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Abstract

Recurrent neural networks (RNNs) pro-
cess input text sequentially and model the
conditional transition between word to-
kens. In contrast, the advantages of recur-
sive networks include that they explicitly
model the compositionality and the recur-
sive structure of natural language. How-
ever, the current recursive architecture is
limited by its dependence on syntactic
tree. In this paper, we introduce a robust
syntactic parsing-independent tree struc-
tured model, Neural Tree Indexers (NTI)
that provides a middle ground between the
sequential RNNs and the syntactic tree-
based recursive models. NTI constructs a
full n-ary tree by processing the input text
with its node function in a bottom-up fash-
ion. Attention mechanism can then be ap-
plied to both structure and node function.
We implemented and evaluated a binary-
tree model of NTI, showing the model
achieved the state-of-the-art performance
on three different NLP tasks: natural lan-
guage inference, answer sentence selec-
tion, and sentence classification, outper-
forming state-of-the-art recurrent and re-
cursive neural networks 1.

1 Introduction

Recurrent neural networks (RNNs) have been suc-
cessful for modeling sequence data (Elman, 1990).
RNNs equipped with gated hidden units and in-
ternal short-term memories, such as long short-
term memories (LSTM) (Hochreiter and Schmid-
huber, 1997) have achieved a notable success in

1Code for the experiments and NTI is available at
https://bitbucket.org/tsendeemts/nti

several NLP tasks including named entity recog-
nition (Lample et al., 2016), constituency parsing
(Vinyals et al., 2015), textual entailment recogni-
tion (Rocktäschel et al., 2016), question answer-
ing (Hermann et al., 2015), and machine trans-
lation (Bahdanau et al., 2015). However, most
LSTM models explored so far are sequential. It
encodes text sequentially from left to right or vice
versa and do not naturally support compositional-
ity of language. Sequential LSTM models seem to
learn syntactic structure from the natural language
however their generalization on unseen text is rel-
atively poor comparing with models that exploit
syntactic tree structure (Bowman et al., 2015b).

Unlike sequential models, recursive neural net-
works compose word phrases over syntactic tree
structure and have shown improved performance
in sentiment analysis (Socher et al., 2013). How-
ever its dependence on a syntactic tree architecture
limits practical NLP applications. In this study,
we introduce Neural Tree Indexers (NTI), a class
of tree structured models for NLP tasks. NTI
takes a sequence of tokens and produces its rep-
resentation by constructing a full n-ary tree in a
bottom-up fashion. Each node in NTI is associated
with one of the node transformation functions:
leaf node mapping and non-leaf node composition
functions. Unlike previous recursive models, the
tree structure for NTI is relaxed, i.e., NTI does not
require the input sequences to be parsed syntac-
tically; and therefore it is flexible and can be di-
rectly applied to a wide range of NLP tasks beyond
sentence modeling.

Furthermore, we propose different variants of
node composition function and attention over tree
for our NTI models. When a sequential leaf node
transformer such as LSTM is chosen, the NTI net-
work forms a sequence-tree hybrid model taking
advantage of both conditional and compositional
powers of sequential and recursive models. Figure
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   -           -        The        cat       sat       on         the      mat

Q: where was the cat? A: on the mat

Two      black    dogs      are    playing around   the      grass   -            -        Two      dogs    swim      in         the      lake

Premise Hypothesis

(a) (b)

Figure 1: A binary tree form of Neural Tree Indexers (NTI) in the context of question answering and
natural language inference. We insert empty tokens (denoted by −) to the input text to form a full binary
tree. (a) NTI produces answer representation at the root node. This representation along with the question
is used to find the answer. (b) NTI learns representations for the premise and hypothesis sentences and
then attentively combines them for classification. Dotted lines indicate attention over premise-indexed
tree.

1 shows a binary-tree model of NTI. Although the
model does not follow the syntactic tree structure,
we empirically show that it achieved the state-of-
the-art performance on three different NLP appli-
cations: natural language inference, answer sen-
tence selection, and sentence classification.

