
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 188–198,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

A method for in-depth comparative evaluation: How (dis)similar are
outputs of POS taggers, dependency parsers and coreference resolvers

really?

Don Tuggener
University of Zurich

Institute of Computational Linguistics
tuggener@cl.uzh.ch

Abstract

This paper proposes a generic method for
the comparative evaluation of system out-
puts. The approach is able to quantify the
pairwise differences between two outputs
and to unravel in detail what the differ-
ences consist of. We apply our approach to
three tasks in Computational Linguistics,
i.e. POS tagging, dependency parsing, and
coreference resolution. We find that sys-
tem outputs are more distinct than the (of-
ten) small differences in evaluation scores
seem to suggest.

1 Introduction

While there exist well-defined procedures to eval-
uate system outputs against manually annotated
gold data for many tasks in Computational Lin-
guistics, generally little effort and exploration
goes into identifying and analysing the differences
between the outputs themselves. System outputs
are usually compared in the following manner:
The standard evaluation protocol for many tasks
consists of comparing a system output (the re-
sponse) to a manual annotation of the same data
(the key). The difference between the response and
key is quantified by a similarity metric such as ac-
curacy, and different system outputs are compared
to each other by ranking their scores with respect
to the similarity metric.

However, comparing the scores of the similarity
metric does not paint the full picture of the differ-
ences between the outputs, as we will demonstrate.
There are hardly any principled or generic evalua-
tion approaches that aim at comparing two or more
system responses directly to investigate, highlight,
and quantify their differences in detail. Closing
this gap is desirable, because progress in many
NLP tasks is often made in small steps, and it is

often left unclear what the specific contribution of
a novel approach is if the comparison to related
work is solely based on a (sometimes marginally)
small improvement in F1 score or accuracy. Fur-
thermore, an overall improvement regarding accu-
racy achieved by a new approach might come at
the cost of failing in some areas where a baseline
system was correct. Vice versa, a new approach
might not improve overall accuracy, but solve par-
ticular problems that no other system has been
able to address.

We propose an evaluation approach which aims
at shedding light on the particular differences be-
tween system responses and which is intended as
a complement to evaluation metrics such as F1-
score and accuracy. By doing so, we strive to pro-
vide researchers with a tool that is able to give in-
sight into the particular strengths and weaknesses
of their system in comparison to others.1 Our
method is also useful in iterative system develop-
ment, as it tracks changes in the outputs of differ-
ent system versions or feature sets. Furthermore,
our approach is able to compare multiple system
outputs at once, which enables it to identify hard
(or easy) problem areas by assessing how many of
the systems solve a problem correctly and give ac-
cording upper bounds for system ensembles. The
performance difference between the simulated en-
semble and the individual systems serves as an
additional indicator of the difference between the
system outputs.

We exemplify the application of our ap-
proach by aiming to answer the question of how
(dis)similar are the outputs of several state-of-the-
art systems for different tasks in NLP. We first mo-
tivate why using evaluation metrics such as accu-
racy is not suited for comparing outputs (next sec-
tion). We then propose a method to do so which

1Code available at: https://github.com/
dtuggener/ComparEval

188

introduces an inventory to systematically classify
and quantify output differences (section 2). Next,
we demonstrate how combining a set of outputs
can be used to identify their divergence and to
identify hard (and easy) problem areas by look-
ing at upper bounds in performance achieved by
an oracle output combination (section 3).

1.1 Motivation

First let us motivate why comparing accuracy or
F1 scores is not a suited method for establishing
the (dis)similarity of system outputs. Consider a
simple synthetic problem set with four test cases
{A, B,C, D} (e.g. a sequence of POS tags). A
system response S1 solves correctly the cases A
and B, while a system response S2 returns the cor-
rect answers for the cases C and D. In terms of
accuracy, both responses achieve identical scores,
i.e. 50%. However, their output is maximally dis-
similar. Extending the set of cases, assume five
problems, {A, B,C, D,E}, and three responses
S1, S2, and S3 as shown in table 1. Although the
three responses achieve the same accuracy (left ta-
ble), their pairwise overlap in terms of identical
correct responses (right table) varies considerably,
i.e. S1 is much more similar to S2 (two shared an-
swers) than to S3 (one shared answer).

Key A B C D E Acc.
S1 A B C 60%
S2 B C D 60%
S3 C D E 60%

Overlap
S1, S2 67%
S2, S3 67%
S1, S3 33%

Table 1: Accuracy vs. Overlap on correct answers

In fact, the establishment of the similarity of the
responses S1, S2, and S3 is more complicated, be-
cause we have left out the overlap of the incor-
rect answers in the responses. Consider the full
responses in table 2.

Key A B C D E Acc.
S1 A B C X Y 60%
S2 Z B C D U 60%
S3 Z W C D E 60%

Overlap
S1, S2 40%
S2, S3 60%
S1, S3 20%

Table 2: Accuracy vs. Overlap on all answers

The overlap metric (right table) now compares
how many of the cells in two rows have identical
answers, regardless of whether the answer is cor-
rect. The overlap-based similarities between the
systems have become more diverse, i.e. S1 and S3

are more dissimilar than in the previous table, and
the similarities of the pairs (S1, S2) and (S2, S3)
are now distinct, because S2 and S3 share the error
Z (beside the correct answers C and D), while S1

and S2 do not share an error.

