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Abstract

Neural networks with attention have
proven effective for many natural lan-
guage processing tasks. In this paper, we
develop attention mechanisms for uncer-
tainty detection. In particular, we gen-
eralize standardly used attention mecha-
nisms by introducing external attention
and sequence-preserving attention. These
novel architectures differ from standard
approaches in that they use external re-
sources to compute attention weights and
preserve sequence information. We com-
pare them to other configurations along
different dimensions of attention. Our
novel architectures set the new state of
the art on a Wikipedia benchmark dataset
and perform similar to the state-of-the-art
model on a biomedical benchmark which
uses a large set of linguistic features.

1 Introduction

For many natural language processing (NLP)
tasks, it is essential to distinguish uncertain (non-
factual) from certain (factual) information. Such
tasks include information extraction, question an-
swering, medical information retrieval, opinion
detection, sentiment analysis (Karttunen and Za-
enen, 2005; Vincze, 2014a; Dı́az et al., 2016)
and knowledge base population (KBP). In KBP,
we need to distinguish, e.g., “X may be Basque”
and “X was rumored to be Basque” (uncertain)
from “X is Basque” (certain) to decide whether
to add the fact “Basque(X)” to a knowledge base.
In this paper, we use the term uncertain infor-
mation to refer to speculation, opinion, vague-
ness and ambiguity. We focus our experiments
on the uncertainty detection (UD) dataset from
the CoNLL2010 hedge cue detection task (Farkas

et al., 2010). It consists of two medium-sized
corpora from different domains (Wikipedia and
biomedical) that allow us to run a large number
of comparative experiments with different neural
networks and exhaustively investigate different di-
mensions of attention.

Convolutional and recurrent neural networks
(CNNs and RNNs) perform well on many NLP
tasks (Collobert et al., 2011; Kalchbrenner et al.,
2014; Zeng et al., 2014; Zhang and Wang, 2015).
CNNs are most often used with pooling. More re-
cently, attention mechanisms have been success-
fully integrated into CNNs and RNNs (Bahdanau
et al., 2015; Rush et al., 2015; Hermann et al.,
2015; Rocktäschel et al., 2016; Yang et al., 2016;
He and Golub, 2016; Yin et al., 2016). Both pool-
ing and attention can be thought of as selection
mechanisms that help the network focus on the
most relevant parts of a layer, either an input or
a hidden layer. This is especially beneficial for
long input sequences, e.g., long sentences or en-
tire documents. We apply CNNs and RNNs to un-
certainty detection and compare them to a number
of baselines. We show that attention-based CNNs
and RNNs are effective for uncertainty detection.
On a Wikipedia benchmark, we improve the state
of the art by more than 3.5 F1 points.

Despite the success of attention in prior work,
the design space of related network architectures
has not been fully explored. In this paper, we de-
velop novel ways to calculate attention weights
and integrate them into neural networks. Our
models are motivated by the characteristics of
the uncertainty task, yet they are also a first at-
tempt to systematize the design space of atten-
tion. In this paper, we begin with investigat-
ing three dimensions of this space: weighted
vs. unweighted selection, sequence-agnostic vs.
sequence-preserving selection, and internal vs. ex-
ternal attention.
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Figure 1: Internal attention on (1) input and (2) hidden representation. External attention on (3) input
and (4) hidden representation. For the whole network structure, see Figure 3.

Weighted vs. Unweighted Selection. Pooling
is unweighted selection: it outputs the selected
values as is. In contrast, attention can be thought
of as weighted selection: some input elements are
highly weighted, others receive weights close to
zero and are thereby effectively not selected. The
advantage of weighted selection is that the model
learns to decide based on the input how many val-
ues it should select. Pooling either selects all val-
ues (average pooling) or k values (k-max pooling).
If there are more than k uncertainty cues in a sen-
tence, pooling is not able to focus on all of them.

Sequence-agnostic vs. Sequence-preserving
Selection. K-max pooling (Kalchbrenner et al.,
2014) is sequence-preserving: it takes a long se-
quence as input and outputs a subsequence whose
members are in the same order as in the original
sequence. In contrast, attention is generally imple-
mented as a weighted average of the input vectors.
That means that all ordering information is lost
and cannot be recovered by the next layer. As an
alternative, we present and evaluate new sequence-
preserving ways of attention. For uncertainty de-
tection, this might help distinguishing phrases like
“it is not uncertain that X is Basque” and “it is un-
certain that X is not Basque”.