2 Related Work

2.1 Recurrent Neural Networks and
Attention Mechanism

RNNs model input text sequentially by taking a
single token at each time step and producing a cor-
responding hidden state. The hidden state is then
passed along through the next time step to pro-
vide historical sequence information. Although a
great success in a variety of tasks, RNNs have lim-
itations (Bengio et al., 1994; Hochreiter, 1998).
Among them, it is not efficient at memorizing long
or distant sequence (Sutskever et al., 2014). This
is frequently called as information flow bottle-
neck. Approaches have therefore been developed
to overcome the limitations. For example, to mit-
igate the information flow bottleneck, Bahdanau
et al. (2015) extended RNNs with a soft attention
mechanism in the context of neural machine trans-
lation, leading to improved the results in translat-
ing longer sentences.

RNNs are linear chain-structured; this limits its
potential for natural language which can be repre-
sented by complex structures including syntactic
structure. In this study, we propose models to mit-
igate this limitation.

2.2 Recursive Neural Networks
Unlike RNNs, recursive neural networks explic-
itly model the compositionality and the recur-
sive structure of natural language over tree. The

tree structure can be predefined by a syntactic
parser (Socher et al., 2013). Each non-leaf tree
node is associated with a node composition func-
tion which combines its children nodes and pro-
duces its own representation. The model is then
trained by back-propagating error through struc-
tures (Goller and Kuchler, 1996).

The node composition function can be varied.
A single layer network with tanh non-linearity
was adopted in recursive auto-associate memo-
ries (Pollack, 1990) and recursive autoencoders
(Socher et al., 2011). Socher et al. (2012) extended
this network with an additional matrix represen-
tation for each node to augment the expressive
power of the model. Tensor networks have also
been used as composition function for sentence-
level sentiment analysis task (Socher et al., 2013).
Recently, Zhu et al. (2015) introduced S-LSTM
which extends LSTM units to compose tree nodes
in a recursive fashion.

In this paper, we introduce a novel attentive
node composition function that is based on S-
LSTM. Our NTI model does not rely on either a
parser output or a fine-grained supervision of non-
leaf nodes, both required in previous work. In
NTI, the supervision from the target labels is pro-
vided at the root node. As such, our NTI model
is robust and applicable to a wide range of NLP
tasks. We introduce attention over tree in NTI
to overcome the vanishing/explode gradients chal-
lenges as shown in RNNs.

3 Methods

Our training set consists of N examples
{Xi, Y i}Ni=1, where the input Xi is a sequence of
word tokens wi1, w

i
2, . . . , w

i
Ti

and the output Y i

can be either a single target or a sequence. Each
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input word token wt is represented by its word
embedding xt ∈ Rk.

NTI is a full n-ary tree (and the sub-trees
can be overlapped). It has two types of
transformation function: non-leaf node func-
tion fnode(h1, . . . , hc) and leaf node function
f leaf (xt). f leaf (xt) computes a (possibly non-
linear) transformation of the input word embed-
ding xt. fnode(h1, . . . , hc) is a function of its child
nodes representation h1, . . . , hc, where c is the to-
tal number of child nodes of this non-leaf node.

NTI can be implemented with different tree
structures. In this study we implemented and eval-
uated a binary tree form of NTI: a non-leaf node
can take in only two direct child nodes (i.e., c =
2). Therefore, the function fnode(hl, hr) com-
poses its left child node hl and right child node
hr. Figure 1 illustrates our NTI model that is
applied to question answering (a) and natural lan-
guage inference tasks (b). Note that the node and
leaf node functions are neural networks and are the
only training parameters in NTI.

We explored two different approaches to com-
pose node representations: an extended LSTM and
attentive node composition functions, to be de-
scribed below.

