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Abstract

In cross-lingual dependency annotation
projection, information is often lost dur-
ing transfer because of early decoding.
We present an end-to-end graph-based
neural network dependency parser that
can be trained to reproduce matrices of
edge scores, which can be directly pro-
jected across word alignments. We show
that our approach to cross-lingual depen-
dency parsing is not only simpler, but
also achieves an absolute improvement of
2.25% averaged across 10 languages com-
pared to the previous state of the art.

1 Introduction

Dependency parsing is an integral part of many
natural language processing systems. However,
most research into dependency parsing has fo-
cused on learning from treebanks, i.e. collec-
tions of manually annotated, well-formed syntac-
tic trees. In this paper, we develop and evaluate
a graph-based parser which does not require the
training data to be well-formed trees. We show
that such a parser has an important application in
cross-lingual learning.

Annotation projection is a method for develop-
ing parsers for low-resource languages, relying on
aligned translations from resource-rich source lan-
guages into the target language, rather than lin-
guistic resources such as treebanks or dictionar-
ies. The Bible has been translated completely into
542 languages, and partially translated into a fur-
ther 2344 languages. As such, the assumption
that we have access to parallel Bible data is much
less constraining than the assumption of access to
linguistic resources. Furthermore, for truly low-
resource languages, relying upon the Bible scales

∗Work done while at the University of Copenhagen.

better than relying on less biased data such as the
EuroParl corpus.

In Agić et al. (2016), a projection scheme is
proposed wherein labels are collected from many
sources, projected into a target language, and
then averaged. Crucially, the paper demonstrates
how projecting and averaging edge scores from a
graph-based parser before decoding improves per-
formance. Even so, decoding is still a requirement
between projecting labels and retraining from the
projected data, since their parser (TurboParser) re-
quires well-formed input trees. This introduces a
potential source of noise and loss of information
that may be important for finding the best target
sentence parse.

Our approach circumvents the need for decod-
ing prior to training, thereby surpassing a state-
of-the-art dependency parser trained on decoded
multi-source annotation projections as done by
Agić et al. We first evaluate the model across sev-
eral languages, demonstrating results comparable
to the state of the art on the Universal Dependen-
cies (McDonald et al., 2013) dataset. Then, we
evaluate the same model by inducing labels from
cross-lingual multi-source annotation projection,
comparing the performance of a model with early
decoding to a model with late decoding.

Contributions We present a novel end-to-end
neural graph-based dependency parser and apply
it in a cross-lingual setting where the task is to
induce models for truly low-resource languages,
assuming only parallel Bible text. Our parser is
more flexible than similar parsers, and accepts any
weighted or non-weighted graph over a token se-
quence as input. In our setting, the input is a dense
weighted graph, and we show that our parser is su-
perior to previous best approaches to cross-lingual
parsing. The code is made available on GitHub.1

1https://github.com/MichSchli/Tensor-LSTM
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2 Model

The goal of this section is to construct a first-order
graph-based dependency parser capable of learn-
ing directly from potentially incomplete matrices
of edge scores produced by another first-order
graph-based parser. Our approach is to treat the
encoding stage of the parser as a tensor transfor-
mation problem, wherein tensors of edge features
are mapped to matrices of edge scores. This al-
lows our model to approximate sets of scoring ma-
trices generated by another parser directly through
non-linear regression. The core component of the
model is a layered sequence of recurrent neural
network transformations applied to the axes of an
input tensor.

More formally, any digraph G = (V,E) can be
expressed as a binary |V | × |V |-matrix M , where
Mij = 1 if and only if (j, i) ∈ E – that is, if i has
an ingoing edge from j. If G is a tree rooted at v0,
v0 has no ingoing edges. Hence, it suffices to use a
(|V |−1)×|V |-matrix. In dependency parsing, ev-
ery sentence is expressed as a matrix S ∈ Rw×f ,
where w is the number of words in the sentence
and f is the width of a feature vector correspond-
ing to each word. The goal is to learn a function
P : Rw×f → Zw×(w+1)

2 , such that P (S) corre-
sponds to the matrix representation of the correct
parse tree for that sentence – see Figure 1 for an
example.

root John walks his dog


0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0


Figure 1: An example dependency tree and the
corresponding parse matrix.

