training
data.

Semantic Similarity Morphologically related
words exhibit semantic similarity among their word
embeddings (Schone and Jurafsky, 2000; Baroni et
al., 2002). Semantic similarity was an important
feature in MorphoChains: Narasimhan et al. (2015)
concluded that up to 25 percent of their model’s
precision was due to the semantic similarity fea-
ture. We use the same feature here (COS). For a
child-parent pair (wA, wB) with word embeddings
vwA and vwB respectively we compute semantic
similarity as:

cos(wA, wB) =
vwA · vwB

‖vwA‖‖vwB‖
(4)

Affixes Candidate pairs where the child contains
a frequently occurring affix are more likely to be
correct. To identify possible affixes to use as fea-
tures, Narasimhan et al. (2015) counted the number
of words that end (or start) with each substring

3The prevalence of singleton word types in the Mor-
phoChallange 2010 training data for English, German, Turkish
ranges from 50.73 to 58.76 %.
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No Child Parent Candid. Active Features
1 dog (og, prefix) OOV, PREF=d
2 decided (decide,delete) DELETED=e, SUF=ed, SUFLIST

3 decided (decids, delete) OOV, DELETED=s, SUF=ed, SUFLIST

4 stopped (stop, repeat) REPEATED=p, RENV2=op, RENV1=o, SUF=ed, SUFLIST

5 worried (worry, suffix) MODIFIED=y-i, SUF=ed, SUFLIST

6 higher-rate (rate, compound) HEAD=rate,MODIFIER=higher,CONNECTOR=-,COMPOUND

7 ratepayer (payer, compound) HEAD=payer, MODIFIER=rate, COMPOUND

8 decided (deci, compound) OOV, HEAD=deci, MODIFIER=ded
9 high (-, stop) STOPLEN=4, STOPCOS=0.2
10 decided (-, stop) STOPLEN=7, STOPCOS=0.5
11 unstable (able, prefix) PREF=unst
12 unable (able, prefix) PREF=un, PREFLIST

Table 3: Examples illustrating which of the binary features in the model are active for various potential
child-parent pairs. Not shown here is the real-valued semantic similarity feature COS, used in all examples
except 9 and 10, where it is replaced by the binary feature STOPCOS=y, for y in increments of 0.1.

Prefixes
al, ar, ba, be, bo, ca, car, co, de, dis, en, ha, ho,
in, inter, la, le, li, lo, ma, mar, mc, mi, mis, mo,
out, over, pa, po, pre, pro, ra, re, ro, se, ta, to, un,
under, up

Suffixes
a, age, al, an, ar, ary, as, ation, b, ble, ch, e, ed,
el, en, er, ers, es, est, et, ful, i, ia, ic, ie, ies, in,
ing, ings, is, ism, ist, ists, land, le, led, les, less,
ley, ling, ly, m, man, ment, ments, ner, ness, o,
or, p, s, se, son, t, ted, ter, ters, th, ting, ton, ts, y

Table 4: The likely English affixes found by using
Letter Successor Entropy.

and selected the most frequent ones. However, all
words that end with ing also end with ng and g,
which means that they also become affix candi-
dates. Furthermore, there are more words that end
with ng or g than with ing, therefore valid affixes
might be excluded from the list because of their
more frequent substrings.

We therefore modify the affix features in two
ways. First, we identify a more precise set of likely
affixes using Letter Successor Entropy (LSE) val-
ues (Hafer and Weiss, 1974), which are typically
high at morph boundaries. LSE is computed at
each point in the word as the entropy of the dis-
tribution over the next character given the word
prefix so far. When selecting likely affixes, we
use an LSE threshold value of 3.0 as suggested by
Hafer and Weiss (1974), and we require that the
affix has appeared in at least 50 types with a cor-

pus frequency of at least 100. We then define two
features (PREFLIST, SUFLIST), which are active if
the proposed prefix or suffix for a parent-child pair
is in the set of likely prefixes or suffixes. Table 4
shows the list of likely English affixes found by us-
ing LSE (62 suffixes and 42 prefixes). For German
and Turkish, our other two development languages
(see §3), the lists contain 498 suffixes/183 prefixes
and 181 suffixes/35 prefixes, respectively.4

In addition, we use a much larger set of affix fea-
tures, PREF=x and SUF=x, where x is instantiated
with all possible word prefixes (suffixes) for which
both w and xw (wx) are words in the training data.