3.1 Non-Leaf Node Composition Functions
We define two different methods for non-leaf node
function fnode(hl, hr).

LSTM-based Non-leaf Node Function (S-
LSTM): We initiate fnode(hl, hr) with LSTM.
For non-leaf node, we adopt S-LSTM Zhu et al.
(2015), an extension of LSTM to tree structures, to
learn a node representation by its children nodes.
Let hlt, h

r
t , c

l
t and crt be vector representations

and cell states for the left and right children. An
S-LSTM computes a parent node representation
hpt+1 and a node cell state cpt+1 as

it+1 = σ(W s
1h

l
t +W s

2h
r
t +W s

3 c
l
t +W s

4 c
r
t ) (1)

f lt+1 = σ(W s
5h

l
t +W s

6h
r
t +W s

7 c
l
t +W s
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r
t ) (2)
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10h
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11c
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s
12c

r
t ) (3)

cpt+1 = f lt+1 � clt + f rt+1 � crt
+ it+1 � tanh(W s

13h
l
t +W s

14h
r
t ) (4)

ot+1 = σ(W s
15h

l
t +W s

16h
r
t +W s

18c
p
t+1) (5)

hpt+1 = ot+1 � tanh(cpt+1) (6)

where W s
1 , . . . ,W

s
18 ∈ Rk×k and biases (for

brevity we eliminated the bias terms) are the train-
ing parameters. σ and � denote the element-
wise sigmoid function and the element-wise vec-
tor multiplication. Extension of S-LSTM non-
leaf node function to compose more children is
straightforward. However, the number of parame-
ters increases quadratically in S-LSTM as we add
more child nodes.

Attentive Non-leaf Node Function (ANF):
Some NLP applications (e.g., QA and machine
translation) would benefit from a dynamic query
dependent composition function. We introduce
ANF as a new non-leaf node function. Unlike S-
LSTM, ANF composes the child nodes attentively
in respect to another relevant input vector q ∈ Rk.
The input vector q can be a learnable representa-
tion from a sequence representation. Given a ma-
trix SANF ∈ Rk×2 resulted by concatenating the
child node representations hlt, h

r
t and the third in-

put vector q, ANF is defined as

m = fscore(SANF , q) (7)

α = softmax(m) (8)

z = SANFα> (9)

hpt+1 = ReLU(WANF
1 z) (10)

where WANF
1 ∈ Rk×k is a learnable matrix, m ∈

R2 the attention score and α ∈ R2 the attention
weight vector for each child. fscore is an attention
scoring function, which can be implemented as a
multi-layer perceptron (MLP)

m = w>ReLU(W score
1 SANF

+W score
2 q ⊗ e) (11)

or a matrix-vector product m = q>SANF . The
matrices W score

1 and W score
2 ∈ Rk×k and the vec-

tor w ∈ Rk are training parameters. e ∈ R2 is a
vector of ones and ⊗ the outer product. We use
ReLU function for non-linear transformation.

3.2 Attention Over Tree
Comparing with sequential LSTM models, NTI
has less recurrence, which is defined by the tree
depth, log(n) for binary tree where n is the length
of the input sequence. However, NTI still needs
to compress all the input information into a sin-
gle representation vector of the root. This im-
poses practical difficulties when processing long
sequences. We address this issue with attention
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Model d |θ|M Train Test
Classifier with handcrafted features (Bowman et al., 2015a) - - 99.7 78.2
LSTMs encoders (Bowman et al., 2015a) 300 3.0M 83.9 80.6
Dependency Tree CNN encoders (Mou et al., 2016) 300 3.5M 83.3 82.1
NTI-SLSTM (Ours) 300 3.3M 83.9 82.4
SPINN-PI encoders (Bowman et al., 2016) 300 3.7M 89.2 83.2
NTI-SLSTM-LSTM (Ours) 300 4.0M 82.5 83.4
LSTMs attention (Rocktäschel et al., 2016) 100 242K 85.4 82.3
LSTMs word-by-word attention (Rocktäschel et al., 2016) 100 250K 85.3 83.5
NTI-SLSTM node-by-node global attention (Ours) 300 3.5M 85.0 84.2
NTI-SLSTM node-by-node tree attention (Ours) 300 3.5M 86.0 84.3
NTI-SLSTM-LSTM node-by-node tree attention (Ours) 300 4.2M 88.1 85.7
NTI-SLSTM-LSTM node-by-node global attention (Ours) 300 4.2M 87.6 85.9
mLSTM word-by-word attention (Wang and Jiang, 2016) 300 1.9M 92.0 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 450 3.4M 88.5 86.3
Tree matching NTI-SLSTM-LSTM tree attention (Ours) 300 3.2M 87.3 86.4
Decomposable Attention Model (Parikh et al., 2016) 200 580K 90.5 86.8
Tree matching NTI-SLSTM-LSTM global attention (Ours) 300 3.2M 87.6 87.1
Full tree matching NTI-SLSTM-LSTM global attention (Ours) 300 3.2M 88.5 87.3