Hence, evaluating systems based on perfor-
mance metrics such as accuracy and F1 scores pro-
vides no insight into the differences between the
systems and is not able to accurately quantify the
similarities between them. That is, a small differ-
ence in accuracy does not necessarily imply a high
similarity of the outputs, and, vice versa, a larger
difference in accuracy does not necessarily signify
vastly dissimilar outputs.

Moreover, evaluation based on scores in per-
formance metrics such as F1 does not detail in
what regard a system performs better than another.
Two systems might implement very distinct ap-
proaches, but achieve very similar scores in evalu-
ation. Based on e.g. F1, we cannot assert whether
a response S2 performs better than a response S1

because a) it solves the same problems as S1 and
then some additional ones, or b) if S2 and S1 solve
a quite diverse set of problems and S2 happens to
solve a few more in its area of expertise. Addition-
ally, a system that performs better than a baseline
is bound to make errors where the baseline was
correct. The overall accuracies cannot tell us how
often this is the case.

In summary, the comparison of systems based
on overall performance scores only lets us glimpse
the proverbial tip of the iceberg. Therefore, our
approach to comparative evaluation features three
main points of interest:

1. How are the differences between system re-
sponses quantifiable?

2. What is the nature of the difference between
two responses?

3. How can we assess the divergence of a set of
responses, how complementary are they?

We try to answer these questions regarding
three main tasks, namely POS tagging, depen-
dency parsing, and coreference resolution. We se-
lect these tasks because they are fairly widespread
procedures in Computational Linguistics and their
evaluation increases in complexity. While we limit
ourselves to these, we believe our approach to
be generic enough to be applied to other labeling
problems, such as named entity recognition and
semantic role labeling.

189

2 Quantifying differences in system
responses

As argued above, system responses differ both re-
garding the correct answers they give and the er-
rors they make. The underlying idea of our ap-
proach is to assess how many of the labeled lin-
guistic units (i.e. tokens) in the key have different
labels in the responses, regardless of whether the
labels are correct.2 In a second step, we use a class
inventory to analyse and quantify these differences
in more detail.

Formally, given a set of tokens T and two
accompanying system responses S1 and S2, we
quantify how many of the tokens ti ∈ T have a
different label in S1 and S2:

diff (S1, S2 | T) =
|∀ti ∈ T : label(ti, S1) 6= label(ti, S2)|

|T | (1)

Note that switching the inequality condition (6=)
to equality (=) actually yields the accuracy metric.
That is, taking S1 as the key and the S2 as the re-
sponse and calculating accuracy produces the in-
verted results of our metric, i.e. 1 − diff (S1, S2 |
T), since accuracy is the ratio of tokens that
have identical labels. The question is then, why
not simply use S1 as the key and S2 as the re-
sponse and calculate accuracy? While this an-
swers whether two systems solve a similar or di-
verse set of problems, it does not enable us to
identify the sources of the differences that drive
the better performance of one response over the
other. That is, if a token has a different label in
S1 and S2, we cannot tell which and if any of the
responses is correct. Hence, we need to look at
the gold labels of the tokens T in a key K. This
enables us to categorise differences in the outputs
into three distinct and informative classes3:

• Correction: S1 labels a token incorrectly, S2

corrects this error
• New error: S1 is correct, S2 introduces an

error
• Changed error: Both S1 and S2 are incor-

rect but have different labels

The general algorithm to quantify differences in
two responses S1 and S2 given a set of tokens ti...n

2In other words, the complement of the overlap metric in
tables 1 and 2.

3To motivate the nomenclature, we assume that S1 is e.g.
a baseline upon which S2 tries to improve. However, the
outputs can stem from any two systems.

in a key K is outlined in algorithm 1. This pro-
cedure lets us track and count how often S2 has
a different label than S1, classify the difference,
and calculate the percentage of each class of dif-
ference. The approach can be applied straight-
forwardly to comparing outputs of POS taggers
and dependency parsers.

Algorithm 1 Track differences in two responses
Input: Key K 3 tokens ti...n, Responses S1, S2

Output: Difference D, Changes C
1: for ti ∈ K do
2: G = label(ti, K)
3: L1 = label(ti, S1)
4: L2 = label(ti, S2)
5: TokCnt + +
6: if L1 6= L2 then
7: if L2 = G then
8: C[correction][L1, L2] + +
9: else if L1 = G then

10: C[new error][L1, L2] + +
11: else
12: C[changed error][L1, L2] + +
13: DiffLabel + +
14: D = DiffLabel

TokCnt
15: return D,C

2.1 POS tagging

We compare three POS taggers than can be used
off-the-shelf to tag German: the Stanford POS
Tagger (Toutanova et al., 2003), the TreeTagger
(Schmid, 1995), and the Clevertagger (Sennrich
et al., 2013, state-of-the-art). Following Sennrich
et al. (2013), we use 3000 sentences from the
TübaD/Z (Telljohann et al., 2004), a corpus of ar-
ticles from a German newspaper, as a test set.4

Table 3 shows the labeling accuracy of the POS
taggers and the percentage of correctly tagged sen-
tences. The accuracy improvement of Clevertag-
ger over TreeTagger is +1.27 points, and the per-
centage of correctly tagged sentences increases
substantially (+9.9 points). In comparison to the
Stanford tagger5, Clevertagger raises performance

4We change the POS tag for pronominal adverbs from
PROP to PROAV in the test set, since all taggers feature only
the latter tag.