Internal vs. External Attention. Prior work
calculates attention weights based on the input or
hidden layers of the neural network. We call this
internal attention. For uncertainty detection, it can
be beneficial to give the model a lexicon of seed
cue words or phrases. Thus, we provide the net-
work with additional information to bear on iden-
tifying and summarizing features. This can sim-
plify the training process by guiding the model to
recognizing uncertainty cues. We call this external
attention and show that it improves performance

for uncertainty detection.
Previous work on attention and pooling has only

considered a small number of the possible configu-
rations along those dimensions of attention. How-
ever, the internal/external and un/weighted distinc-
tions can potentially impact performance because
external resources add information that can be crit-
ical for good performance and because weighting
increases the flexibility and expressivity of neural
network models. Also, word order is often critical
for meaning and is therefore an important feature
in NLP. Although our models are motivated by the
characteristics of uncertainty detection, they could
be useful for other NLP tasks as well.

Our main contributions are as follows. (i) We
extend the design space of selection mechanisms
for neural networks and conduct an extensive
set of experiments testing various configurations
along several dimensions of that space, including
novel sequence-preserving and external attention
mechanisms. (ii) To our knowledge, we are the
first to apply convolutional and recurrent neural
networks to uncertainty detection. We demon-
strate the effectiveness of the proposed attention
architectures for this task and set the new state of
the art on a Wikipedia benchmark dataset. (iii) We
publicly release our code for future research.1

2 Models

Convolutional Neural Networks. CNNs have
been successful for many NLP tasks since convo-
lution and pooling can detect key features inde-
pendent of their position in the sentence. More-
over, they can take advantage of word embeddings
and their characteristics. Both properties are also

1http://cistern.cis.lmu.de
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essential for uncertainty detection since we need
to detect cue phrases that can occur anywhere in
the sentence; and since some notion of similarity
improves performance if a cue phrase in the test
data did not occur in the training data, but is simi-
lar to one that did. The CNN we use in this paper
has one convolutional layer, 3-max pooling (see
Kalchbrenner et al. (2014)), a fully connected hid-
den layer and a logistic output unit.

Recurrent Neural Networks. Different types
of RNNs have been applied widely to NLP tasks,
including language modeling (Bengio et al., 2000;
Mikolov et al., 2010), machine translation (Cho et
al., 2014; Bahdanau et al., 2015), relation classi-
fication (Zhang and Wang, 2015) and entailment
(Rocktäschel et al., 2016). In this paper, we apply
a bi-directional gated RNN (GRU) with gradient
clipping and a logistic output unit. Chung et al.
(2014) showed that GRUs and LSTMs have sim-
ilar performance, but GRUs are more efficient in
training. The hidden layer h of the GRU is param-
eterized by two matrices W and U and four addi-
tional matrices Wr, Ur and Wz , Uz for the reset
gate r and the update gate z (Cho et al., 2014):

r = σ(Wrx+ Urh
t−1) (1)

z = σ(Wzx+ Uzh
t−1) (2)

ht = z � ht−1 + (1− z)� h̃t (3)

h̃t = σ(Wx+ U(r � ht−1)) (4)

t is the index for the current time step, � is
element-wise multiplication and σ is the sigmoid.

3 Attention

3.1 Architecture of the Attention Layer

We first define an attention layer a for input x:

αi =
exp(f(xi))∑
j exp(f(xj))

(5)

ai = αi · xi (6)

where f is a scoring function, the αi are the atten-
tion weights and each input xi is reweighted by its
corresponding attention weight αi.

The most basic definition of f is as a linear scor-
ing function on the input x:

f(xi) = W Txi (7)

W are parameters that are learned in training.
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Figure 2: Schemes of focus and source: left: in-
ternal attention, right: external attention

3.2 Focus and Source of Attention
In this paper, we distinguish between focus and
source of attention.

The focus of attention is the layer of the net-
work that is reweighted by attention weights, cor-
responding to x in Eq. 6. We consider two op-
tions for the application in uncertainty detection
as shown in Figure 1: (i) the focus is on the in-
put, i.e., the matrix of word vectors ((1) and (3))
and (ii) the focus is on the convolutional layer of
the CNN or the hidden layers of the RNN ((2) and
(4)). For focus on the input, we apply tanh to the
word vectors (see part (1) of figure) to improve re-
sults.

The source of attention is the information
source that is used to compute the attention
weights, corresponding to the input of f in Eq. 5.

Eq. 7 formalizes the case in which focus and
source are identical (both are based only on x). We
call this internal attention (see left part of Fig-
ure 2). An attention layer is called internal if both
focus and source are based only on information
internally available to the network (through input
or hidden layers).2

If we conceptualize attention in terms of source
and focus, then a question that arises is whether
we can make it more powerful by increasing the
scope of the source beyond the input.