Table 1: Training and test accuracy on natural language inference task. d is the word embedding size and
|θ|M the number of model parameters.

mechanism over tree. In addition, the attention
mechanism can be used for matching trees (de-
scribed in Section 4 as Tree matching NTI) that
carry different sequence information. We first de-
fine a global attention and then introduce a tree
attention which considers the parent-child depen-
dency for calculation of the attention weights.

Global Attention: An attention neural network
for the global attention takes all node representa-
tions as input and produces an attentively blended
vector for the whole tree. This neural net is sim-
ilar to ANF. Particularly, given a matrix SGA ∈
Rk×2n−1 resulted by concatenating the node rep-
resentations h1, . . . , h2n−1 and the relevant input
representation q, the global attention is defined as

m = fscore(SGA, q) (12)

α = softmax(m) (13)

z = SGAα> (14)

htree = ReLU(WGA
1 z +WGA

2 q) (15)

where WGA
1 and WGA

2 ∈ Rk×k are training pa-
rameters and α ∈ R2n−1 the attention weight vec-
tor for each node. This attention mechanism is ro-
bust as it globally normalizes the attention score
m with softmax to obtain the weights α. How-
ever, it does not consider the tree structure when
producing the final representation htree.

Tree Attention: We modify the global atten-
tion network to the tree attention mechanism. The
resulting tree attention network performs almost
the same computation as ANF for each node. It

compares the parent and children nodes to pro-
duce a new representation assuming that all node
representations are constructed. Given a matrix
STA ∈ Rk×3 resulted by concatenating the parent
node representation hpt , the left child hlt and the
right child hrt and the relevant input representation
q, every non-leaf node hpt simply updates its own
representation by using the following equation in
a bottom-up manner.

m = fscore(STA, q) (16)

α = softmax(m) (17)

z = STAα> (18)

hpt = ReLU(W TA
1 z) (19)

and this equation is similarity to the global at-
tention. However, now each non-leaf node atten-
tively collects its own and children representations
and passes towards the root which finally con-
structs the attentively blended tree representation.
Note that unlike the global attention, the tree atten-
tion locally normalizes the attention scores with
softmax.

4 Experiments

We describe in this section experiments on three
different NLP tasks, natural language inference,
question answering and sentence classification to
demonstrate the flexibility and the effectiveness of
NTI in the different settings.
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We trained NTI using Adam (Kingma and Ba,
2014) with hyperparameters selected on develop-
ment set. The pre-trained 300-D Glove 840B vec-
tors (Pennington et al., 2014) were obtained for
the word embeddings2. The word embeddings are
fixed during training. The embeddings for out-of-
vocabulary words were set to zero vector. We pad
the input sequence to form a full binary tree. A
padding vector was inserted when padding. We
analyzed the effects of the padding size and found
out that it has no influence on the performance (see
Appendix 5.3). The size of hidden units of the NTI
modules were set to 300. The models were regu-
larized by using dropouts and an l2 weight decay.3

4.1 Natural Language Inference

We conducted experiments on the Stanford
Natural Language Inference (SNLI) dataset
(Bowman et al., 2015a), which consists of
549,367/9,842/9,824 premise-hypothesis pairs for
train/dev/test sets and target label indicating their
relation. Unless otherwise noted, we follow the
setting in the previous work (Mou et al., 2016;
Bowman et al., 2016) and use an MLP for classi-
fication which takes in NTI outputs and computes
the concatenation [hp2n−1;h

h
2n−1], absolute dif-

ference hp2n−1 − hh2n−1 and elementwise product
hp2n−1 ·hh2n−1 of the two sentence representations.
The MLP has also an input layer with 1024 units
with ReLU activation and a softmax output
layer. We explored nine different task-oriented
NTI models with varying complexity, to be
described below. For each model, we set the batch
size to 32. The initial learning, the regularization
strength and the number of epoch to be trained are
varied for each model.