In the arc-factored (first-order), graph-based
model, P is a composite function P = D ◦ E
where the encoder E : Rw×f → Rw×(w+1) is a
real-valued scoring function and the decoder D :
Rw×(w+1) → Zw×(w+1)

2 is a minimum spanning
tree algorithm (McDonald et al., 2005). Com-
monly, the encoder includes only local informa-
tion – that is, Eij is only dependent on Si and

Sj , where Si and Sj are feature vectors corre-
sponding to dependent and head. Our contribution
is the introduction of an LSTM-based global en-
coder where the entirety of S is represented in the
calculation of Eij .

We begin by extending S to a (w+1)×(f+1)-
matrix S∗ with an additional row corresponding to
the root node and a single binary feature denoting
whether a node is the root. We now compute a
3-tensor F = S � S∗ of dimension w × (w +
1) × (2f + 1) consisting of concatenations of all
combinations of rows in S and S∗. This tensor
effectively contains a featurization of every edge
(u, v) in the complete digraph over the sentence,
consisting of the features of the parent word u and
child word v. These edge-wise feature vectors are
organized in the tensor exactly as the dependency
arcs in a parse matrix such as the one shown in the
example in Figure 1.

The edges represented by elements Fij can as
such easily be interpreted in the context of re-
lated edges represented by the row i and the col-
umn j in which that edge occurs. The classi-
cal arc-factored parsing algorithm of McDonald
et al. (2005) corresponds to applying a function
O : R2f+1 → R pointwise to S � S∗, then de-
coding the resulting w × (w + 1)-matrix. Our
model diverges by applying an LSTM-based trans-
formation Q : Rw×(w+1)×(2f+1) → Rw×(w+1)×d

to S � S∗ before applying an analogous transfor-
mation O : Rd → R.

The Long Short-Term Memory (LSTM) unit is
a function LSTM(x, ht−1, ct−1) = (ht, ct) de-
fined through the use of several intermediary steps,
following Hochreiter et al. (2001). A concate-
nated input vector I = x ⊕ hprev is constructed,
where ⊕ represents vector concatenation. Then,
functions corresponding to input, forget, and out-
put gates are defined following the form ginput =
σ(WinputI+binput). Finally, the internal cell state
ct and the output vector ht at time t are defined us-
ing the Hadamard (pointwise) product •:

ct = gforget • cprev + ginput • tanh(WcellI + bcell)
ht = goutput • tanh(ct)

We define a function Matrix-LSTM inductively,
that applies an LSTM to the rows of a ma-
trix X . Formally, Matrix-LSTM is a function
M : Ra×b → Ra×c such that (h1, c1) =
LSTM(X1, 0, 0), ∀1 < i ≤ n (hi, ci) =
LSTM(Xi, hi−1, ci−1), andM(X)i = hi.
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Figure 2: Four-directional Tensor-LSTM applied to the example sentence seen in Figure 1. The word-
pair tensor S�S∗ is represented with blue units (horizontal lines), a hidden Tensor-LSTM layer H with
green units (vertical lines), and the output layer with white units. The recurrent connections in the hidden
layer along H and HT (2,1,3) are illustrated respectively with dotted and fully drawn lines.

An effective extension is the bidirectional
LSTM, wherein the LSTM-function is applied to
the sequence both in the forward and in the back-
ward direction, and the results are concatenated.
In the matrix formulation, reversing a sequence
corresponds to inverting the order of the rows.
This is most naturally accomplished through left-
multiplication with an exchange matrix Jm ∈
Rm×m such that:

Jm =

0 · · · 1
...

...
...

1 · · · 0


Bidirectional Matrix-LSTM is therefore defined as
a functionM2d : Ra×b → Ra×2c such that:

M2d(S) =M(S)⊕2 JaM(JaS)

Here, ⊕2 refers to concatenation along the second
axis of the matrix.

Keeping in mind the goal of constructing a ten-
sor transformationQ capable of propagating infor-
mation in an LSTM-like manner between any two
elements of the input tensor, we are interested in
constructing an equivalent of the Matrix-LSTM-
model operating on 3-tensors rather than matrices.
This construct, when applied to the edge tensor
F = S � S∗, can then provide a means of in-
terpreting edges in the context of related edges.