Transformations To help distinguish between
probable and improbable transformations, we intro-
duce transformation-specific features. For deletion
we use the deleted letter (DELETED). For repeti-
tion we use the repeated letter and its preceding
2- and 1-character contexts (REPEATED, RENV2
RENV1). For modification we use the combination
of the involved letters (MODIFIED). Finally, for
compounding we use the headword (i.e. the parent
of the compound), the modifier and the connector,
if such exists (HEAD, MODIFIER, CONNECTOR).
Since these compound features can be very sparse,
we also add a single COMPOUND feature, which is
active when both parts of the compound are present
in the training data.

Stop Condition To identify words with no par-
ents we use two types of binary features suggested

4In MorphoChains, the number of affixes was set manually
for each language tested: 300 for English, 500 for Turkish,
and 100 for Arabic.
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by Narasimhan et al. (2015). STOPCOS=y is the
maximum cosine similarity between the word and
any of its parent candidates (using bins of size
0.1), and STOPLEN=x is instantiated for all pos-
sible word lengths x in the training data. For il-
lustration, if we are considering whether decided
is a word with no parents (Table 3 Example 10),
the binary features STOPLEN=7 and STOPCOS=0.5
become active.

We discard the starting and ending character un-
igram and bigram features used by MorphoChains,
because of the large number5 and the sparsity of
these features.

2.3 Data Selection
Most unsupervised morphology learners are sensi-
tive to the coverage and the quality of training data.
In a large corpus, however, many word types oc-
cur only once because of the Zipfian distribution of
word types. Low-frequency types can be either rare
but valid words or they can be foreign words, ty-
pos, non-words, etc. This makes learning from low-
frequency words unreliable, but discarding them
dramatically reduces the size of the training data
(including many valid words).

To seek balance between the quality and the cov-
erage of the training data we try to identify which
low-frequency words are likely to provide useful
statistical support for our model, so we can include
those in the training data and discard the other low-
frequency words. First, we set a frequency-based
pruning threshold (PT) at the frequency for which
at least 50% of the words above this frequency have
a word embedding (see §3); next we set a learn-
ing threshold (LT) at the median frequency of the
words with frequencies above PT; finally we adopt
the algorithm by Neuvel and Fulop (2002) to de-
cide which words with frequencies below PT can
be useful to analyse the words with frequencies
above LT. We filter out any remaining words with
frequencies below PT.

The outline of the adapted version of the algo-
rithm by Neuvel and Fulop (2002) is:
1) For every word pair in the top 20k most frequent
words in training data:

1.1) We find the pair’s orthographic sim-
ilarities as the longest common subsequence:
receive⇔reception.

1.2) We find the pair’s orthographic differ-
5For English there can be 676 different letter bigrams of

which 99% occur at least once at the beginning of some word
in the word frequency list.

ences with respect to their orthographic similar-
ities: receive⇔reception.
2) For all word-pairs with the same orthographic
differences we merge their similarities and differ-
ences into Word Formation Strategies (WFS):
so receive⇔reception, conceive⇔conception,
deceive⇔deception give *##ceive⇔*##ception,
where * and # stand for the optional and mandatory
character wild cards respectively.
3) We discard those WFS that that are suggested
by less than 10 word pairs;
4) For each WFS and for each word with a fre-
quency below PT:

4.1) if a word w matches either of the sides of a
WFS and the other side of a WFS predicts a word
w’ with a frequency above the LT, we keep w in
the training data, otherwise we discard it.

For more detailed description of the algorithm
see Neuvel and Fulop (2002).

3 Experiments

Data We conduct experiments on six languages:
Arabic, English, Estonian, Finnish, German and
Turkish. For the word embeddings required by
our system and the MorphoChains baseline, we
used word2vec (Mikolov et al., 2013) to train a
Continuous Bag of Words model on a sub-sample
of the Common Crawl (CC) corpus6 for each lan-
guage (Table 5 lists corpus sizes). We trained 100-
dimensional embeddings for all words occurring
at least 25 times, using 20 iterations and default
parameters otherwise.