5The most frequent error by the Stanford tagger is label-
ing some punctuation tokens (e.g. ’-’) as ’$[’ instead of ’$(’.
Considering it a minor error, we replace all ’$[’ labels in the
Stanford response with ’$(’, increasing accuracy from 86.60
to 90.41%.

190

Accuracy Correct sents.
Stanford 90.41 30.07
TreeTagger 94.89 46.87
Clevertagger 96.16 56.77

diff ∆ Acc.
Stanford↔ TreeTagger 11.06 4.48
Stanford↔ Clevertagger 9.41 5.75
TreeTagger↔ Clevertagger 4.96 1.27

Table 3: Accuracy and differences between POS
taggers

by roughly 6 points in accuracy, but almost dou-
bles the numbers of correctly tagged sentences.

In the lower table, we see that although the ac-
curacy difference puts the Stanford tagger closer
to the TreeTagger (4.48) than to the Clevertagger
(5.75), the Stanford tagger’s response is more dif-
ferent from the one of TreeTagger (11.06) than
from the response of Clevertagger (9.41). Com-
paring the two best performing taggers, we see
that despite their accuracy difference of only 1.27
points, they label 4.96% of the tokens differently.

To get a more detailed understanding of the dif-
ferences, we apply algorithm 1 to the two out-
puts, whose results are shown in table 46, list-
ing the five most frequent changes per difference
class.7 Of the 4.96% different labels in Clevertag-
ger compared to TreeTagger, 58.71% are correc-
tions, 33.13% are new errors, and 8.15% changed
errors.8 That is, one third of the changes that
Clevertagger introduces are errors. This is a note-
worthy observation which applies to all our sys-
tem comparisons: Every improved response intro-
duces a considerable amount of errors with respect
to the baseline, i.e. it invalidates correct decisions
of the baseline. While this observation is to some
degree expected, our method is able to quantify
and analyse such changes in detail.

Regarding the differences, we see that both the
most frequent correction (NN→NE) and new error
(NE→NN) evolve around the confusion of named
entities and common nouns, which is especially

6For tag description see http://www.ims.
uni-stuttgart.de/forschung/ressourcen/
lexika/TagSets/stts-table.html

7Note that the change comparison can also be sorted by
the biggest accuracy difference, cf. appendix table A.1.

8We here use the TreeTagger as S1 and the Clevertagger
as S2. Inverting the roles does not change the percentage
values, but simply switches corrections to new errors and vice
versa.

Difference: 4.96% (2674/53928)
Corrections: 58.71% (1570/2674)
NN→NE 27.96
PIAT→PIDAT 10.83
NN→ADJA 5.03
VVFIN→VVINF 4.52
NE→NN 3.25
New errors: 33.13% (886/2674)
NE→NN 19.53
VVFIN→VVINF 9.48
NN→NE 9.26
ADV→ADJD 6.09
KOUS→PWAV 4.06
Changed errors: 8.15% (218/2674)
NE→NN→FM 13.30
FM→NN→NE 7.34
NE→NN→ADJD 6.88
KOUS→KOKOM→PWAV 4.13
XY→NN→NE 2.29

Table 4: Token-based label changes comparing
TreeTagger→ Clevertagger (and Key→ TreeTag-
ger→ Clevertagger for changed errors)

difficult for German, since capitalization cannot
be exploited to distinguish the two. Further-
more, Clevertagger frequently invalidates Tree-
Tagger’s correct labeling of finite verbs, tagging
them as nonfinite (VVFIN → VVINF), although
this change occurs under the most frequent correc-
tions as well. While these are commonly known
error sources for POS tagging German, our ap-
proach shows that they are in fact the main source
of the differences between the output of the two
top performing taggers.

2.2 Dependency parsing

The next task we investigate is dependency pars-
ing. We choose English as the test language due
to the lack of the availability of multiple parsers
in other languages. We evaluate Google’s recently
released Parsey McParseface (Andor et al., 2016,
state-of-the-art) and two versions of the Stanford
parser, i.e. the PCFG (Klein and Manning, 2003)
and the Neural Network version (Chen and Man-
ning, 2014). We follow the standard evalua-
tion protocol and use section 23 of the PennTree-
bank (Marcus et al., 1993) as a test set and ex-
clude punctuation tokens. We evaluate on Stan-
ford Dependency labels (de Marneffe and Man-

191

ning, 2008), since Parsey support only them.9 We
apply the parsers and their models ”as is”, i.e. we
do not change any configuration settings.