A very simple variant of such an LSTM-
function operating on 3-tensors can be constructed
by applying a bidirectional Matrix-LSTM to every
matrix along the first axis of the tensor. This forms

the center of our approach. Formally, bidirec-
tional Tensor-LSTM is a function T2d : Ra×b×c →
Ra×b×2h such that:

T2d(T )i =M2d(Ti)

This definition allows information to flow
within the matrices of the first axis of the tensor,
but not between them – corresponding in Figure
2 to horizontal connection along the rows, but no
vertical connections along the columns. To fully
cover the tensor structure, we must extend this
model to include connections along columns.

This is accomplished through tensor transpo-
sition. Formally, tensor transposition is an op-
erator T Tσ where σ is a permutation on the set
{1, ..., rank(T )}. The last axis of the tensor con-
tains the feature representations, which we are not
interested in scrambling. For the Matrix-LSTM,
this leaves only one option – MT (1,2). When the
LSTM is operating on a 3-tensor, we have two
options – T T (2,1,3) and T T (1,2,3). This leads to
the following definition of four-directional Tensor-
LSTM as a function T4d : Ra×b×c → Ra×b×4h

analogous to bidirectional Sequence-LSTM:

T4d(T ) = T2d(T )⊕3 T2d(T T (2,1,3))T (2,1,3)

Calculating the LSTM-function on T T (1,2,3)

and T T (2,1,3) can be thought of as constructing
the recurrent links either ”side-wards” or ”down-
wards” in the tensor – or, equivalently, construct-
ing recurrent links either between the outgoing
or between the in-going edges of every vertex in
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the dependency graph. In Figure 2, we illustrate
the two directions respectively with full or dotted
edges in the hidden layer.

The output of Tensor-LSTM is itself a tensor.
In our experiments, we use a multi-layered vari-
ation implemented by stacking layers of models:
T4d,stack(T ) = T4d(T4d(...T4d(T )...)). We do not
share parameters between stacked layers. Train-
ing the model is done by minimizing the value
E(G,O(Q(S � S∗))) of some loss function E for
each sentence S with gold tensor G. We experi-
ment with two loss functions.

In our monolingual set-up, we exploit the fact
that parse matrices by virtue of depicting trees are
right stochastic matrices. Following this observa-
tion, we constrain each row of O(Q(S � S∗)) un-
der a softmax-function and use as loss the row-
wise cross entropy. In our cross-lingual set-up, we
use mean squared error. In both cases, prediction-
time decoding is done with Chu-Liu-Edmonds al-
gorithm (Edmonds, 1968) following McDonald et
al. (2005).

3 Cross-lingual parsing

Hwa et al. (2005) is a seminal paper for cross-
lingual dependency parsing, but they use very de-
tailed heuristics to ensure that the projected syn-
tactic structures are well-formed. Agić et al.
(2016) is the latest continuation of their work, pre-
senting a new approach to cross-lingual projec-
tion, projecting edge scores rather than subtrees.
Agić et al. (2016) construct target-language tree-
banks by aggregating scores from multiple source
languages, before decoding. Averaging before de-
coding is especially beneficial when the parallel
data is of low quality, as the decoder introduces
errors, when edge scores are missing. Despite av-
eraging, there will still be scores missing from the
input weight matrices, especially when the source
and target languages are very distant. Below, we
show that we can circumvent error-inducing early
decoding by training directly on the projected edge
scores.

We assume source language datasets L1, ...,Ln,
parsed by monolingual arc-factored parsers. In our
case, this data comes from the Bible. We assume
access to a set of sentence alignment functions
As : Ls × Lt → R0,1 where As(Ss, St) is the
confidence that St is the translation of Ss. Sim-
ilarly, we have access to a set of word alignment
functions WLs,Ss,St : Ss × St → R0,1 such that

Ss ∈ Ls, St ∈ Lt, and W (ws, wt) represents the
confidence that ws aligns to wt given that St is the
translation of Ss