For all languages except Estonian, we train and
evaluate all systems on the data from the Morpho
Challenge 2010 competition.7 The training data
consists of word lists with word frequencies. The
official test sets are not public, but a small labelled
training and development set is provided for each
language in addition to the large unannotated word
list, since the challenge included semi-supervised
systems. Thus, for experiments on Arabic, English,
Finnish, German and Turkish we evaluated on the
annotated training and development gold standard
analyses form the Morpho Challenge 2009/2010
competition data sets. The gold standard labels
include part of speech tags and functional labels
for inflectional morphemes, with multiple analyses
given for words with part of speech ambiguity or

6Common Crawl http://commoncrawl.org
7Morpho Challenge 2010: http://research.ics.

aalto.fi/events/morphochallenge2010
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Lang Train
(#types)

Test
(#cases)

Embeddings
(#tokens)

ARA
MC-10
(19K)

MC-09
(690)

CC
(461M)

ENG
MC-10
(878K)

MC-10
(1569)

CC
(1.78B)

EST
CC

(470K)
S&G2013

(1500)
CC

(329M)

FIN
MC-10
(2.9M)

MC-10
(1835)

CC
(1.18B)

GER
MC-10
(2.3M)

MC-10
(1779)

CC
(856M)

TUR
MC-10
(617K)

MC-10
(1760)

CC
(1.21B)

Table 5: Data statistics. MC-09/10: Morpho Chal-
lenge 2009/2010. CC: A sub-sample of Common
Crawl. S&G2013: Sirts and Goldwater (2013)

functionally different but orthographically equiva-
lent inflectional morphemes. For example, rocki-
ness is analysed as rock N y s ness s, while rocks
has two analyses: rock N +PL and rock V +3SG.

For Estonian we train on word lists extracted
from Common Crawl and test on data prepared by
Sirts and Goldwater (2013). The Estonian test set
contains only surface segmentation into morphs
(e.g. kolmandal is analysed kolmanda l). Table 5
provides information about each dataset.

Since we are developing an unsupervised system,
we want to make sure that it generalizes to new lan-
guages. We therefore divide the languages into
three development languages (English, German,
Turkish) and three test languages (Finnish, Esto-
nian, Arabic). We used the development languages
to choose features, design the data selection pro-
cedure and select best values for hyperparameters.
The system that performed best on those languages
was then used unmodified on the test languages.

Hyperparameters In addition to threshold val-
ues described above, we use the same λ = 1 (Equa-
tion 3) as Narasimhan et al. (2015). To control for
under segmentation we downscale weights of the
stop features by a factor of 0.8. We set the maxi-
mum affix length to 8 characters and the minimum
word length to 1 character.

Evaluation Metric We test our model on the task
of unsupervised morpheme analysis induction. We
follow the format of Morpho Challenge 2010 and
use Evaluation Metric for Morphological Analysis

(EMMA) (Spiegler and Monson, 2010) to evaluate
predicted outputs. EMMA works by finding the
optimal one-to-one mapping between the model’s
output and the reference analysis (i.e., the spelling
of the morphemes in the analysis doesn’t matter).
These are used to compute precision, recall, and
F-score against the reference morphemes.

Baselines We compare our model to three other
systems: Morfessor 2.0 (Virpioja et al., 2013),
MORSEL (Lignos et al., 2009; Lignos, 2010) and
MorphoChains (Narasimhan et al., 2015). We also
use a trivial baseline Words which outputs the input
word.

Morfessor (Morf.2.0) is a family of probabilistic
algorithms that perform unsupervised word seg-
mentation into morphs.Since the release of the ini-
tial version of Morfessor, it has become popular as
an automatic tool for processing morphologically
complex languages.

MORSEL is a rule-based unsupervised morphol-
ogy learner designed for affixal morphology. Like
our own system, it outputs morphological analy-
ses of words rather than segmentations. MORSEL
achieved excellent performance on the Morpho
Challenge 2010 data sets.

MorphoChains (MC) is the model upon which
our own system is based, but as noted above it
performs segmentation rather than analysis. In con-
trast to Morfessor and MORSEL, which analyse
words based only on orthographic patterns, Mor-
phoChains (like our extension) uses both ortho-
graphic and the semantic information.

All three baselines have multiple hyperparame-
ters. Since performance tends to be most sensitive
to the treatment of word frequency (including pos-
sibly discarding low-frequency words), for each
system we tuned the hyperparameters related to
word frequency to optimize average performance
on the development languages, and kept these hy-
perparameters fixed for the test languages.