UAS LS LAS Sent
Stan. PCFG 87.96 92.26 85.36 24.17
Stan. NN 88.68 92.45 86.43 26.95
Parsey 92.70 92.86 88.94 28.89

diff ∆ LAS
Stan. PCFG↔ Stan. NN 14.01 1.07
Stan. PCFG↔ Parsey 15.49 3.58
Stan. NN↔ Parsey 13.62 2.51

Table 5: Parser performance and difference

In table 5, we report the unlabeled attachment
score (UAS), the labeling score (LS), and the la-
beled attachment score (LAS) for the parsers. Fur-
thermore, we evaluate how many of the sentences
are fully parsed correctly given each criterion.

We see that Parsey outperforms the Stanford
parsers mainly due to the performance in attach-
ment (UAS). The performance differences in as-
signing grammatical labels (LS) are comparably
marginal. Parsey also features almost identical
performance in both attaching and labeling to-
kens. However, there is a gap compared to la-
beled attachment score, which indicates that al-
though Parsey attaches more tokens correctly than
the other parsers, it does not necessarily assign the
correct grammatical label to these tokens. Look-
ing at the difference chart, we see that despite the
rather small differences in LAS (1-4 points), the
parsers attach and label around 15% of the tokens
differently. The Stanford parsers only differ in
1.07 points in LAS, but this difference is based on
14.01% (diff) of the tokens in the test set. Parsey
outperforms the Stanford NN parser by 2.51 LAS
based on 13.62% of the tokens. To gain a bet-
ter understanding of the differences contained in
these 13.62% of the tokens, we apply algorithm 1,
whose output is shown in table 6.

The table shows that half (50.22%) of the
13.62% changed token annotations from Stanford
NN to Parsey are corrections. All of these changes
are attachment corrections, i.e. the label of the to-
kens are not changed, which correlates with the
small difference we saw in labeling score. The

9We convert the PennTreebank to Stanford depen-
dencies using the Penn Treebank converter included in
the Stanford parser (http://nlp.stanford.edu/
software/stanford-dependencies.shtml).

Difference: 13.62% (6776/49748)
Corrections: 50.22% (3403/6776)
nn→ nn 10.93
prep→ prep 9.49
cc→ cc 5.32
conj→ conj 4.17
advmod→ advmod 2.59
New errors: 31.79% (2154/6776)
vmod→ partmod 9.38
amod→ nn 8.08
prep→ prep 7.38
vmod→ infmod 5.43
npadvmod→ dep 4.32
Changed errors: 17.99% (1219/6776)
prep→ prep→ prep 5.00
vmod→ vmod→ partmod 2.95
advmod→ advmod→ advmod 1.97
cc→ cc→ cc 1.89
conj→ conj→ conj 1.23

Table 6: Token-based analysis of parser differ-
ences (Stanford NN→ Parsey, LAS)

two most prominent corrections are the attachment
of noun compound modifiers (nn) and preposi-
tions (prep). Almost one third (31.79%) of the
changes are new errors. Compared to the cor-
rections, Parsey here changes the labels of the to-
kens. Contrarily, changed errors (17.99%) consti-
tute roughly one fifth of the changes and mainly
consist of changes in attachment.

2.3 Coreference resolution

The final task we investigate is coreference resolu-
tion. We choose three freely available systems for
English, again due to the lack of available systems
for other languages: the Stanford statistical coref-
erence resolver (Clark and Manning, 2015, state-
of-the-art), HOTCoref (Björkelund and Kuhn,
2014), and the Berkeley coreference system (Dur-
rett and Klein, 2013). We use the CoNLL 2012
shared task test set (Pradhan et al., 2012).

The coreference task differs from the previous
two, since not all tokens in a document partake in
coreference relations (but all tokens are in syntac-
tic relations and feature a POS tag). Furthermore,
the linguistic units of coreference relations are not
only single word tokens, but syntactic units called
mentions (i.e. mostly noun phrases). Therefore,
we have to adapt our similarity metric in equa-
tion 1. To quantify the difference of two corefer-

192

ence system outputs S1 and S2, given a key K, we
count how many of the mentions m are classified
differently using a mention classification function
c:

diff (S1, S2 | K) =
|∀m ∈ S1 ∩ S2 ∩K : c(m, S1) 6= c(m, S2)|

|∀m ∈ S1 ∩ S2 ∩K|
(2)

The mention classification function c requires a
class inventory which is not featured by the com-
mon evaluation metrics for coreference resolu-
tion.10 Therefore, we adapt the mention classifica-
tion paradigm introduced in the ARCS framework
for coreference resolution evaluation (Tuggener,
2014) which assigns one of the following four
classes to a mention m given a key K and a system
response S:

• True Positive (TP): m is correctly resolved to
an antecedent.
• False Positive (FP): m has no antecedent in

K but one in S.
• False Negative (FN): m has no antecedent in

S but one in K.
• Wrong Linkage (WL): m has an antecedent

in K but is assigned an incorrect antecedent
in S.