For each source language Ls with a scoring
function scoreLs , we define a local edge-wise
voting function voteSs((us, vs), (ut, vt)) operat-
ing on a source language edge (us, vs) ∈ Ss and
a target language edge (ut, ut) ∈ St. Intuitively,
every source language edge votes for every tar-
get language edge with a score proportional to
the confidence of the edges aligning and the score
given in the source language. For every target lan-
guage edge (ut, vt) ∈ St:

voteSs((us, vs), (ut, vt)) = WLs,Ss,St(us, ut)
·WLs,Ss,St(vs, vt)
· scoreLs(us, vs)

Following Agić et al. (2016), a sentence-wise vot-
ing function is then constructed as the highest con-
tribution from a source-language edge:

voteSs(ut, vt) = max
us,vs∈Ss

voteSs((us, vs), (ut, vt))

The final contribution of each source language
datasetLs to a target language edge (ut, vt) is then
calculated as the sum for all sentences Ss ∈ Ls
over voteSs(ut, vt) multiplied by the confidence
that the source language sentence aligns with the
target language sentence. For an edge (ut, vt) in a
target language sentence St ∈ Lt:

voteLs(ut, vt) =
∑
Ss∈Ls

As(Ss, St) voteSs(ut, vt)

Finally, we can compute a target language scor-
ing function by summing over the votes for every
source language:

score(ut, vt) =

n∑
i=1

voteLi(ut, vt)

ZSt

Here, ZSt is a normalization constant ensuring
that the target-language scores are proportional to
those created by the source-language scoring func-
tions. As such, ZSt should consist of the sum over
the weights for each sentence contributing to the
scoring function. We can compute this as:

ZSt =
n∑
i=1

∑
Ss∈Li

As(Ss, St)
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The sentence alignment function is not a probabil-
ity distribution; it may be the case that no source-
language sentences contribute to a target language
sentence, causing the sum of the weights and the
sum of the votes to approach zero. In this case,
we define score(ut, vt) = 0. Before projection,
the source language scores are all standardized to
have 0 as the mean and 1 as the standard deviation.
Hence, this corresponds to assuming neither posi-
tive nor negative evidence concerning the edge.

We experiment with two methods of learning
from the projected data – decoding with Chu-Liu-
Edmonds algorithm and then training as proposed
in Agić et al. (2016), or directly learning to repro-
duce the matrices of edge scores. For alignment,
we use the sentence-level hunalign algorithm in-
troduced in Varga et al. (2005) and the token-level
model presented in Östling (2015).

4 Experiments

We conduct two sets of experiments. First, we
evaluate the Tensor-LSTM-parser in the monolin-
gual setting. We compare Tensor-LSTM to the
TurboParser (Martins et al., 2010) on several lan-
guages from the Universal Dependencies dataset.
In the second experiment, we evaluate Tensor-
LSTM in the cross-lingual setting. We include as
baselines the delexicalized parser of McDonald et
al. (2011), and the approach of Agić et al. (2016)
using TurboParser. To demonstrate the effective-
ness of circumventing the decoding step, we con-
duct the cross-lingual evaluation of Tensor-LSTM
using cross entropy loss with early decoding, and
using mean squared loss with late decoding.

4.1 Model selection and training

Our features consist of 500-dimensional word em-
beddings trained on translations of the Bible. The
word embeddings were trained using skipgram
with negative sampling on a word-by-sentence
PMI matrix induced from the Edinburgh Bible
Corpus, following (Levy et al., 2017). Our embed-
dings are not trainable, but fixed representations
throughout the learning process. Unknown tokens
were represented by zero-vectors.

We combined the word embeddings with one-
hot-encodings of POS-tags, projected across word
alignments following the method of Agić et al.
(2016). To verify the value of the POS-features,
we conducted preliminary experiments on En-
glish development data. When including POS-
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Figure 3: UAS per epoch on German development
data training from 5000 or 10000 randomly sam-
pled sentences with projected annotations.

tags, we found small, non-significant improve-
ments for monolingual parsing, but significant im-
provements for cross-lingual parsing.