4 Results and Discussion

Table 6 gives the performance of all models on the
three development languages. Our model outper-
forms all baselines on every language, and is a clear
improvement over the original MorphoChains.8

8In the results reported by Narasimhan et al. (2015), Mor-
phoChains appeared to outperform Morfessor, whereas we
find the opposite. There are several possible reasons for the dis-
crepancy. First, Narasimhan et al. (2015) used a segmentation-
based metric rather than EMMA, so the scores are not compa-
rable. Second, Narasimhan et al. (2015) appear to have tuned
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Lang Method Prec Recall F-1
ENG Words 0.750 0.362 0.489

Morf.2.0 0.788 0.712 0.749
MORSEL 0.784 0.725 0.752
MC 0.685 0.729 0.706
Our Model 0.787 0.741 0.763

GER Words 0.776 0.258 0.387
Morf.2.0 0.690 0.468 0.558
MORSEL 0.670 0.449 0.538
MC 0.649 0.397 0.492
Our Model 0.590 0.548 0.568

TUR Words 0.702 0.201 0.313
Morf.2.0 0.598 0.338 0.432
MORSEL 0.626 0.324 0.427
MC 0.577 0.330 0.420
Our Model 0.596 0.351 0.442

AVG Words 0.743 0.274 0.396
Morf.2.0 0.692 0.506 0.580
MORSEL 0.693 0.449 0.572
MC 0.637 0.485 0.539
Our Model 0.658 0.547 0.591

Table 6: Results on development languages. Scores
calculated using EMMA. Words=Trivial baseline
which outputs the input word.

To see where the benefit is coming from, we per-
formed ablation tests (Table 7). Results show the
importance of the LSE-based affix features (Model-
A). Using these features gives gains of +1.0%, 3.8%
and 0.6% F-1 absolute on English, German and
Turkish respectively over using the raw affix oc-
currence frequencies as used by Narasimhan et al.
(2015). We can see that our data selection scheme
(Model-D) is important for English (+3.5%) and
German (+1.1%). Although we expected that the
data selection scheme would have the biggest im-
pact on Turkish because of its small training data, it
has very little effect on this language. As expected,
the compounding transformation (Model-C) has a
prominent impact on German (+2.7%) and a mod-
est effect on English and Turkish. The three fea-
tures PREFLIST, SUFLIST, COMPOUND (Model-B)
have the least impact on the model’s performance
(on average 0.5% F-1 absolute), however the effect
is substantial considering that this gain is achieved

their hyperparameters separately for each language. Finally,
it is not clear how they tuned the frequency-related hyperpa-
rameters for Morfessor. We found that Morfessor performed
better than MorphoChains when either low frequency words
are pruned from its input, or its log-frequency option is used
rather than raw frequency.

Lang Method Prec Recall F-1
ENG Model-D 0.710 0.746 0.728

Model-C 0.811 0.705 0.754
Model-B 0.775 0.738 0.756
Model-A 0.755 0.751 0.753
Full Model 0.787 0.741 0.763

GER Model-D 0.633 0.497 0.557
Model-C 0.666 0.456 0.541
Model-B 0.608 0.530 0.566
Model-A 0.636 0.455 0.530
Full Model 0.590 0.548 0.568

TUR Model-D 0.554 0.365 0.440
Model-C 0.601 0.344 0.438
Model-B 0.604 0.344 0.437
Model-A 0.588 0.346 0.436
Full Model 0.596 0.351 0.442

Table 7: Ablation analysis. -D=no data selection,
-C=no compound transformations, -B=no PRE-
FLIST, SUFLIST, COMPOUND features, -A=no other
LSE-based affix features.

by merely 3 features as opposed to a new feature
type with many instantiations.

Table 8 shows some example outputs for English,
German and Turkish. These analyses include some
correctly identified spelling changes (Example 1)
compounds (Example 4), and purely concatenative
morphology (Example 6). In Example 2, +ble is
counted as incorrect because our model predicts
+ble both for deplorable and reproducible while the
reference analysis uses able s and ible s, respec-
tively. Since EMMA uses one-to-one alignment,
it deems one of the alignments wrong. The op-
posite problem occurs in Example 4: our model
analyses aus in two ways, either as a prefix aus+
or as a separate word aus (part of a compound),
whereas the reference analysis always treats it as a
separate word aus. Example 6 illustrates an over-
segmentation error, caused by encountering two
similar forms of the verb giy, giymeyin and giymeyi.