NTI-SLSTM: this model does not rely on f leaf

transformer but uses the S-LSTM units for the
non-leaf node function. We set the initial learning
rate to 1e-3 and l2 regularizer strength to 3e-5, and
train the model for 90 epochs. The neural net was
regularized by 10% input dropouts and the 20%
output dropouts.

NTI-SLSTM-LSTM: we use LSTM for the
leaf node function f leaf . Concretely, the LSTM
output vectors are given to NTI-SLSTM and the
memory cells of the lowest level S-LSTM were
initialized with the LSTM memory states. The
hyper-parameters are the same as the previous

2http://nlp.stanford.edu/projects/glove/
3More detail on hyper-parameters can be found in code.

model.
NTI-SLSTM node-by-node global attention:

This model learns inter-sentence relation with the
global attention over premise-indexed tree, which
is similar to word-by-word attention model of
Rocktäschel et al. (2016) in that it attends over the
premise tree nodes at every time step of hypothesis
encoding. We tie the weight parameters of the two
NTI-SLSTMs for premise and hypothesis and no
f leaf transformer used. We set the initial learning
rate to 3e-4 and l2 regularizer strength to 1e-5, and
train the model for 40 epochs. The neural net was
regularized by 15% input dropouts and the 15%
output dropouts.

NTI-SLSTM node-by-node tree attention:
this is a variation of the previous model with the
tree attention. The hyper-parameters are the same
as the previous model.

NTI-SLSTM-LSTM node-by-node global at-
tention: in this model we include LSTM as the
leaf node function f leaf . Here we initialize the
memory cell of S-LSTM with LSTM memory
and hidden/memory state of hypothesis LSTM
with premise LSTM (the later follows the work
of (Rocktäschel et al., 2016)). We set the initial
learning rate to 3e-4 and l2 regularizer strength to
1e-5, and train the model for 10 epochs. The neu-
ral net was regularized by 10% input dropouts and
the 15% output dropouts.

NTI-SLSTM-LSTM node-by-node tree at-
tention: this is a variation of the previous model
with the tree attention. The hyper-parameters are
the same as the previous model.

Tree matching NTI-SLSTM-LSTM global
attention: this model first constructs the premise
and hypothesis trees simultaneously with the NTI-
SLSTM-LSTM model and then computes their
matching vector by using the global attention and
an additional LSTM. The attention vectors are
produced at each hypothesis tree node and then
are given to the LSTM model sequentially. The
LSTM model compress the attention vectors and
outputs a single matching vector, which is passed
to an MLP for classification. The MLP for this
tree matching setting has an input layer with 1024
units with ReLU activation and a softmax out-
put layer.

Unlike Wang and Jiang (2016)’s matching
LSTM model which is specific to matching se-
quences, we use the standard LSTM units and
match trees. We set the initial learning rate to 3e-
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4 and l2 regularizer strength to 3e-5, and train the
model for 20 epochs. The neural net was regular-
ized by 20% input dropouts and the 20% output
dropouts.

Tree matching NTI-SLSTM-LSTM tree at-
tention: we replace the global attention with the
tree attention. The hyper-parameters are the same
as the previous model.