In this paper, we propose a way of expanding
the source of attention by making an external re-
source C available to the scoring function f :

f(xi) = f ′(xi, C) (8)

We call this external attention (see right part of
Figure 2). An attention layer is called external if
its source includes an external resource.

The specific external-attention scoring function
we use for uncertainty detection is parametrized
by U1, U2 and V and defined as follows:

f(xi) =
∑
j

V T · tanh(U1 · xi + U2 · cj) (9)

2Gates, e.g., the weighting of ht−1 in Eq. 4, can also be
viewed as internal attention mechanisms.
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where cj is a vector representing a cue phrase j of
the training set. We compute cj as the average of
the embeddings of the constituent words of j.

This attention layer scores an input word xi by
comparing it with each cue vector cj and summing
the results. The comparison is done using a fully
connected hidden layer. Its weights U1, U2 and V
are learned during training. When using this scor-
ing function in Eq. 5, each αi is an assessment of
how important xi is for uncertainty detection, tak-
ing into account our knowledge about cue phrases.
Since we use embeddings to represent words and
cues, uncertainty-indicating phrases that did not
occur in training, but are similar to training cue
phrases can also be recognized.

We use this novel attention mechanism for un-
certainty detection, but it is also applicable to other
tasks and domains as long as there is a set of vec-
tors available that is analogous to our cj vectors,
i.e., vectors that model relevance of embeddings
to the task at hand (for an outlook, see Section 6).

3.3 Sequence-agnostic vs.
Sequence-preserving Selection

So far, we have explained the basic architecture
of an attention layer: computing attention weights
and reweighting the input. We now turn to the
integration of the attention layer into the overall
network architecture, i.e., how it is connected to
downstream components.

The most frequently used downstream connec-
tion of the attention layer is to take the average:

a =
∑
i

ai (10)

We call this the average, not the sum, because the
αi are normalized to sum to 1 and the standard
term for this is “weighted average”.

A variant is the k-max average:

a =
∑

R(αj)≤k
aj

where R(αj) is the rank of αj in the list of activa-
tion weights αi in descending order. This type of
averaging is more similar to k-max pooling and
may be more robust because elements with low
weights (which may just be noise) will be ignored.

Averaging destroys order information that
may be needed for NLP sequence classification
tasks. Therefore, we also investigate a sequence-
preserving method, k-max sequence:

a = [aj |R(αj) ≤ k] (11)

 w
1
   w

2
   …               w

c-1
 w

c

input sentence

project into
embedding space

a r

attention CNN/RNN

W
1

W
2

W
1

h

0 | 1

Figure 3: Network overview: combination of at-
tention and CNN/RNN output. For details on at-
tention, see Figure 1.

where [aj |P (aj)] denotes the subsequence of se-
quenceA = [a1, . . . , aJ ] from which members not
satisfying predicate P have been removed. Note
that sequence a is in the original order of the in-
put, i.e., not sorted by value.

K-max sequence selects a subsequence of in-
put vectors. Our last integration method is k-max
pooling. It ranks each dimension of the vectors in-
dividually, thus the resulting values can stem from
different input positions. This is the same as stan-
dard k-max pooling in CNNs except that each vec-
tor element in aj has been weighted (by its atten-
tion weight αj), whereas in standard k-max pool-
ing it is considered as is. Below, we also refer to k-
max sequence as “per-pos” and to k-max pooling
as “per-dim” to clearly distinguish it from k-max
pooling done by the CNN.

Combination with CNN and RNN Output.
Another question is whether we combine the atten-
tion result with the result of the convolutional or
recurrent layer of the network. Since k-max pool-
ing (CNN) and recurrent hidden layers with gates
(RNN) have strengths complementary to attention,
we experiment with concatenating the attention in-
formation to the neural sentence representations.
The final hidden layer then has this form:

h = tanh(W1a+W2r + b)

with r being either the CNN pooling result or the
last hidden state of the RNN (see Figure 3).

4 Experimental Setup and Results

4.1 Task and Setup
We evaluate on the two corpora of the
CoNLL2010 hedge cue detection task (Farkas
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Model wiki bio
(1) Baseline SVM 62.01? 78.64?
(2) Baseline RNN 59.82? 84.69
(3) Baseline CNN 64.94 84.23

Table 1: F1 results for UD. Baseline models with-
out attention. ? indicates significantly worse than
best model (in bold).4

Model wiki bio
(2) Baseline RNN 59.82? 84.69
(4) RNN attention-only 62.02? 85.32
(5) RNN combined 58.96? 84.88
(3) Baseline CNN 64.94? 84.23
(6) CNN attention-only 53.44? 82.85
(7) CNN combined 66.49 84.69

Table 2: F1 results for UD. Attention-only
vs. combined architectures. Sequence-agnostic
weighted average for attention. ? indicates signif-
icantly worse than best model (bold).

et al., 2010): Wikipedia (11,111 sentences in
train, 9634 in test) and Biomedical (14,541 train,
5003 test). It is a binary sentence classification
task. For each sentence, the model has to decide
whether it contains uncertain information.