However, one issue with ARCS is to determine
a criterion for the TP class, i.e. under what cir-
cumstances is m regarded as resolved correctly.
Tuggener (2014) proposed to determine correct
antecedents based on the requirements of prospec-
tive downstream applications.11 We implement
one loose criterion and regard m as correctly re-
solved if any of its antecedents in S is also an an-
tecedent of m in K. Conversely, if none of the
antecedents of m overlap in S and K, we label m
as WL. This yields the ARCSany metric. Alterna-
tively, we require that the closest preceding nom-
inal antecedent of m in S is also an antecedent of
m in K, which yields the ARCSnom metric. This
metric is more conservative in assigning the TP
class, but implements a more realistic criterion for

10The common metrics analyse either the links between
mentions or calculate a percentage of overlapping mentions
in coreference chains in the key and a response. They are
not able to determine whether a given mention m is resolved
correctly or assign a class to it.

11Machine translation requires pronouns to be linked to
nominal antecedents, Sentiment analysis needs Named En-
tity antecedents (if available) etc.

correct antecedents from the perspective of down-
stream applications.

The official CoNLL score MELA (average of
MUC, CEAFE, and BCUB) and the recently pro-
posed LEA metric (Moosavi and Strube, 2016),
which addresses several issues of of the other met-
rics, as well as the ARCS scores, are given in table
7. Using the ARCS class inventory and equation
2, we quantify how many of the mentions are clas-
sified differently in the system responses.

MELA LEA ARCSany ARCSnom

Berkeley 62.06 54.80 71.25 59.13
HOTCoref 64.32 57.13 73.27 61.95
Stanford 66.62 60.92 76.30 62.04

ARCSany diff ∆ F1
Stanford↔ Berkeley 27.13 5.05
Stanford↔ HOTCoref 26.30 3.03
Berkeley↔ HOTCoref 27.22 2.02

ARCSnom diff ∆ F1
Stanford↔ Berkeley 35.39 2.91
Stanford↔ HOTCoref 37.45 0.09
Berkeley↔ HOTCoref 34.89 2.82

Table 7: Coreference resolution evaluation (F1)
and differences (%)

The F1 scores are lowest for the LEA metric,
because it gives more weight to errors regarding
longer coreference chains. The ARCSany metric
assigns the highest scores due to the loose criterion
that any antecedent is correct as long as it is in the
key chain of a given mention. Furthermore, all the
metrics agree on the ranking of the systems.

The mention-based differences between the sys-
tems are considerably larger than the relatively
small differences in F1 scores suggest. The
Stanford systems outperforms HOTCoref by 2.3
MELA, 3.79 LEA F1, and 3.03 ARCSany F1,
but the systems process one fourth (26.30%) of
the mentions differently in the ARCSany setting.
For the ARCSnom criterion, the differences are
even larger. The Stanford system outperforms the
Berkeley system by 2.91 ARCSnom F1, but the
systems process 35.39% of the mentions differ-
ently. Furthermore, we observe that the differ-
ences in F1 (∆ F1) do not correlate with the differ-
ences of the outputs (diff) for both ARCS metrics.
Given ARCSnom, we see that the smallest differ-
ence in F1 (Stanford ↔ HOTCoref: 0.09) actu-
ally occurs between the two responses that the diff
metric deems most dissimilar (37.45).

Finally, we apply algorithm 1, using the
ARCSnom criterion and our mention classification

193

scheme to the two best performing systems, i.e.
HOTCoref and Stanford. Results are given in ta-
ble 8.

Difference: 37.45% (5760 / 15382)
Corrections: 44.62% (2570/5760)
wl→ tp 20.09
fn→ tp 12.34
fp→ tn 12.19
New errors: 41.65% (2399/5760)
tp→ wl 17.08
tp→ fn 12.33
tn→ fp 12.24
Changed errors: 13.73% (791/5760)
fn→ wl 3.87
wl→ fn 9.86

Table 8: Comparison of two coreference responses
(HOTCoref→ Stanford)

We see that less than 50% of the changes that
the Stanford system introduces are corrections
(44.62%). But this percentage is still higher than
the newly introduced errors (41.65%); hence the
improvement in overall F1. Furthermore, the most
frequent change is wrong linkages to true positives
(wl → tp). The most frequent new error also in-
volves true mentions, i.e. attaching correctly re-
solved mentions to incorrect antecedents (tp →
wl). Recovering false negatives and rendering
true positives to false negatives occurs equally fre-
quent, roughly. Hence, the performance difference
stems mainly from attaching anaphoric mention to
(nominal) antecedents, rather than from deciding
which mentions to resolve, which are two sub-
problems in coreference resolution.

3 System combination

Lastly, we combine the system outputs per task
and calculate the upper bounds for perfect sys-
tem combinations by deeming a token labeled cor-
rectly if at least one of the systems provides the
correct label. The upper bounds are intended to
be another measure of the (dis)similarity of the
outputs: the higher the upper bound, the higher
the divergence of the outputs. Furthermore, look-
ing at per-label performance of all systems, we
can identify labels with low scores but high up-
per bounds, which is an interesting starting point
for future work.

3.1 POS tagging

We start with the POS tagging task and present the
upper bound of the system combination if table 9.
We also indicate the accuracy gains for the top ten
most frequent POS tags relative to the best per-
forming tagger (Clevertagger).