Full tree matching NTI-SLSTM-LSTM
global attention: this model produces two sets
of the attention vectors, one by attending over the
premise tree regarding each hypothesis tree node
and another by attending over the hypothesis tree
regarding each premise tree node. Each set of
the attention vectors is given to a LSTM model
to achieve full tree matching. The last hidden
states of the two LSTM models (i.e. one for
each attention vector set) are concatenated for
classification. The training weights are shared
among the LSTM models The hyper-parameters
are the same as the previous model.4

Table 1 shows the results of our models. For
comparison, we include the results from the pub-
lished state-of-the-art systems. While most of
the sentence encoder models rely solely on word
embeddings, the dependency tree CNN and the
SPINN-PI models make use of sentence parser
output; which present strong baseline systems.
The last set of methods designs inter-sentence re-
lation with soft attention (Bahdanau et al., 2015).
Our best score on this task is 87.3% accuracy
obtained with the full tree matching NTI model.
The previous best performing model on the task
performs phrase matching by using the attention
mechanism.

Our results show that NTI-SLSTM improved
the performance of the sequential LSTM encoder
by approximately 2%. Not surprisingly, using
LSTM as leaf node function helps in learning
better representations. Our NTI-SLSTM-LSTM
is a hybrid model which encodes a sequence
sequentially through its leaf node function and
then hierarchically composes the output repre-
sentations. The node-by-node attention models
improve the performance, indicating that model-
ing inter-sentence interaction is an important el-
ement in NLI. Aggregating matching vector be-
tween trees or sequences with a separate LSTM
model is effective. The global attention seems to

4Computational constraint prevented us from experiment-
ing the tree attention variant of this model

Model MAP MRR
Classifier with features (2013) 0.5993 0.6068
Paragraph Vector (2014) 0.5110 0.5160
Bigram-CNN (2014) 0.6190 0.6281
3-layer LSTM (2016) 0.6552 0.6747
3-layer LSTM attention (2016) 0.6639 0.6828
NASM (2016) 0.6705 0.6914
NTI (Ours) 0.6742 0.6884

Table 2: Test set performance on answer sentence
selection.

Model Bin FG
RNTN (Socher et al., 2013) 85.4 45.7
CNN-MC (Kim, 2014) 88.1 47.4
DRNN (Irsoy and Cardie, 2015) 86.6 49.8
2-layer LSTM (Tai et al., 2015) 86.3 46.0
Bi-LSTM (Tai et al., 2015) 87.5 49.1
NTI-SLSTM (Ours) 87.8 50.5
CT-LSTM (Tai et al., 2015) 88.0 51.0
DMN (Kumar et al., 2016) 88.6 52.1
NTI-SLSTM-LSTM (Ours) 89.3 53.1

Table 3: Test accuracy for sentence classification.
Bin: binary, FG: fine-grained 5 classes.

be robust on this task. The tree attention were not
helpful as it normalizes the attention scores locally
in parent-child relationship.

4.2 Answer Sentence Selection

For this task, a model is trained to identify the
correct sentences that answer a factual question,
from a set of candidate sentences. We experiment
on WikiQA dataset constructed from Wikipedia
(Yang et al., 2015). The dataset contains
20,360/2,733/6,165 QA pairs for train/dev/test
sets.

We used the same setup in the language infer-
ence task except that we replace the softmax
layer with a sigmoid layer and model the follow-
ing conditional probability distribution.

pθ(y = 1|hqn, han) = sigmoid(oQA) (20)

where hqn and han are the question and the answer
encoded vectors and oQA denotes the output of
the hidden layer of the MLP. For this task, we
use NTI-SLSTM-LSTM to encode answer candi-
date sentences and NTI-ANF-LSTM to encode the
question sentences. Note that NTI-ANF-LSTM is
relied on ANF as the non-leaf node function. q
vector for NTI-ANF-LSTM is the answer repre-
sentation produced by the answer encoding NTI-
SLSTM-LSTM model. We set the batch size to 4
and the initial learning rate to 1e-3, and train the
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Figure 2: Node-by-node attention visualizations. The phrases shown on the top are nodes from
hypothesis-indexed tree and the premise tokens are listed along the x-axis. The adjacent cells are com-
posed in the top cell representing a binary tree and resulting a longer attention span.