The weights were initialized using the nor-
malized values suggested in Glorot and Bengio
(2010). Following Jozefowicz et al. (2015), we
add 1 to the initial forget gate bias. We trained
the network using RMSprop (Tieleman and Hin-
ton, 2012) with hyperparameters α = 0.1 and
γ = 0.9, using minibatches of 64 sentences. Fol-
lowing Neelakantan et al. (2015), we added a noise
factor n ∼ N (0, 1

(1+t)0.55 ) to the gradient in each
update. We applied dropouts after each LSTM-
layer with a dropout probability p = 0.5, and
between the input layer and the first LSTM-layer
with a dropout probability of p = 0.2 (Bluche et
al., 2015). As proposed in Pascanu et al. (2012),
we employed a gradient clipping factor of 15. In
the monolingual setting, we used early stopping
on the development set.

We experimented with 10, 50, 100, and 200 hid-
den units per layer, and with up to 6 layers. Using
greedy search on monolingual parsing and evalu-
ating on the English development data, we deter-
mined the optimal network shape to contain 100
units per direction per hidden layer, and a total of
4 layers.

For the cross-lingual setting, we used two ad-
ditional hyper-parameters. We used the develop-
ment data from one of our target languages (Ger-
man) to determine the optimal number of epochs
before stopping. Furthermore, we trained only on
a subset of the projected sentences, choosing the
size of the subset using the development data.
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We experimented with either 5000 or 10000
randomly sampled sentences. There are two mo-
tivating factors behind this subsampling. First,
while the Bible in general consists of about 30000
sentences, for many low-resource languages we
do not have access to annotation projections for
the full Bible, because parts were never translated,
and because of varying projection quality. Second,
subsampling speeds up the training, which was
necessary to make our experiments practical: At
10000 sentences and on a single GPU, each epoch
takes approximately 2.5 hours. As such, training
for a single language could be completed in less
than a day. We plot the results in Figure 3. We
see that the best performance is achieved at 10000
sentences, and with respectively 6 and 5 epochs
for cross entropy and mean squared loss.

4.2 Results

In the monolingual setting, we compare our parser
to TurboParser (Martins et al., 2010) – a fast, ca-
pable graph-based parser used as a component in
many larger systems. TurboParser is also the sys-
tem of choice for the cross-lingual pipeline of
Agić et al. (2016). It is therefore interesting to
make a direct comparison between the two. The
results can be seen in Table 1.

Language TurboParser Tensor-LSTM
English* 83.84 85.81
German 81.45 82.64
Danish 81.82 82.24
Finnish 77.74 78.83
Spanish 83.19 86.69
French 81.17 84.63
Czech 81.32 85.04

Average 81.50 83.70

Table 1: Unlabeled Attachment Score on the UD
test data for TurboParser and Tensor-LSTM with
cross entropy loss. English development data was
used for model selection (marked *).

Note that in order for a parser to be directly
applicable to the annotation projection setup ex-
plored in the secondary experiment, it must be a
first-order graph-based parser. In the monolin-
gual setting, the best results reported so far (84.74,
on average) for the above selection of treebanks
were by the Parsito system (Straka et al., 2015), a
transition-based parser using a dynamic oracle.

For the cross-lingual annotation projection ex-
periments, we use the delexicalized system sug-
gested by McDonald et al. (2011) as a baseline.
We also compare against the annotation projec-
tion scheme using TurboParser suggested in Agić
et al. (2016), representing the previous state of
the art for truly low-resource cross-lingual depen-
dency parsing. Note that while our results for the
TurboParser-based system use the same training
data, test data, and model as in Agić et al., our
results differ due to the use of the Bible corpus
rather than a Watchtower publications corpus as
parallel data. The authors made results available
using the Edinburgh Bible Corpus for unlabeled
data. The two tested conditions of Tensor-LSTM
are the mean squared loss model without interme-
diary decoding, and the cross entropy model with
intermediary decoding. The results of the cross-
lingual experiment can be seen in Table 2.