For hyperparameter tuning, we split the training
set into core-train (80%) and dev (20%) sets; see
appendix for hyperparameter values. We use 400
dimensional word2vec (Mikolov et al., 2013) em-
beddings, pretrained on Wikipedia, with a special
embedding for unknown words.

For evaluation, we apply the official shared task
measure: F1 of the uncertain class.

4.2 Baselines without Attention
Our baselines are a support vector machine (SVM)
and two standard neural networks without atten-
tion, an RNN and a CNN. The SVM is a reimple-
mentation of the top ranked system on Wikipedia
in the CoNLL-2010 shared task (Georgescul,
2010), with parameters set to Georgescul (2010)’s
values; it uses bag-of-word (BOW) vectors that
only include hedge cues. Our reimplementation
is slightly better than the published result: 62.01
vs. 60.20 on wiki, 78.64 vs. 78.50 on bio.

The results of the baselines are given in Table 1.
The CNN (line 3) outperforms the SVM (line 1) on
both datasets, presumably because it considers all
words in the sentence – instead of only predefined
hedge cues – and makes effective use of this ad-
ditional information. The RNN (line 2) performs
better than the SVM and CNN on biomedical data,

4randomization test with p<.05.

but worse on Wikipedia. In Section 5.2, we inves-
tigate possible reasons for that.

4.3 Experiments with Attention Mechanisms

For the first experiments of this subsection, we use
the sequence-agnostic weighted average for atten-
tion (see Eq. 10), the standard in prior work.

Attention-only vs. Combined Architecture.
For the case of internal attention, we first remove
the final pre-output layer of the standard RNN
and the standard CNN to evaluate attention-only
architectures. This architecture works well for
RNNs but not for CNNs. The CNNs achieve bet-
ter results when the pooling output (unweighted
selection) is combined with the attention output
(weighted selection). See Table 2 for F1 scores.

The baseline RNN has the difficult task of re-
membering the entire sentence over long distances
– the attention mechanism makes this task much
easier. In contrast, the baseline CNN already has
an effective mechanism for focusing on the key
parts of the sentence: k-max pooling. Replacing
k-max pooling with attention decreases the perfor-
mance in this setup.

Since our main goal is to explore the benefits of
adding attention to existing architectures (as op-
posed to developing attention-only architectures),
we keep the standard pre-output layer of RNNs
and CNNs in the remaining experiments and com-
bine it with the attention layer as in Figure 3.

Focus and Source of Attention. We distin-
guish different focuses and sources of attention.
For focus, we investigate two possibilities: the in-
put to the network, i.e., word embeddings (F=W);
or the hidden representations of the RNN or CNN
(F=H). For source, we compare internal (S=I) and
external attention (S=E). This gives rise to four
configurations: (i) internal attention with focus
on the first layer of the standard RNN/CNN (S=I,
F=H), see lines (5) and (7) in Table 2, (ii) internal
attention with focus on the input (S=I, F=W), (iii)
external attention on the first layer of RNN/CNN
(S=E, F=H) and (iv) external attention on the input
(S=E, F=W). The results are provided in Table 3.

For both RNN (8) and CNN (13), the best result
is obtained by focusing attention directly on the
word embeddings.5 These results suggest that it is
best to optimize the attention mechanism directly
on the input, so that information can be extracted

5The small difference between the RNN results on bio on
lines (5) and (8) is not significant.
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Model S F wiki bio
(2) Baseline RNN - - 59.82? 84.69
(5) RNN combined I H 58.96? 84.88
(8) RNN combined I W 62.18? 84.81
(9) RNN combined E H 61.19? 84.62
(10) RNN combined E W 61.87? 84.41
(3) Baseline CNN - - 64.94? 84.23?
(7) CNN combined I H 66.49 84.69
(11) CNN combined I W 65.13? 84.99
(12) CNN combined E H 64.14? 84.73
(13) CNN combined E W 67.08 85.57

Table 3: F1 results for UD. Focus (F) and source
(S) of attention: Internal (I) vs external (E) at-
tention; attention on word embeddings (W) vs.
on hidden layers (H). Sequence-agnostic weighted
average for attention. ? indicates significantly
worse than best model (bold).

that is complementary to the information extracted
by a standard RNN/CNN.