a person park for fun Santa Claus sad, depressed, and hatred
single person an outdoor concert at the park a snowmobile in a blizzard an Obama supporter is upset
a woman kids playing at a park outside a Skier ski - jumping but doesn’t have any money
a young person a mom takes a break in a park A skier preparing a trick crying because he didn’t get cake
a guy people play frisbee outdoors a child is playing on christmas trying his hardest to not fall off
a single human takes his lunch break in the park two men play with a snowman is upset and crying on the ground

Table 4: Nearest-neighbor phrases based on cosine similarity between learned representations.

model for 10 epochs. We used 20% input dropouts
and no l2 weight decay. Following previous work,
we adopt MAP and MRR as the evaluation metrics
for this task.5

Table 2 presents the results of our model and
the previous models for the task.6 The classifier
with handcrafted features is a SVM model trained
with a set of features. The Bigram-CNN model
is a simple convolutional neural net. The Deep
LSTM and LSTM attention models outperform
the previous best result by a large margin, nearly
5-6%. NASM improves the result further and sets
a strong baseline by combining variational auto-
encoder (Kingma and Welling, 2014) with the soft
attention. In NASM, they adopt a deep three-layer
LSTM and introduced a latent stochastic attention
mechanism over the answer sentence. Our NTI
model exceeds NASM by approximately 0.4% on
MAP for this task.

5We used trec eval script to calculate the evaluation met-
rics

6Inclusion of simple word count feature improves the per-
formance by around 0.15-0.3 across the board

4.3 Sentence Classification

Lastly, we evaluated NTI on the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). This
dataset comes with standard train/dev/test sets and
two subtasks: binary sentence classification or
fine-grained classification of five classes. We
trained our model on the text spans corresponding
to labeled phrases in the training set and evaluated
the model on the full sentences.

We use NTI-SLSTM and NTI-SLSTM-LSTM
models to learn sentence representations for the
task. The sentence representations were passed
to a two-layer MLP for classification. We set the
batch size to 64, the initial learning rate to 1e-3
and l2 regularizer strength to 3e-5, and train each
model for 10 epochs. The NTI-SLSTM model
was regularized by 10%/20% of input/output and
20%/30% of input/output dropouts and the NTI-
SLSTM-LSTM model 20% of input and 20%/30%
of input/output dropouts for binary and fine-
grained settings.

NTI-SLSTM-LSTM (as shown in Table 5)
set the state-of-the-art results on both subtasks.
Our NTI-SLSTM model performed slightly worse
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A dog mouth holds a retrieved ball. A cat nurses puppies. A dog sells a woman a hat.
A brown and white dog holds a tennis
ball in his mouth.

A golden retriever nurses some other
dogs puppies.

The dog is a labrador retriever.

The dog has a ball. A golden retriever nurses puppies. A girl is petting her dog.
The dogs are chasing a ball. A mother dog checking up on her baby

puppy.
The dog is a shitzu.

A small dog runs to catch a ball. A girl is petting her dog. A husband and wife making pizza.
The puppy is chasing a ball. The hat wearing girl is petting a cat. The dog is a chihuahua.

Table 5: Nearest-neighbor sentences based on cosine similarity between learned representations.

than its constituency tree-based counter part, CT-
LSTM model. The CT-LSTM model composes
phrases according to the output of a sentence
parser and uses a node composition function sim-
ilar to S-LSTM. After we transformed the input
with the LSTM leaf node function, we achieved
the best performance on this task.

5 Qualitative Analysis

5.1 Attention and Compositionality

To help analyzing the results, we output atten-
tion weights by our NTI-SLSTM node-by-node
global attention model. Figure 2 shows the atten-
tion heatmaps for two sentences in the SNLI test
set. It shows that our model semantically aligns
single or multiword expressions (”little child” and
”toddler”; ”rock wall” and ”stone”). In addition,
our model is able to re-orient its attention over dif-
ferent parts of the hypothesis when the expression
is more complex. For example, for (c) ”rock wall
in autumn”, NTI mostly focuses on the nodes in
depth 1, 2 and 3 representing contexts related to ”a
stone”, ”leaves.” and ”a stone wall surrounded”.
Surprisingly, attention degree for the single word
expression like ”stone”, ”wall” and ”leaves” is
lower to compare with multiword phrases. Se-
quence models lack this property as they have no
explicit composition module to produce such mu-