5 Discussion

As is evident from Table 2, the variation in perfor-
mance across different languages is large for all
systems. This is to be expected, as the quality of
the projected label sets vary widely due to linguis-
tic differences. On average, Tensor-LSTM with
mean squared loss outperforms all other systems.
In Section 1, we hypothesized that incomplete pro-
jected scorings would have a larger impact upon
systems reliant on an intermediary decoding step.
To investigate this claim, we plot in Figure 4 the
performance difference with mean squared loss
and cross entropy loss for each language versus
the percentage of missing edge scores.
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Figure 4: Percentage of missing edge scores ver-
sus performance difference for Tensor-LSTM with
mean squared loss and cross entropy loss.
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Language Delexicalized TurboParser Tensor-LSTM Tensor-LSTM
(Decoding) (No decoding)

Czech (cs) 40.99 43.81 42.58 41.54
Danish (da) 49.65 54.87 54.93 54.15
English* (en) 48.08 52.52 52.91 52.90
Finnish (fi) 41.18 46.08 43.98 45.26
French (fr) 48.97 45.83 55.06 53.83
German* (de) 49.36 51.79 54.87 53.85
Spanish (es) 47.60 58.90 59.60 57.81
Persian (fa) 28.93 14.88 46.47 48.60
Hebrew (he) 19.06 52.89 26.17 31.41
Hindi (hi) 21.03 43.31 43.21 46.09

Average 39.49 46.29 47.98 48.54

Table 2: Unlabeled attachment scores for the various systems. Tensor-LSTM is evaluated using cross
entropy and mean squared loss. We include the results of two baselines – the delexicalized system
of McDonald et al. (2011) and the Turbo-based projection scheme of Agić et al. (2016). English and
German development data was used for hyperparameter tuning (marked *).

For languages outside the Germanic and Latin
families, our claim holds – the performance of the
cross entropy loss system decreases faster with the
percentage of missing labels than the performance
of the mean squared loss system. To an extent, this
confirms our hypothesis, as we for the average lan-
guage observe an improvement by circumventing
the decoding step. French and Spanish, however,
do not follow the same trend, with cross entropy
loss outperforming mean squared loss despite the
high number of missing labels.

In Table 2, performance on French and Span-
ish for both systems can be seen to be very high.
It may be the case that Indo-European target lan-
guages are not as affected by missing labels as
most of the source languages are themselves Indo-
European. Another explanation could be that
some feature of the cross entropy loss function
makes it especially well suited for Latin languages
– as seen in Table 1, French and Spanish are
also two of the languages for which Tensor-LSTM
yields the highest performance improvement.

To compare the effect of missing edge scores
upon performance without influence from linguis-
tic factors such as language similarity, we repeat
the cross-lingual experiment on one language with
respectively 10%, 20%, 30%, and 40% of the pro-
jected and averaged edge scores artificially set to
0, simulating missing data. We choose the English
data for this experiment, as the English projected
data has the lowest percentage of missing labels

across any of the languages. In Figure 5, we plot
the performance for each of the two systems ver-
sus the percentage of deleted values.
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Figure 5: Performance for Tensor-LSTM on En-
glish test data with 0-40% of the edge scores arti-
ficially maintained at 0.

As can be clearly seen, performance drops
faster with the percentage of deleted labels for
the cross entropy model. This confirms our in-
tuition that the initially lower performance us-
ing mean squared loss compared to cross entropy
loss is mitigated by a greater robustness towards
missing labels, gained by circumventing the de-
coding step in the training process. In Table 2,
this is reflected as dramatic performance increases
using mean squared error for Finnish, Persian,
Hindi, and Hebrew – the four languages furthest
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removed from the predominantly Indo-European
source languages and therefore the four languages
with the poorest projected label quality.

Several possible avenues for future work on this
project are available. In this paper, we used an ex-
tremely simple feature function. More complex
feature functions is one potential source of im-
provement. Another interesting direction for fu-
ture work would be to include POS-tagging di-
rectly as a component of Tensor-LSTM prior to
the construction of S � S∗ in a multi-task learn-
ing framework. Similarly, incorporating seman-
tic tasks on top of dependency parsing could lead
to interesting results. Finally, extensions of the
Tensor-LSTM function to deeper models, wider
models, or more connected models as seen in e.g.
Kalchbrenner et al. (2015) may yield further per-
formance gains.