For focus on input (F=W), external attention
(13) is significantly better than internal attention
(11) for CNNs. Thus, by designing an architec-
tural element – external attention – that makes it
easier to identify hedge cue properties of words,
the learning problem is apparently made easier.

For the RNN and F=W, external attention (10)
is not better than internal attention (8): results are
roughly tied for bio and wiki. Perhaps the combi-
nation of the external resource and the more indi-
rect representation of the entire sentence produced
by the RNN is difficult. In contrast, hedge cue pat-
terns identified by convolutional filters of the CNN
can be evaluated well based on external attention;
e.g., if there is strong external-attention evidence
for uncertainty, then the effect of a hedge cue pat-
tern (hypothesized by a convolutional filter) on the
final decision can be boosted.

In summary, the CNN with external attention
achieves the best results overall. It is significantly
better than the standard CNN that uses only pool-
ing, both on Wikipedia and biomedical texts. This
demonstrates that the CNN can make effective use
of external information – a lexicon of uncertainty
cues in our case.

Sequence-agnostic vs. Sequence-preserving.
Commonly used attention mechanisms simply av-
erage the vectors in the focus of attention. This
means that sequential information is not pre-
served. We use the term sequence-agnostic for
this. In contrast, we propose to investigate
sequence-preserving attention as presented in Sec-
tion 3.3. We expect this to be important for many

average k-max sequence
all k-max per-dim per-pos

Wiki 67.08 67.52 66.73 66.50
Bio 85.57 84.36 84.05 84.03

Table 4: F1 results for UD. Model: CNN, S=E,
F=W (13). Sequence-agnostic vs. sequence-
preserving attention.

NLP tasks. Sequence-preserving attention is simi-
lar to k-max pooling which also selects an ordered
subset of inputs. While traditional k-max pooling
is unweighted, our sequence-preserving ways of
attention still make use of the attention weights.

Table 4 compares k-max pooling, attention and
two “hybrid” designs, as described in Section 3.3.
We run these experiments only on the CNN with
external attention focused on word embeddings
(Table 3, line 13), the best performing configura-
tion in the previous experiments.

First, we investigate what happens if we “dis-
cretize” attention and only consider the values
with the top k attention weights. This increases
performance on wiki (from 67.08 to 67.52) and
decreases it on bio (from 85.57 to 84.36). We
would not expect large differences since attention
values tend to be peaked, so for common val-
ues of k (k ≥ 3 in most prior work on k-max
pooling) we are effectively comparing two sim-
ilar weighted averages, one in which most sum-
mands get a weight of 0 (k-max average) and one
in which most summands get weights close to 0
(average over all, i.e., standard attention).

Next, we compare sequence-agnostic with
sequence-preserving attention. As described in
Section 3.3, two variants are considered. In k-max
pooling, we select the k largest weighted values
per dimension (per-dim in Table 4). In contrast,
k-max sequence (per-pos) selects all values of the
k positions with the highest attention weights.

In Table 4, the sequence-preserving architec-
tures are slightly worse than standard attention
(i.e., sequence-agnostic averaging), but not signif-
icantly: performance is different by about half a
point. This shows that k-max sequence and atten-
tion can similarly be used to select a subset of the
information available, a parallel that has not been
highlighted and investigated in detail before.

Although in this case, sequence-agnostic at-
tention is better than sequence-preserving atten-
tion, we would not expect this to be true for all
tasks. Our motivation for introducing sequence-
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Model wiki bio
SVM (Georgescul, 2010) 62.01 78.64
HMM (Li et al., 2014) 63.97 80.15
CRF + ling (Tang et al., 2010) 55.05 86.79
Our CNN with external attention 67.52 85.57

Table 5: Comparison of our best model with the
state of the art

preserving attention was that the semantic mean-
ing of a sentence can vary depending on where an
uncertainty cue occurs. However, the core of un-
certainty detection is keyword and keyphrase de-
tection; so, the overall sentence structure might
be less important for this task. For tasks with a
stronger natural language understanding compo-
nent, such as summarization or relation extrac-
tion, on the other hand, we expect sequences of
weighted vectors to outperform averaged vectors.
In Section 6, we show that sequence-preserving
attention indeed improves results on a sentiment
analysis dataset.

4.4 Comparison to State of the Art

Table 5 compares our models with the state of
the art on the uncertainty detection benchmark
datasets. On Wikipedia, our CNN outperforms
the state of the art by more than three points. On
bio, the best model uses a large number of man-
ually designed features and an exhaustive corpus
preprocessing (Tang et al., 2010). Our models
achieve comparable results without preprocessing
or feature engineering.