Stan. Tree. Clever. Upper bound
Overall 90.41 94.38 96.16 98.52 +2.36
NN 96.01 98.47 98.06 99.55 +1.49
ART 99.62 99.32 99.43 99.85 +0.42
APPR 86.10 98.03 99.20 99.56 +0.36
NE 87.35 77.46 85.31 95.17 +9.86
ADJA 92.73 94.50 98.40 99.44 +1.04
ADV 89.25 91.71 90.93 95.48 +4.55
VVFIN 79.73 95.15 91.52 97.48 +5.96
VVAFIN 91.97 98.93 97.74 99.56 +1.82
KON 97.13 95.37 96.55 98.37 +1.82
ADJD 72.37 89.29 88.80 93.53 +4.73

Table 9: POS tagging upper bounds and accuracy
(highest scores in green; lowest in red; middle in
yellow)

The Stanford tagger, despite performing the
lowest with respect to overall accuracy, achieves
the highest accuracy on named entities (NE), while
the TreeTagger struggles in this category partic-
ularly. The TreeTagger surpasses the other tag-
gers on finite verbs (VVFIN) by a wide margin
and auxiliary finite verbs (VAFIN). Clevertagger
performs best overall, but interestingly, it only
achieves the highest accuracy on three of the ten
most frequent POS tags. Looking at the overall
upper bound, we see that it more than halves the
error rate of the best performing system and is near
99% accuracy. The POS tags that profit most from
the combination are named entities. Interestingly,
all the taggers have low accuracy with respect to
this tag, but the upper bound of the combination
drastically raises it. Hence, it seems that the tag-
gers diverge mostly here, which correlates with
our analysis of the difference between the two best
performing systems in table 4.

3.2 Dependency parsing

Next, we analyse the upper bounds of the com-
bination of the dependency parsers, given in ta-
ble 10. in contrast to the POS tagging task, we
find that the best performing system, Parsey (P-
MP) achieves highest LAS for almost all consid-
ered labels. Still, its overall LAS is drastically in-
creased by the upper bound (+5.99) of the perfect
system combination. Two of the labels that ben-
efit the most of the combination are amod (adjec-

194

tival modifier), which is often confused with nn
(noun compound modifier) as we saw in table 6,
and advmod (adverb modifier). All parsers have
below 90 LAS for these labels, but the combina-
tion raises performance to 95.26 and 91.40, re-
spectively. Furthermore, prepositions (prep) gains
considerably in LAS in the combination. We ob-
served in table 6 that almost ten percent of the
difference between Parsey and the Stanford NN
parser stem from correcting attachments of prepo-
sitions. However, also more than seven percent
of the difference stems from invalidating correctly
attached prepositions in the Stanford NN output.
The large performance jump in the combination
of the systems is further evidence that the parsers
are highly complementary with respect to preposi-
tions.

S-PCFG S-NN P-MP Upper bound
All 85.36 86.43 88.94 94.93 +5.99
prep 78.76 84.26 88.21 94.18 +5.97
pobj 94.26 95.30 96.35 98.62 +2.27
det 96.81 96.65 98.66 99.38 +0.72
nn 74.64 76.81 86.36 88.91 +2.55
nsubj 92.08 89.78 94.41 97.85 +3.44
amod 87.59 88.45 86.95 95.26 +8.31
root 93.79 89.61 95.74 98.63 +2.89
dobj 90.19 90.88 92.91 97.47 +4.56
aux 97.53 97.11 97.63 99.30 +1.67
advmod 74.48 78.56 82.97 91.40 +8.43

Table 10: Parsing accuracy (LAS) and upper
bounds.

3.3 Coreference resolution
For the coreference task, it is not trivial to calcu-
late the F1 upper bound of the response combina-
tion, as the systems do no feature the same men-
tions in their outputs12, and disentangling the false
positives is a cumbersome undertaking. There-
fore, we limit our investigation to the gold men-
tions in the key and count for how many of them
at least one of the responses produces a correct
nominal antecedent, which yields the upper bound
for ARCSnom recall. To gain a deeper insight
into the benefits of the combination and the perfor-
mance of the systems, we divide the mentions into
nouns (named entities and common nouns), per-
sonal pronouns (PRP), and possessive pronouns
(PRP$). Results are given in table 11.13

The system with overall best recall features the
highest recall with respect to all mention types.

12The systems have to decide which NPs they consider for
coreference resolution (the anaphoricity detection problem).
I.e. the mentions are not known beforehand, and the systems

Berk. Stan. HOT. Upper bound
Overall 55.72 58.13 59.34 73.39 +14.05
Nouns 59.67 59.76 60.99 73.48 +12.49
PRP 50.66 56.30 57.56 73.80 +16.24
PRP$ 62.36 64.62 65.98 80.57 +14.59

Table 11: Mention-based coreference perfor-
mance (ARCSnom recall) and upper bounds

However, there is a considerable difference in re-
call to the mention types for all systems: Posses-
sive pronouns are more easily attached to correct
nominal antecedents than nouns and personal pro-
nouns. Furthermore, we see that upper bounds
raise recall uniformly for all mention types by a
considerable margin. This suggest that the outputs
are indeed different in several regards, which cor-
relates to the comparisons in tables 7 and 13.