6 Related Work

Experiments with neural networks for dependency
parsing have focused mostly on learning higher-
order scoring functions and creating efficient fea-
ture representations, with the notable exception
of Fonseca et al. (2015). In their paper, a con-
volutional neural network is used to evaluate lo-
cal edge scores based on global information. In
Zhang and Zhao (2015) and Pei et al. (2015), neu-
ral networks are used to simultaneously evaluate
first-order and higher-order scores for graph-based
parsing, demonstrating good results. Bidirectional
LSTM-models have been successfully applied to
feature generation (Kiperwasser and Goldberg,
2016). Such LSTM-based features could in fu-
ture work be employed and trained in conjunction
with Tensor-LSTM, incorporating global informa-
tion both in parsing and in featurization.

An extension of LSTM to tensor-structured data
has been explored in Graves et al. (2007), and fur-
ther improved upon in Kalchbrenner et al. (2015)
in the form of GridLSTM. Our approach is similar,
but simpler and computationally more efficient as
no within-layer connections between the first and
the second axes of the tensor are required.

Annotation projection for dependency parsing
has been explored in a number of papers, start-
ing with Hwa et al. (2005). In Tiedemann (2014)
and Tiedemann (2015) the process in extended and
evaluated across many languages. Li et al. (2014)
follows the method of Hwa et al. (2005) and adds
a probabilistic target-language classifier to deter-

mine and filter out high-uncertainty trees. In Ma
and Xia (2014), performance on projected data is
used as an additional objective for unsupervised
learning through a combined loss function.

A common thread in these papers is the use
of high-quality parallel data such as the EuroParl
corpus. For truly low-resource target languages,
this setting is unrealistic as parallel resources may
be restricted to biased data such as the Bible. In
Agić et al. (2016) this problem is addressed, and a
parser is constructed which utilizes averaging over
edge posteriors for many source languages to com-
pensate for low-quality projected data. Our work
builds upon their contribution by constructing a
more flexible parser which can bypass a source
of bias in their projected labels, and we therefore
compared our results directly to theirs.

Annotation projection procedures for cross-
lingual dependency parsing has been the focus
of several other recent papers (Guo et al., 2015;
Zhang and Barzilay, 2015; Duong et al., 2015; Ra-
sooli and Collins, 2015). In Guo et al. (2015), dis-
tributed, language-independent feature represen-
tations are used to train shared parsers. Zhang
and Barzilay (2015) introduce a tensor-based fea-
ture representation capable of incorporating prior
knowledge about feature interactions learned from
source languages. In Duong et al. (2015), a neural
network parser is built wherein higher-level layers
are shared between languages.

Finally, Rasooli and Collins (2015) leverage
dense information in high-quality sentence trans-
lations to improve performance. Their work can
be seen as opposite to ours – whereas Rasooli and
Collins leverage high-quality translations to im-
prove performance when such are available, we
focus on improving performance in the absence of
high-quality translations.

7 Conclusion

We have introduced a novel algorithm for graph-
based dependency parsing based on an extension
of sequence-LSTM to the more general Tensor-
LSTM. We have shown how the parser with a
cross entropy loss function performs comparably
to state of the art for monolingual parsing. Fur-
thermore, we have demonstrated that the flexibil-
ity of our parser enables learning from non well-
formed data and from the output of other parsers.
Using this property, we have applied our parser
to a cross-lingual annotation projection problem
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for truly low-resource languages, demonstrating
an average target-language unlabeled attachment
score of 48.54, which to the best of our knowledge
are the best results yet for the task.
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Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing, pages 523–530. Association for Computa-
tional Linguistics.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on

228



Empirical Methods in Natural Language Process-
ing, pages 62–72. Association for Computational
Linguistics.

Ryan T. McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Dipan-
jan Das, Kuzman Ganchev, Keith B. Hall, Slav
Petrov, Hao Zhang, Oscar Täckström, et al. 2013.
Universal dependency annotation for multilingual
parsing. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya
Sutskever, Lukasz Kaiser, Karol Kurach, and James
Martens. 2015. Adding gradient noise improves
learning for very deep networks. arXiv preprint
arXiv:1511.06807.

Robert Östling. 2015. Bayesian models for multilin-
gual word alignment. Ph.D. thesis, Department of
Linguistics, Stockholm University.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing, pages 313–
322. Association for Computational Linguistics.

Mohammad Sadegh Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer of de-
pendency parsers. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 328–338. Association for Com-
putational Linguistics.
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