5 Analysis

5.1 Analysis of Attention

In an analysis of examples for which pooling alone
(i.e., the standard CNN) fails, but attention cor-
rectly detects an uncertainty, two patterns emerge.

In the first pattern, we find that there are many
cues that have more words than the filter size
(which was 3 in our experiments), e.g., “it is
widely expected”, “it has also been suggested”.
The convolutional layer of the CNN is not able to
detect phrases longer than the filter size while for
attention there is no such restriction.

The second pattern consists of cues spread over
the whole sentence, e.g., “Observations of the
photosphere of 47 Ursae Majoris suggested that
the periodicity could not be explained by stel-
lar activity, making the planet interpretation more
likely” where we have set the uncertainty cues
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Figure 4: Attention weight heat map
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Figure 5: Pooling vs. internal vs. ext. attention

that are distributed throughout the sentence in ital-
ics. Figure 4 shows the distribution of external
attention weights computed by the CNN for this
sentence. The CNN pays the most attention to
the three words/phrases “suggested”, “not” and
“more likely” that correspond almost perfectly to
the true uncertainty cues. K-max pooling of stan-
dard CNNs, on the other hand, can only select the
k maximum values per dimension, i.e., it can pick
at most k uncertainty cues per dimension.

Pooling vs. Internal vs. External Attention.
Finally, we compare the information that pool-
ing, internal and external attention extract. For
pooling, we calculate the relative frequency that
a value from an n-gram centered around a specific
word is picked. For internal and external attention,
we directly plot the attention weights αi. Figure 5
shows the results of the three mechanisms for an
exemplary sentence. For a sample of randomly
selected sentences, we observed similar patterns:
Pooling forwards information from different parts
all over the sentence. It has minor peaks at rele-
vant n-grams (e.g. “was sometimes known as” or
“so might represent”) but also at non-relevant parts
(e.g. “Alternatively” or “the same island”). There
is no clear focus on uncertainty cues. Internal at-
tention is more focused on the relevant words. Ex-
ternal attention finally has the clearest focus. (See
appendix for more examples.)

5.2 Analysis of CNN vs RNN
While the results of the CNN and the RNN are
comparable on bio, the CNN clearly outperforms
the RNN on wiki. The datasets vary in several
aspects, such as average sentence lengths (wiki:
21, bio: 27)6, size of vocabularies (wiki: 45.1k,

6number of tokens per sentence after tokenization with
Stanford tokenizer (Manning et al., 2014).
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Figure 6: F1 results for different sentence lengths

bio: 25.3k), average number of out-of-vocabulary
(OOV) words per sentence w.r.t. our word embed-
dings (wiki: 4.5, bio: 6.5), etc. All of those fea-
tures can influence model performance, especially
because of the different way of sentence process-
ing: While the RNN merges all information into a
single vector, the CNN extracts the most important
phrases and ignores all the rest. In the following,
we analyze the behavior of the two models w.r.t.
sentence length and number of OOVs.

Figure 6 shows the F1 scores on Wikipedia of
the CNN and the RNN with external attention for
different sentence lengths. The lengths have been
accumulated, i.e., index 0 on the x-axis includes
the scores for all sentences of length l ∈ [0, 10).
Most sentences have lengths l < 50. In this range,
the CNN performs better than the RNN but the dif-
ference is small. For longer sentences, however,
the CNN clearly outperforms the RNN. This could
be one reason for the better overall performance.

A similar plot for F1 scores depending on the
number of OOVs per sentence does not give addi-
tional insights into the model behaviors: The CNN
performs better than the RNN independent of the
number of OOVs (Figure in appendix).

Another important difference between CNN
and RNN is the distribution of precision and re-
call. While on bio, precision and recall are almost
equal for both models, the values vary on wiki:

P R
CNN 52.5 85.1
CNN + external attention 58.6 78.3
RNN 75.2 49.6
RNN + external attention 76.3 52.0

Those values suggest that the RNN predicts uncer-
tainty more reluctantly than the CNN.

6 Outlook: Different Task

To investigate whether our attention methods are
also applicable to other tasks, we evaluate them

Model S F test set
Baseline CNN - - 84.84
CNN attention-only I H 83.56
CNN combined I H 85.22
CNN combined I W 86.11
CNN combined E H 86.06
CNN combined E W 86.89

Table 6: Accuracy on SST-2, different focus and
source of attention.

average k-max sequence
all k-max per-dim per-pos
86.89 86.39 87.00 87.22

Table 7: Accuracy on SST-2, sequence-agnostic
vs. sequence-preserving attention.

on the 2-class Stanford Sentiment Treebank (SST-
2) dataset7 (Socher et al., 2013). For a baseline
model, we train a CNN similar to our uncertainty
CNN but with convolutional filters of different
widths, as proposed in (Kim, 2014), and extend
it with our attention layer. As cues for external at-
tention, we use the most frequent positive phrases
from the train set. Our model is much simpler
than the state-of-the-art models for SST-2 but still
achieves reasonable results.8

The results in Table 6 show the same trends
as the CNN results in Table 3, suggesting that
our methods are applicable to other tasks as
well. Table 7 shows that the benefit of sequence-
preserving attention is indeed task dependent. For
sentiment analysis on SST-2, sequence-preserving
methods outperform the sequence-agnostic ones.