4 Related work

One way to establish the difference of two system
outputs is to apply statistical significance tests.
However, there is generally little agreement on
which test to use, and it is often not trivial to ver-
ify if all criteria are met for the application of a
specific test to a given data set (Yeh, 2000). Fur-
thermore, the significance tests provide no insight
into the nature of the differences between two out-
puts.

Several survey papers analysed performance of
state-of-the-art tools for POS tagging (Volk and
Schneider, 1998; Giesbrecht and Evert, 2009;
Horsmann et al., 2015) or dependency parsing
(McDonald and Nivre, 2007). While these surveys
provide performance results along different axes
(accuracy, time, domain, frequent errors), they do
not analyse the particular differences between the
system responses on the token level and hence
do not provide a (dis)similarity rating of the re-
sponses. Regarding dependency parsing, our work
is most closely related to McDonald and Nivre
(2007) and Seddah et al. (2013). Both papers anal-
yse the performance of parsers with respect to sev-
eral subproblems. McDonald and Nivre (2007)
also performed output combination experiments to
stress that the two parsers that they investigated are
complementary to a significant degree.

Comparative system evaluation in shared tasks
is usually performed by pitting scores in evalua-

will hallucinate different incorrect ones.
13Note that the HOTCoref system has better recall than the

Stanford system, but the Stanford system features better pre-
cision, which leads to a higher F1 score in table 7.

195

tion metrics against each other, e.g. the CoNLL
shared tasks on coreference (Pradhan et al., 2011;
Pradhan et al., 2012) or on dependency pars-
ing (Buchholz and Marsi, 2006; Nilsson et al.,
2007). While the post task evaluation of the
CoNLL shared task 2007 included an experi-
ment of system combination which showed perfor-
mance improvements, it is generally left unclear
how similar are the system outputs with (some-
times marginally) small differences with respect
to the evaluation metrics.

Another branch of evaluation related to our
work is error analysis. Gärtner et al. (2014) pre-
sented a tool to explore coreference errors visually,
but does not aggregate and classify them. Kum-
merfeld and Klein (2013) devised a set of error
classes for coreference and analysed quantitatively
which systems make which errors. Martschat and
Strube (2014) presented an analysis and grouping
of recall errors for coreference and evaluated a set
of system responses. However, these analyses fo-
cus on the errors of one system at a time and then
compare the overall error statistics, i.e. there is
no direct linking or combination of the responses.
Hence, we believe our approach to be complemen-
tary to the work outlined above.

5 Conclusion

We have presented a generic dissimilarity metric
for system outputs and applied it to several sys-
tems for POS tagging, dependency parsing, and
coreference resolution. We found that systems
with marginal differences in accuracy scores or F1
actually have considerably distinct outputs. We
combined system outputs and calculated upper
bounds in performance as an additional measure
of the degree of difference between the outputs.

We discussed and applied a method for
analysing the specific differences between two
system outputs using a class inventory to label and
quantify the differences. Our analysis revealed the
(often considerable) quantity of new errors that
improvements introduce compared to baselines.
We believe that this kind of analysis is also useful
during system and method design, as it allows one
to track all changes in the output when adjusting a
system or a feature set.

While we have explored our approach on three
core tasks in Computational Linguistics, we be-
lieve it to be applicable to other areas in the field.
Our hope is that our method of comparative evalu-

ation will motivate other researchers to gain an in-
depth understanding of the output of their systems
and what distinguishes them from others, beyond
differences in accuracy or F1 scores.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers), pages 2442–2452, Berlin, Germany.
Google.

Anders Björkelund and Jonas Kuhn. 2014. Learning
Structured Perceptrons for Coreference Resolution
with Latent Antecedents and Non-local Features. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 47–57, Baltimore.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
Shared Task on Multilingual Dependency Parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning, CoNLL-X
’06, pages 149–164.

Danqi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar.

Kevin Clark and Christopher D Manning. 2015.
Entity-Centric Coreference Resolution with Model
Stacking. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1405–1415, Beijing, China.

Marie-Catherine de Marneffe and Christopher D Man-
ning. 2008. The Stanford Typed Dependencies Rep-
resentation. In Coling 2008: Proceedings of the
Workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971–1982,
Seattle, Washington, USA.

Markus Gärtner, Anders Björkelund, Gregor Thiele,
Wolfgang Seeker, and Jonas Kuhn. 2014. Visu-
alization, Search, and Error Analysis for Corefer-
ence Annotations. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 7–12, Balti-
more, Maryland.

196

Eugenie Giesbrecht and Stefan Evert. 2009. Is Part-
of-Speech Tagging a Solved Task? An Evaluation of
POS Taggers for the German Web as Corpus. In
Proceedings of the 5th Web as Corpus Workshop
(WAC5), San Sebastian, Spain.

Tobias Horsmann, Nicolai Erbs, and Torsten Zesch.
2015. Fast or Accurate? - A Comparative Evalu-
ation of PoS Tagging Models. In Proceedings of the
International Conference of the German Society for
Computational Linguistics and Language Technol-
ogy (GSCL-2015), Essen, Germany.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics, volume 1, pages 423–430.