Performance of all models on the three test lan-
guages is shown in Table 9. On average, our model
does better than MorphoChains and MORSEL, but
slightly worse than Morfessor. However, this dif-
ference is mainly due to Morfessor’s very good
performance on Estonian, which is the only test set
using gold standard segmentations rather than anal-
yses. All systems perform poorly on Arabic since
they do not handle templatic morphology; neverthe-
less our model and Morfessor perform considerably
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No Lang. Test Word Reference Analysis Our Model
1 ENG acknowledging ac p knowledge N +PCP1 ac+ knowledge +ing
2 ENG reproducible re p produce V ible s re+ produce +ble
3 GER wohnstuben wohn V stube N +PL wohn stube +n
4 GER ausdrueckliche aus drueck V lich +ADJ-e aus+ drueck +lich +e
5 TUR budaklara budak +PL +DAT budak +lar +a
6 TUR giymeyin giy +NEG ma +P2 PL giy +me +yi +n

Table 8: Examples morpheme analyses produced by our model on the development languages. Reference
analyses in bold correspond to the predicted analyses that are incorrect. See text for further explanation.

Lang Method Prec Recall F-1
ARA Words 1.000 0.112 0.202

Morf.2.0 0.719 0.224 0.342
MORSEL 0.993 0.135 0.238
MC 0.988 0.125 0.221
Our Model 0.839 0.206 0.331

FIN Words 0.902 0.282 0.430
Morf.2.0 0.704 0.389 0.501
MORSEL 0.698 0.504 0.585
MC 0.557 0.483 0.518
Our Model 0.588 0.514 0.549

EST* Words 0.951 0.572 0.715
Morf.2.0 0.858 0.785 0.820
MORSEL 0.686 0.777 0.729
MC 0.840 0.611 0.707
Our Model 0.756 0.763 0.760

AVG Words 0.951 0.322 0.449
Morf.2.0 0.760 0.466 0.554
MORSEL 0.792 0.472 0.517
MC 0.785 0.413 0.492
Our Model 0.728 0.494 0.547

Table 9: Results on test languages. Scores calcu-
lated using EMMA. *=reference analysis contains
word segmentation.

better than the others. Overall, our model performs
consistently near the top even if not the best for any
of the three languages.

Lexical Inventory Size One of the motivations
for unsupervised morphological analysis is to re-
duce data sparsity in downstream applications,
which implies that for a given level of accuracy,
systems that produce a more compact representa-
tion (i.e., a smaller morpheme inventory) should be
preferred. To see how compactly each model repre-
sents the test set, we count the number of unique
morphemes (or morphs, or labels) in the predicted
output of each model and compare it with the num-
ber of labels in the reference analysis and the num-

Method ENG GER TUR FIN EST
Morf.2.0 1439 2005 1873 2586 1620
MC 1442 2004 1912 2718 1635
MORSEL 1373 1865 1748 2177 1562
Ours 1336 1600 1725 2114 1616
Ref.Anal 1257 1520 1361 1966 1548
Words 1569 1779 1760 1835 1500

Table 10: The number of distinct morphemes iden-
tified by each model. The number of distinct labels
used in the reference analysis and the number of
words in unanalysed test sets are given for compar-
ison.

ber of words in the test set. Table 10 summarizes
this information9. For all languages except Esto-
nian our model finds the most compact set of items.
The number of distinct morphemes identified by
our model is only about 5%, 4.5% and 8.0% larger
than in the reference analysis for English, German
and Finnish respectively. On average our model
identified 12.8% and 14.8% fewer morphemes than
Morfessor and MorphoChains respectively, while
on average performing no worse or better than the
two word segmentation systems. MORSEL pro-
duces the second most compact output with only
a 3.2% larger set of distinct morphemes than our
model, leaving the two word segmentation systems,
Morfessor and MorphoChains, in the third and the
forth place respectively. These results suggest that
systems that attempt to output morphological anal-
ysis succeed in reusing the same morphemes more
frequently than the systems that perform surface
segmentation.

5 Conclusion

We presented an unsupervised log-linear model that
learns to identify morphologically related words

9Arabic is excluded because of the low overall perfor-
mance of all models (maximum recall 22.4%).
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and the affixes and spelling transformations that
relate them. It uses these to induce morpheme-
level analyses of each word and an overall com-
pact representation of the corpus. In tests on six
languages, our system’s EMMA scores are consid-
erably better than its inspiration, the segmentation
system MorphoChains, and it also outperformed
the rule-based analysis system MORSEL. Our sys-
tem achieved similar EMMA performance to Mor-
fessor but with a more compact representation—the
first probabilistic system we are aware of to do so
well. In future work, we hope to investigate further
improvements to the system and perform extrinsic
evaluation on downstream tasks.
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