Figure 3: Fine-grained sentiment classification ac-
curacy vs. padding size on test set of SST data.

tiword phrases.
Finally, the most interesting pattern is that the

model attends over higher level (low depth) tree
nodes with rich semantics when considering a (c)
longer phrase or (d) full sentence. As shown in (d),
the NTI model aligns the root node representing
the whole hypothesis sentence to the higher level
tree nodes covering larger sub-trees in the premise.
It certainly ignores the lower level single word ex-
pressions and only starts to attend when the words
are collectively to form rich semantics.

5.2 Learned Representations of Phrases and
Sentences

Using cosine similarity between their represen-
tations produced by the NTI-SLSTM model, we
show that NTI is able to capture paraphrases on
SNLI test data. As shown in Table 4, NTI seems
to distinguish plural from singular forms (similar
phrases to ”a person”). In addition, NTI captures
non-surface knowledge. For example, the phrases
similar to ”park for fun” tend to align to the se-
mantic content of fun and park, including ”people
play frisbee outdoors”. The NTI model was able
to relate ”Santa Claus” to christmas and snow. In-
terestingly, the learned representations were also
able to connect implicit semantics. For example,
NTI found that ”sad, depressed, and hatred” is
close to the phrases like ”an Obama supporter is
upset”. Overall the NTI model is robust to the
length of the phrases being matched. Given a short
phrase, NTI can retrieve longer yet semantically
coherent sequences from the SNLI test set.

In Table 5, we show nearest-neighbor sentences
from SNLI test set. Note that the sentences listed
in the first two columns sound semantically coher-
ent but not the ones in the last column. The query
sentence ”A dog sells a women a hat” does not ac-
tually represent a common-sense knowledge and
this sentence now seem to confuse the NTI model.
As a result, the retrieved sentence are arbitrary and
not coherent.
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5.3 Effects of Padding Size

We introduced a special padding character in or-
der to construct full binary tree. Does this padding
character influence the performance of the NTI
models? In Figure 3, we show relationship be-
tween the padding size and the accuracy on Stan-
ford sentiment analysis data. Each sentence was
padded to form a full binary tree. The x-axis
represents the number of padding characters in-
troduced. When the padding size is less (up to
10), the NTI-SLSTM-LSTM model performs bet-
ter. However, this model tends to perform poorly
or equally when the padding size is large. Over-
all we do not observe any significant performance
drop for both models as the padding size increases.
This suggests that NTI learns to ignore the spe-
cial padding character while processing padded
sentences. The same scenario was also observed
while analyzing attention weights. The attention
over the padded nodes was nearly zero.

6 Discussion and Conclusion

We introduced Neural Tree Indexers, a class of
tree structured recursive neural network. The NTI
models achieved state-of-the-art performance on
different NLP tasks. Most of the NTI models form
deep neural networks and we think this is one rea-
son that NTI works well even if it lacks direct
linguistic motivations followed by other syntactic-
tree-structured recursive models (Socher et al.,
2013).

CNN and NTI are topologically related (Kalch-
brenner and Blunsom, 2013). Both NTI and CNNs
are hierarchical. However, current implementa-
tion of NTI only operates on non-overlapping sub-
trees while CNNs can slide over the input to pro-
duce higher-level representations. NTI is flex-
ible in selecting the node function and the at-
tention mechanism. Like CNN, the computation
in the same tree-depth can be parallelized effec-
tively; and therefore NTI is scalable and suitable
for large-scale sequence processing. Note that
NTI can be seen as a generalization of LSTM. If
we construct left-branching trees in a bottom-up
fashion, the model acts just like sequential LSTM.
Different branching factors for the underlying tree
structure have yet to be explored. NTI can be ex-
tended so it learns to select and compose dynamic
number of nodes for efficiency, essentially discov-
ering intrinsic hierarchical structure in the input.
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