JK Jonathan K Kummerfeld and Dan Klein. 2013.
Error-Driven Analysis of Challenges in Coreference
Resolution. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 265–277, Seattle.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313–330, jun.

Sebastian Martschat and Michael Strube. 2014. Recall
error analysis for coreference resolution. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2070–
2081, Doha.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Pars-
ing Models. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 122–131.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which Coreference Evaluation Metric Do You
Trust? A Proposal for a Link-based Entity Aware
Metric. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics, volume 1.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency pars-
ing. In Proceedings of the CoNLL shared task ses-
sion of EMNLP-CoNLL, pages 915–932.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. CoNLL-2011 Shared Task: Modeling
Unrestricted Coreference in OntoNotes. In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning, pages 1–27, Portland.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In Proceedings
of the Sixteenth Conference on Computational Nat-
ural Language Learning, Jeju.

Helmut Schmid. 1995. Improvements In Part-of-
Speech Tagging With an Application To German.
In In Proceedings of the ACL SIGDAT-Workshop,
pages 47–50.

Djame Seddah, Reut Tsarfaty, Sandra Kuebler, Marie
Candito, Jinho Choi, Richard Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Goldberg,
Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepi-
orkowski, Ryan Roth, Wolfgang Seeker, Yannick
Versley, Veronika Vincze, Marcin Wolin ski, Alina
Wroblewska, and Eric Villemonte de la Clergerie.
2013. Overview of the SPMRL 2013 Shared Task:
A Cross-Framework Evaluation of Parsing Morpho-
logically Rich Languages. In Fourth Workshop on
Statistical Parsing of Morphologically Rich Lan-
guages.

Rico Sennrich, Martin Volk, and Gerold Schneider.
2013. Exploiting Synergies Between Open Re-
sources for German Dependency Parsing, POS-
tagging, and Morphological Analysis. In Proceed-
ings of the International Conference on Recent Ad-
vances in Natural Language Processing, pages 601–
609, Hissar.

Heike Telljohann, Erhard Hinrichs, and Sandra Kübler.
2004. The Tüba-D/Z Treebank: Annotating German
with a Context-Free Backbone. In Proceedings of
the Fourth International Conference on Language
Resources and Evaluation, pages 2229–2232, Lis-
bon.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich Part-of-
speech Tagging with a Cyclic Dependency Network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1, pages 173–180.

Don Tuggener. 2014. Coreference Resolution Eval-
uation for Higher Level Applications. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 231–235, Gothenburg.

Martin Volk and Gerold Schneider. 1998. Comparing
a statistical and a rule-based tagger for German. In
Proceedings of KONVENS.

Alexander Yeh. 2000. More Accurate Tests for the
Statistical Significance of Result Differences. In
Proceedings of the 18th Conference on Computa-
tional Linguistics - Volume 2, pages 947–953.

197

A Appendix

A.1 POS tagging

∆ Acc. TT CT POS #tok
-100.00 100.00 0.00 VAIMP 1
+97.34 0.00 97.34 PROAV 301
+96.65 0.00 96.65 PIDAT 179
+50.00 14.74 64.74 FM 156
+46.67 46.67 93.33 PWAT 15
+39.39 54.55 93.94 PTKA 33
+33.33 33.33 66.67 VVIMP 6
+28.57 71.43 100.00 APZR 7
+26.87 71.64 98.51 PWAV 67
-24.00 96.00 72.00 VMINF 25
+13.33 78.33 91.67 KOUI 60

Table 12: Largest accuracy differences between
TreeTagger (TT) and Clevertagger(CT); number
of token with POS tag in the test set (#tok)

A.2 Coreference resolution

Since the ARCS framework is relatively unknown
and not widely used, we revisit the connection
of our diff metric to accuracy and F1 outlined
in section 2 in order to use one of the corefer-
ence metrics to establish the differences between
the outputs. We saw that our metric is inversely
equivalent to accuracy when taking one system re-
sponse as the key and the other as the response.
That is, we can calculate the diff ratio by 1 −
|ti∈T :label(ti,S1)==label(ti,S2)|

|T | , which is equivalent
to taking S1 as the key and S2 as the response
(or vice versa). For the coreference task, we can
thus use one response as the key and the other as
the response. The resulting F1 score can then be
used as an agreement value, which, however, does
not provide any detailed analysis of the nature of
the differences compared to the ARCS approach.
Table 13 shows the F1 scores when using one re-
sponse as the key and the second as response. Note
that switching the key and the response role pro-
vides the same F1 scores for two responses; the
only effect is that the recall and precision values
are switched.

The table shows that using this approach, we
obtain F1 scores that give quite high dissimilari-
ties when turned into the diff metric, i.e. diff =
100 − F1. The average of the diff metric given
MELA F1 is 28.90 (100−71.10); given LEA F1 it
is 35.22 (100−64.78). Compared to the ARCSany

Key Response LEA F1 MELA F1
Berkeley HOTCoref 63.58 70.32
Berkeley Stanford 66.03 71.91
Stanford HOTCoref 64.73 71.08

Table 13: Coreference system comparison pairing
responses

average diff (25.56) and the ARCSnom average
diff , 34.09, the values are in a similar range.

198