7 Related Work

Uncertainty Detection. Uncertainty has been ex-
tensively studied in linguistics and NLP (Kiparsky
and Kiparsky, 1970; Karttunen, 1973; Karttunen
and Zaenen, 2005), including modality (Saurı́ and
Pustejovsky, 2012; De Marneffe et al., 2012;
Szarvas et al., 2012) and negation (Velldal et al.,
2012; Baker et al., 2012). Szarvas et al. (2012),
Vincze (2014b) and Zhou et al. (2015) con-
ducted cross domain experiments. Domains stud-
ied include news (Saurı́ and Pustejovsky, 2009),
biomedicine (Vincze et al., 2008), Wikipedia
(Ganter and Strube, 2009) and social media (Wei
et al., 2013). Corpora such as FactBank (Saurı́ and
Pustejovsky, 2009) are annotated in detail with re-
spect to perspective, level of factuality and polar-

7http://nlp.stanford.edu/sentiment
8The state-of-the-art accuracy is about 89.5 (Zhou et al.,

2016; Yin and Schütze, 2015).
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ity. De Marneffe et al. (2012) conducted uncer-
tainty detection experiments on a version of Fact-
Bank extended by crowd sourcing. In this work,
we use CoNLL 2010 shared task data (Farkas et
al., 2010) since CoNLL provides larger train/test
sets and the CoNLL annotation consists of only
two labels (certain/uncertain) instead of various
perspectives and degrees of uncertainty. When us-
ing uncertainty detection for information extrac-
tion tasks like KB population (Section 1), it is a
reasonable first step to consider only two labels.

CNNs. Several studies showed that CNNs can
handle diverse sentence classification tasks, in-
cluding sentiment analysis (Kalchbrenner et al.,
2014; Kim, 2014), relation classification (Zeng et
al., 2014; dos Santos et al., 2015) and paraphrase
detection (Yin et al., 2016). To our knowledge, we
are the first to apply them to uncertainty detection.

RNNs. RNNs have mainly been used for se-
quence labeling or language modeling tasks with
one output after each input token (Bengio et al.,
2000; Mikolov et al., 2010). Recently, it has been
shown that they are also capable of encoding and
restoring relevant information from a whole input
sequence. This makes them applicable to machine
translation (Cho et al., 2014; Bahdanau et al.,
2015) and sentence classification tasks (Zhang and
Wang, 2015; Hermann et al., 2015; Rocktäschel et
al., 2016). In this study, we apply them to UD for
the first time and compare their results with CNNs.

Attention has been mainly used for recurrent
neural networks (Bahdanau et al., 2015; Rush et
al., 2015; Hermann et al., 2015; Rocktäschel et
al., 2016; Peng et al., 2015; Yang et al., 2016). We
integrate attention into CNNs and show that this
is beneficial for uncertainty detection. Few stud-
ies in vision integrated attention into CNNs (Stol-
lenga et al., 2014; Xiao et al., 2015; Chen et al.,
2015) but this has not been used often in NLP so
far. Exceptions are Meng et al. (2015), Wang et al.
(2016) and Yin et al. (2016). Meng et al. (2015)
used several layers of local and global attention
in a complex machine translation model with a
large number of parameters. Our reimplementa-
tion of their network performed poorly for uncer-
tainty detection (51.51/66.57 on wiki/bio); we sus-
pect that the reason is that Meng et al. (2015)’s
training set was an order of magnitude larger than
ours. Our approach makes effective use of a much
smaller training set. Yin et al. (2016) compared
attention based input representations and attention

based pooling. Instead, our goal is to keep the con-
volutional and pooling layers unchanged and com-
bine their strengths with attention. Allamanis et al.
(2016) applied a convolutional layer to compute
attention weights. In this work, we concentrate on
the commonly used feed forward layers for that.
Comparing them to other options, such as convo-
lution, is an interesting direction for future work.

Attention in the literature computes a weighted
average with internal attention weights. In con-
trast, we investigate different strategies to incor-
porate attention information into a neural network.
Also, we propose external attention. The un-
derlying intuition is similar to attention for ma-
chine translation, which learns alignments be-
tween source and target sentences, or attention
in question answering, which computes attention
weights based on a question and a fact. However,
these sources for attention are still internal infor-
mation of the network (the input or previous out-
put predictions). Instead, we learn weights based
on an external source – a lexicon of cue phrases.

8 Conclusion

In this paper, we presented novel attention archi-
tectures for uncertainty detection: external atten-
tion and sequence-preserving attention. We con-
ducted an extensive set of experiments with var-
ious configurations along different dimensions of
attention, including different focuses and sources
of attention and sequence-agnostic vs. sequence-
preserving attention. For our experiments, we
used two benchmark datasets for uncertainty de-
tection and applied recurrent and convolutional
neural networks to this task for the first time. Our
CNNs with external attention improved state of the
art by more than 3.5 F1 points on a Wikipedia
benchmark. Finally, we showed in an outlook
that our architectures are applicable to sentiment
classification as well. Investigations of other se-
quence classification tasks are future work. We
made our code publicly available for future re-
search (http://cistern.cis.lmu.de).
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Richárd Farkas, Veronika Vincze, György Móra, János
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György Móra, and Iryna Gurevych. 2012. Cross-
genre and cross-domain detection of semantic un-
certainty. Computational Linguistics, 38:335–367.

Buzhou Tang, Xiaolong Wang, Xuan Wang, Bo Yuan,
and Shixi Fan. 2010. A cascade method for de-
tecting hedges and their scope in natural language
text. In Proceedings of the Fourteenth Confer-
ence on Computational Natural Language Learning,
pages 13–17, Uppsala, Sweden, July. Association
for Computational Linguistics.

Erik Velldal, Lilja Øvrelid, Jonathon Read, and
Stephan Oepen. 2012. Speculation and negation:
Rules, rankers, and the role of syntax. Computa-
tional linguistics, 38:369–410.

Veronika Vincze, György Szarvas, Richárd Farkas,
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A Supplementary Material

A.1 Parameter Tuning
All parameters and learning rate schedule deci-
sions are based on results on the development set
(20% of the official training set). After tuning
the hyperparameters (see Tables 8 and 9), the net-
works are re-trained on the whole training set.

We trained the CNNs with stochastic gradient
descent and a fixed learning rate of 0.03. For the
RNNs, we used Adagrad (Duchi et al., 2011) with
an initial learning rate of 0.1. For all models, we
used mini-batches of size 10 and applied L2 regu-
larization with a weight of 1e-5. To determine the
number of training epochs, we looked for epochs
with peak performances on the development set.

Model # conv filter # hidden # att
filters width units hidden

units

C
N

N
w

ik
i (3) 200 3 200 -

(6) 100 3 500 -
(7) 200 3 200 -
(11) 200 3 200 -
(12) 200 3 200 200
(13) 100 3 200 200

C
N

N
bi

o (3) 200 3 500 -
(6) 100 3 200 -
(7) 100 3 500 -
(11) 200 3 200 -
(12) 200 3 500 100
(13) 200 3 50 100

Table 8: Result of parameter tuning for CNN (“att
hidden units” is the number of units in the hidden
layer of the attention component); Model numbers
refer to numbers in the main paper

Model # rnn # hidden # att
hidden units hidden
units units

R
N

N
w

ik
i (2) 10 100 -

(4) 10 100 -
(5) 10 200 -
(8) 10 100 -
(9) 30 200 200
(10) 10 200 100

R
N

N
bi

o (2) 10 500 -
(4) 10 500 -
(5) 10 50 -
(8) 10 50 -
(9) 30 100 200
(10) 10 50 200

Table 9: Result of parameter tuning for RNN

A.2 Additional Examples: Attention Weights
Figure 7 and Figure 8 compare pooling, inter-
nal attention and external attention for randomly
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Figure 7: Pooling vs. internal attention vs. external
attention
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Figure 8: Pooling vs. internal attention vs. external
attention

picked examples from the test set. Again, pool-
ing extracts values from all over the sentence
while internal and external attention learn to fo-
cus on words which can indicate uncertainty (e.g.
“thought” or “probably”).

A.3 Additional Figure for Analysis: Results
Depending on Number of OOVs

Figure 9 plots the F1 scores of the CNN and RNN
with external attention w.r.t. the number of out-
of-vocabulary (OOV) words in the sentences. The
number of OOVs have been accumulated, i.e., in-
dex 0 on the x-axis includes the score for all sen-
tences with a number of OOVs in [0,10), etc.
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Figure 9: F1 results for different numbers of
OOVs in sentence
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